Dynamic Simulation Control with Queue Visualization

Saurabh Mittal
Bernard P. Zeigler
Arizona Center of Integrative Modeling and Simulation (ACIMS)
ECE Department, University of Arizona
Tucson, AZ 85721
{saurabh, zeigler}@ece.arizona.edu

Abstract: This paper describes a DEVS-based network
modeling and simulation environment with dynamic
simulation control and queue visualization. The
development of a simulation framework supporting run-
time simulation tuning is facilitated by the DEVS modeling
and simulation framework with its separation of model,
experimental frame and simulator. The rapid feedback cycle
supported by “real-time” intervention allows
experimentation with parameters and structures and results
in effective network configuration that is difficult to achieve
when turnaround requires hours or days. An example of a
distributed simulation application running on a wide area
network is given to illustrate the new capabilities.

Keywords: DEVS, queue, visualization, network, System
Entity Structure, simulation, HLA

1. INTRODUCTION

Although a number of commercial and academic
simulators are available for complex network studies, none
have the capability to tune the simulation while it is in
execution. Due to tight coupling between the network
model and the simulation engine in such simulators, the
capability to introduce changes in parameter values during
execution is limited or non-existent. The research described
here has the objective of developing a DEVS-based network
modeling and simulation environment with dynamic
simulation control and queue visualization. The DEVS
modeling and simulation framework separates model,
experimental frame and simulator. This modularity
facilitates the development of a simulation framework
supporting run-time simulation tuning. The motivation
behind providing “real-time” intervention is to support a
rapid feedback cycle that allows experimentation with
network parameters and structures. This can result in
effective network configuration that is difficult to achieve
when turnaround requires hours or days. Furthermore, such
instantaneous observation and control enables important
transient situations to be recognized and considered.

1.1 Real-Time Control And Visualization Imitations Of
Existing Network Simulators
Some of the limitations of existing network
simulation packages are as follows:
« Everything has to be programmed prior to
simulating the network

» User interfaces are not easily customized and
provide largely textual interfaces

e There is no support for changing parameters
and component structures during simulation

+ Simulation run times tend to be long (a few
hours); more importantly, if a run ends in a
crash, there is no way to intervene and re-adjust
the system

+ There is no run-time visualization of the system
behavior to aid understanding and to steer the
simulation in productive direction

To develop a network modeling and simulation environment
that addresses these limitations, we extended the existing
Discrete Event System Specification (DEVS) software,
DEVSJAVA. In this paper, we shall discuss the layered
architecture underlying the network simulation
environment. After describing this architecture, we discuss
some proposed run control and visualization techniques
intended to greatly improve user understanding of, and
ability to control, the complex structural and behavioral
relationships characteristic of large network behaviors. An
example of the use of the architecture will be given; it
concerns modeling and simulation of network-based
distributed engineering studies performed using the High
Level Architecture (HLA) middleware.

2. LAYERED ARCHITECTURE

In order to create a DEVS Simulation environment,
we follow a layered approach to define our model
architecture. Figure 1 describes the layers wunder
consideration. In this architecture, we have two layers, i.e.,
the Experimental Frame layer and the Network Modeling
layer.

The Experimental Frame layer has the following
functionality:

1. Traffic Generator. This component generates
traffic for the network. The traffic generated or
packets created will follow characteristic behavior
according to stochastic or statistical distributions.

2. Parameter Controller/Evaluator. This component
provides the capability to interactively conduct
controlled experiments and visualize the effects of
various parameters on the system behavior.

Tapology Sub-layer
| Routing Sub-layer

o

- uasﬁ:ag DEVS'Fol:mal‘i:sm N
Figure 1. Layered Architecture Approach for DEVS M&S
Network Framework

3. Topology Designer. This component creates
topologies and provides the capability to change the
topology at run-timed.

4. Visualizer. This component provides frames and
panels for visualizing the states of various entities
during simulation during execution and the statistics
obtained from the simulation.

The Network Modeling layer consists of two
layers: a routing layer that includes the packet routing
functionality; this layer provides the routing of messages
that are generated in the Experimental Frame layer. It
currently implements the Dijkstra routing algorithm [Ospf],
which is based on a link-state information database. The
topology layer sits atop the routing layer and contains links
between pairs of nodes to specify the topology of the
network.

3. NETWORK CONTROL AND
TECHNIQUES

VISUALIZATION

3.1 System Entity Structure Description

The overall software development is described using the
System Entity Structure (SES) [Kim etal 1990] as
illustrated in Figure 2. SES is a structural representation
scheme that contains the knowledge of decomposition,
taxonomy, and coupling of components of a model. Figure 2
portrays an SES of a DEVS Network model specialized for
application to the HLA distributed simulation to be
discussed. We’ll describe the simulator processing and its
interaction with users in a moment.

DeszetFlramework
asplect
Packets NetworkModelingLayer ExperimentalFramelLayer
|
Il aspect
Packet Network L
~Sic el | | [|
e TrafficGenr StatCollector Controller Visualizer Topolog)ilr?o%ﬂ?ner
~attribute finks
~port spec ~connectionDensity
| | UtilizationFrame ~RandomConfig
spfc aspect
De-CentralizedHLA CentralizedHLA
[
aspect
ComponentNode [|
| RouterNodes Links
. ll
FltiElergmer RouterNode Link
aspelm
PubSubHandler o opoc aspect spec
RouterHLA
simplex duplex
LoadGnr RtQueue RiTransd Hotllter LkQueue LinkTransd
aspect
AttribEval PcktFwdr LookUpTable RoutingEngine RouterQ
~Topolegy
35me spec
RoutingTable
RealTime classical
~simBased ~DijkstraAlgorithm

Figure 2. SES Structure of DEVS Net Framework for HLA Network modeling and simulation

3.2 Visualization Techniques

Visualization is an important part of any research
endeavor that deals with large data sets and multiple
components [WongBerg 1995]. There have been efforts to
develop an end-to-end low-cost solution for analyzing and
visualizing large time-varying data on distributed
computing architecture [MaCamp 2000]. Due to large
computation times, such solutions usually do not provide
feedback to the modeler during simulation. As indicated
before, our interest is in developing a visualization
architecture that is integrated with the study of large scale
networks and provides rapid feedback to modeler. An
animation architecture for message passing in hierarchical
DEVS models has been developed [Yi 2003]. The
DEVSJAVA simulation environment has a similar
visualization capability, SimView, that aids the design of
DEVS modular and hierarchical models. However, this
feature is not powerful enough when we are considering the
design of a network system that can be viewed from many
other perspectives.

To overcome the limitations of available simulators
mentioned above, we designed our Utilization and
Controller frames. The graphical representation of these
frames will be shown later in Section 5, Figure 7. The
features of these designed frames are as follows:

Utilization Frame

+ is a modular Graphical User Interface (GUI) con-
struction

* has Link Panel and Router Panel to display their
buffer utilizations

+ is created during the network setup definition

+ can be updated at run time in the event of any
link/router going up/down in the network

Controller Frame

» provides customized controls based on network
parameters

+ is interfaced with DEVS SimView (simulation can
be entirely controlled by this frame)

+ supports run-time adjustment and tuning of network
/ simulation parameters

« supports avoidance of simulation crash by interven-
tion of user to modulate the system parameters

The network topology designer is intended to
support creation of network topologies and their
modification during simulation. Not finding any
convincing open source topology generator with run-time
support for changing network topology, we created our own
Graph Modeler, as shown in Figure 3 with the following
features:

Topology Designer
+ allows specifying following parameters:

* Number of nodes in the network (2...n) where
n is the upward bound on node number
+ Connection density of the network (range [0,1])
where 1 means fully connected graph
e Mean distance between the nodes, where dis-
tance may be interpreted as a network paramet-
er such as available bandwidth, node-delay, ca-
pacity and cost.
» provides the ability to randomize connections with
same topology at run time
+ is coupled to DEVS engine during the simulation
» ensures that any run-time modification brings about
corresponding change in DEVS simulation
+ is constructed as a software component that can be
interfaced with any simulation engine
& Graph Viewer

/=l

Number of Nodes, ——————————— |
40 nodes.

Interface for Graph Modeler

1

1
Probability of 7
ean
making 08 Distance 128 ¢ periacic Upoetes (Quantized Uptistes Sirulate DEVS Model
Connections.

Figure 3: Graph Modeler to create topologies

3.3 Interrupt Handling by Simulation Controller Frame

The Controller Frame is built on top of DEVS
Coordinator in DEVSJAVA. We developed interfaces to
enable the DEVS engine to take into account the change of
Experimental Frame parameters during the simulation run.
It generates interrupts, which are handled by the coordinator
in DEVSJAVA.

4. EXAMPLE: HLA/RTI SIMULATION

The HLA middleware consists of federates and
Run-time Interface (RTI) [Dahman etal 1997]. In a
centralized architecture, there is have a single RTI
Executive to control the transactions between the different
federates. In a decentralized architecture, this functionality
is distributed over a number of nodes. The objective of the
study was to compare the performance of centralized and
decentralized architectures. Accordingly, the Experimental
Frame layer is specialized to support both centralized and

decentralized RTI architectures. In a centralized
architecture, illustrated in Figure 4, updates are sent by
federates to a single RTI Executive that then distributes
them to all federates in a publish/subscribe manner. A
decentralized architecture is modeled as a peer-to-peer
network in which federates exchange state updates among
themselves with much of the processing of a central
executive replicated at each node.

]
RTIEXECUTIVE
B oo

b]'m:" i
o T

=

“IHLA Rauter |

Figure 4. Conceptual Layout of HLA/RTI network
architecture

We constructed our “HLA router” and “RTI
Executive” according to Figure 4. The details of inner
DEVS components can be seen in the SES structure in
Figure 2.

The RouterHLA Network consists of DEVS links
and DEVS RouterHLAs connected in a particular topology.
The RTI Executive Node (RTIExecNode) is one of the
nodes in the constructed topology. Traffic emitted by
federates is routed to the RTIExecNode in the case of
Centralized RTI Architecture. In the non-centralized case, it
is routed to another federate, as in a point-to-point (P2P)
RTT architecture.

The present study is limited to modeling the RTT as
RTI Ambassador, which is not more than a simple M/M/1
queue having a mean delay as a “controllable” parameter.

5. EXPERIMENTAL SETUP

After defining the DEVS models and testing their
operations in a standalone manner, we created networks
composed of DEVS HLA Router models, DEVS links, and
a DEVS RTI Exec in either centralized or non-centralized
form.

The network topology can be created using the
Topology Designer (refer to Figure 3) where the nodes
become DEVS HLA Routers and connections become

DEVS links. The node with the highest ID in Graph
Modeler defaults to become the RTIExecNode for
experiments with centralized architectures. The Topology
Designer is an optional component that can be omitted in
case the designer wants to create a customized model by
explicitly specifying nodes and connections.

A default experiment defines the following parameters for
simulating a network (Table 1). The initial values of these
parameters are defined at the start of simulation during
setup of network layout.

S.No. | Parameter Name Initial Data
Value Type

1 Router Buffer Length | 20 packets Int

2 Link Buffer Length 10 packets | Int

3 Eélgkets generated per 10 pkis/sec Int

4 Mean RTI Delay 1 sec double

5 Mean Router Delay 0.1 sec double

6 Mean Network Delay 10ms double

Table 1. Simulation-parameters table

The simulation packet is provided with the
following fields. A single packet can be translated to bytes
based on the data or attribute payload.

Source
Destination
Destination Port
nextHop
Packet Type
0=Data, 1=RoutingUpdate
Attribute 1
Attribute 2
|
Attribute n
Cost Accrued

Figure 5. Simulation packet structure

Once the network is set up, these simulation
parameters can be adjusted using the Controller frame. The
Controller frame is designed in such a manner that the
parameters can be changed at run-time during active
simulation so that the individual effect of these parameters
can be immediately observed. Detailed analysis of these
parameters will be provided in next section.

The default start of experiment executes the
following tasks:
a) Initializes DEVS routers and DEVS links
b) Creates publish/subscribe class information for each
of the routers
c) Executes the link-state routing algorithm (Dijkstra)
inside the Routing Engine to implement the Net-

work layer functionality in the layered architecture
described earlier.

d) Creates Controller, Utilization Frame, and other
Analyzer plots for network-state visualization and
analysis

e) Gets the network ready to start generating packets

Once the initial setup has been done, the simulation
is started that executes the following steps repeatedly:

1. The wuser sets the traffic injection parameter
(packets/sec) through the Controller Frame where it
is then relayed to the Load Generator component in-
side every RouterHL A to create and generate packets
(refer to SES for component structure).

2. The packets are then fed into the RTI Emulator com-
ponent that incorporates the RTI delay parameters.

3. The packets then enter into the Networking Layer
component ‘router’ for routing where they are put on
to a specific outport based on the network topology
and Lookup Table in router.

4. The packets travel through the network links and are
then received by the routing module of destination
the next hop RouterHLA. If the node is the intended
destination, then the packet is absorbed there else it
is forwarded based on the Lookup Table.

5. Changes in the network parameters (described
above) are injected at any time during the simulation
execution to study their effect on network queue util-
ization or network latency.

6. The real-time network state and /or component’s
state is visualized as the simulation proceeds in time.

Experiments Illustrating User “Real-time” Intervention

The topology under experiment is shown in Figure
6. Experiment 1 is the P2P de-centralized HL A network and
experiment 2 is the Centralized HLA network with RTI
Executive node.

Experiment No. 1

\@{@\ 0
® ® ©O—@.

HLA Routers connected in P2P network HLA Routers connected in P2P network
and communicating without RTI Executive and communicating THRU RTI Executive

Experiment No. 2

Figure 6. Topology for Experiments

Figure 7 shows a snapshot of Experiment 1. Once
the simulation achieved steady state after initialization, the
RTI Delay was reduced to 0.01, the load was increased

from 10 packets/sec to 25 packets/sec. The experimental
network responded with huge surges in the link queue
lengths and the link capacities had to be increased from 10
packets to 20 packets to accommodate such surge. Notice
the change in the Controller frame in Figure 7. We witness
an increase in throughput of the network. This situation is
easily explained since we are sending more packets into the
network and most of the packets are to be found in the link
queues. Since the RTI Delay is relatively small (0.01), there
are hardly any packets in the RTI.

The Controller Frame allows us to modify the
capacities of the system (e.g., link capacities in this
experiment when load is increased) when the network
exceeds beyond its normal operating conditions. This then
helps us modify the parameters at run time so that we can
quickly arrive at a set of parameter values for a stable steady
state solution of network under simulation study.

Figure 8 shows a snapshot of Experiment 2. In this
particular experiment, each HLA Router publishes a
message of a particular class to the RTI Exec and sends
packets to the RTI Exec. The RTI Exec multicasts them to
other HLA Routers. Those routers that have subscribed to
this particular class of message are sent this message. This
experiment contains additional statistical plots than
Experiment 1.The first row (figure 8) belongs to links
between HLA Routers, and the second row of plots belongs
to RTI Executive interfaced Links. Since we anticipated a
high volume of traffic in links coming out of RTI Exec, we
set their capacities to be threefold, with throughput from the
usual 20 packets/sec to 100 packets/sec. We conjecture that
links coming in/out of RTI Exec should be capable of
handling traffic at least four-fold, hence the increased
default values.

As the simulation started with a load being
generated at 10 packets/sec (default value) and an RTI mean
delay of 1.0 sec (default). The simulation started with
queue lengths slowly building up, along with the link
throughputs. Within 7 seconds the queue lengths as well as
throughputs have exploded. @ The link capacity was
increased from 10 packets/sec to 60 packets/sec to
accommodate the traffic, but it was not sufficient to control
the throughput.

Without restarting, we lowered the rate of packet
generation, i.e., the Load generated per second was reduced
from 10 packets/sec to 4 packets/sec at 7.21 seconds. There
was no change made in the RTI mean delay parameter,
which continued to stay at 1.0 seconds. We see that the
system takes some time to respond to this adjustment Figure
8. After some time, i.e., at clock 11.941, we observed that
the throughput of the system (both RTI links and router
links) has been lowered. The response time for this change
was around 5.6 seconds.

Figure 8. Snapshot of Centralized HLA network simulation

We continued our simulation run to see when the
steady state arrived. It took an additional 10 seconds for
the throughput to stabilize. Finally, we lowered the link
capacities from 60 packets to 40 packets. The system
achieves a steady state with load generated at 4
packets/sec, RTI Mean delay of 1.0 sec, and link capacity
at 40 packets.

Experiment 2 successfully implemented the
multicast capability of the RTI Executive. In addition to
just tuning the steady state network configuration values,
the network statistics gathered were lafency, link
throughput and maximum queue length displayed by
links. The end-to-end /atency values obtained during the
simulation run were then compared with the available
commercial RTI values. A full report [Mittal et.al 2004] is
available from the authors.

Simulation Capabilities

The above visualization capability
enabled us to see that throughput takes some time to
stabilize and that the change in any network parameter
has considerable transients along with long-term effects
before a steady state is achieved. Getting this kind of
qualitative data by mining the event-logs would require
additional parsers and data-analyzers to be written and
ultimately be displayed graphically by recreating the
simulation from event-log. Using the new capability, this
information is now readily available through the real-time
visualization of system and the rapid feedback provided
by the integrated visualization with the executing
simulation.

6. DISCUSSION AND CONCLUSION

Consider the general case of simulations to plan
the network capacity and configuration need for
distributed simulation to support engineering studies.
Such simulations need to describe network structure and
behavior only at levels of abstraction that provide
reasonable estimates of bandwidth requirements and take
into account performance-level representations of the
underlying middleware. Adopting appropriate levels of
abstraction can be exploited to provide quicker
turnaround of simulation results. But even more
importantly, with appropriate visualization support, such
abstraction can allow direct and “real-time” observation
of dynamic network behavior that can deviate markedly
from that characteristic of the steady state.

The current study has demonstrated the design
and operation of a network simulation environment that
provides a proof-of-concept of the approach just
described. We note that dynamic surges due to changes in
network loads or structures (such as breakdowns) are well
perceived with the use of the visualizer. In contrast, these
surges might be easily missed in scanning the detailed log

of a traditional simulator with output at the end of the run
only. The rapid feedback cycle supported by “real-time”
intervention allows experimentation with parameters and
structures and results in effective network configuration
that is difficult to achieve when turnaround requires hours
or days and where important transient situations might
never be considered.

References

[Kim et.al 1990] T.G. Kim, C. Lee, E.R. Christensen, B.P. Zeigler,
“System entity structuring and model base management”, IEEE
Transactions on Systems, Man and Cybernetics, Volume 20, Issue 5,
Sept-Oct., 1990
[Dahman et.al 1997] Judith S. Dahmann, Richard M. Fujimoto and
Richard M. Weatherly, “The Department of Defense High Level
Architecture,” Proceedings of the 1997 Winter Simulation
Conference

[Ospf] www.ospf.org

[Ns2] http://www.isi.edu/nsnam/ns/
[

[

Opnet] www.opnet.com
Kolek et.al 2000] Stephen Kolek, Steve Boswell, Harry Wolfson,

“Modeling and Predicting HLA Federation Performance,” 00F-SIW-
085, Distributed Systems Performance Modeling Office (DSPMO),
MIT Lincoln Laboratory, September 2000

[Zeigler et.al 00]Bernard P. Zeigler, Herbert Prachofer, Tao G. Kim,
“Theory of Modeling and Simulation,” Academic Press, 2 Edition,
January 2000

[Akerkar 2004] Salil R. Akerkar, “Analysis and Visualization of Time-
varying data using the concept of ‘Acitiviy Modeling’”, MS Thesis,
University of Arizona, 2004

[WongBerg 1995] Pak Chung Wong and R. Daneil Bergernon, “A too
for hierarchical representation and visualization of Time-varying
data”, ICASE/LaRC Symposium, 1995

[MaCamp 2000] Kwa-Liu Ma and David Kamp, “High Performance
Visualization of Time-varying volume data over Wide-Area nework”,
Proceedings of Super Computing 2000

[Mittal et.al 04] Saurabh Mittal, Bernard P. Zeigler, Phillip
Hammonds, Mahesh Veena, “Network Simulation Environment for
Evaluating and Benchmarking HLA/RTI Experiments”, JITC Report,
Fort Huachuca, December 2004.

[Yi 2003]M.R.Yi T.H.Cho “Hierarchical simulation model with
animation”, Engineering with Computers, Issue: Volume 19,
Numbers 2-3August 2003, pps. 203 — 212

