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Abstract

Complex systembave been studied byesearchrsfrom everydiscipline:biology, chemistry, physics,
sociology mathematicend economicand moreDepending upon the disciplinepmplex systems theory has
accrued many flavors. We are after a formal representatioodelthat carpredict the outcome @& complex
adaptivesystem (CAS)In this article, we look ahe nature of complexitythen providea perspective based on
Discrete Event System{BEVS) theory.We pin down many ofhesharedeaturesdbetween CASnd artificial
systemsWe begin with an overview of netwosdcienceshowinghow adaptive behavior in thesealefree
networkscan lead temergenceahrough stigmergyn CAS. We also address how both selfganization and
emergencénterplay in a CASWethenbuild a casdor the view that Sgmergic systemare aspecial case of CAS.
WethendiscusDEVS Levels of systems specifications gidsent the dynamic structure extensions of DEVS
formalismthatlendsitself to a study of CAS and in turntigmergy.Finally, we address the shortcomings and the
limitation of current DEVS extensions and proposergguiredaugmentationo model sigmergy and CAS

Keywords Stigmegy; Complex adaptive systems; Emergeradf-organization,DEVS; Dynamic structurescale
free networks; Atificial systems

1 Introduction

A natural system is not a monolithic system but a heterogeneous system no&ddespprity
and dissimilaritydevoid of any larger goal. The system jastOExamples of such systems
includeant colonies, the biosphere, the br#e immune system, th®ologicalcell, businesses,
communities, social systems, stock maslett. Such systems are adaptable systems where
emergence and seatfganization are factors that aid evolutidhese systems are classified as
complex adaptive systems. AccordingHolland (2006 1): GCAS are systems that have a large
number of components, often called agents that interact and adapt @ learn.

In this article, wanvestigate CAS by looking at the scale of components, interactions
between the components, and emergenpgnties that are manifested by such CA& will
attempt to understand some of the common underlying propediesess the adaptive nature of
such complex systems ailidstratehow resilience is an inherent property of CAS.

CASis occasionally modeledy meais of agentbased models and complex netwbidksed
modeb. Multi-agent systems (MAS) is tlagea of research that deals with such study. However,
CAS s fundamentally differenfrom MAS in portraying features like sedfmilarity (scalefree),
compkxity, emergence and salfganization that are at a level above the interacting agents. A
CAS is a complex, scaleee collectivity of interacting adaptive agents, characterized by high
degree of adaptive capacity, giving them resdeem the face gberturbationindeed, designing
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an artificial CAS requires formal attention to these specific featW&swill address these
features and the formalisms needed to model CAS.

The discipline of modelingriginatedto understand natural phenomeBg developng
abstractionswe canmanage the apparetwmplexity,reuse it aneénable these complex
phenomena in artificial systerts our advantagerl he discipline of executgthis model on a
time base is€imulationOThetask of decoding the original structdrem manifested behavior
is the holy grail othe modeling andisulation (M& S) enterpriséZeigler, Praehofer, & Kim,
2000) The need foM & S to make progress in understanding CAS has been well acknowledged
by Holland (1992) The task is to understamioe gamut ofrules that exist withimnd withouta
component andnderstandhow the componetdeals with suclmultidimensionalules inan
interactiveenvironmentM & S is the only way onean understananimic and recreate a natl
systemMost artificially modeledsystemghat exhibitcomplex adaptivéehavior arelriven by
multi-resolutionbindings and interconnectivigt every level of system behavidio understand
life is to Omode|@ adapt is tsurvive in arenvironmentwherebothsurvivaland environment
areloaded conceptbased on thguiding discipline

Complexity is gophenomenothat is multivariablend multidimensionain a spacdime
continuum Therefore, whatve needs a framework thahelps develp system structure and
behavior in an abstract manrardthatis component oriented so thhe systentandefineits
interactions based dhe composition of aulti-level environment

Stigmergy the study ofndirectinteraction between netwodomponentsn a persistent
environmentexplains certain emergent properties of a sysiém.network components include
both the environment and the agent and both are persisteboth are situated sspacetime
cortinuum and have memory. We taRiggmergic systemto bea subset o€AS andarguethat
stigmergic behaviois an emergemthenomenon tadJltimately, we ardrying to get a handle on
how to formalizethe property of®mergenced

Discrete event abstraction has been studied at lenddetmardZeigler throughout his
illustrious career and his pioneering work on Discrete Event Systems (DEVS) formalism in
1970s(Ziegler,1976. As a student, ib perspectives on CA8ereinfluenced by Holland.
ZieglerOapproach to CAS has been throughdhantization of continuous phenomena hoa/
guantization leads to abstractigmy CAS must operate within the constraints imposed by
space, time, and resources on its information proce@Binger, 1997)Evidence from neurai
models and neuron process architectures and from fast and frugal heurisposvide further
support tahe centrality of discrete event abstraction in modeling CAS when the constraints of
space, time and energy are taken into accdiengler stated that discrete event modeksthe
right abstraction for capturing CAS structure and behgdeigler, 2004)In this article, we
take the discipline of modeling CAS forwaly looking attheemergencaspect ofCAS. We
introduce DEVS andemonstrate howecent extensions still ifa little short in modeling CAS.

We first focus on the study of network science and how dcaéenetwork are inherently
important to study complex interactioasd hierarchical systemi Section 3ve look at various
types of interactions in a complex network. Sectiowdaddress the concepts of emergence and
self-organization in detail aneixaminehow a complex dynamic network fhtates such
behavior.Section 5, a slighdigresson, provides an overview oDEVS theory.We returnto the
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subject of dynamism in a complex adaptive network in Section 8leswihow DEVS theory is
positioned to give modeling and simulation support to the subjgxtescribe various existing
formal DEVS extensions that help model various feadlof stigmergy, emergence and CAS.
Finally, in Section Ywe presensomeconclusions angointers forfutureresearch

2 The Nature of Complex Networks

2.1 Overview

Complex networks are the backbone of complex systems and each complex system is a
network of interactions among numerous network elements. Some networks are geometric or
regular in 2D or 3D space and some h@sag rangeO connections that are not spitial.
Network topobgy or anatmy is important to characterize because structure affects function and
vice-versa.Thedynamic naturef a networkis one ofthe keys to understand complgx Each
networkcomes withpeculiar set of properties and timanfestedbehavior of the components is
bounded by theonstraintghe networkimposes on ther(Barab1si2003) Each network
originates through set ofconstraintdetween the noddkat goverrhowthe links are formed.
Suchconstraintsdefined as rulehave totally differentnanifestatios when we talk of social
networks built by mutual friengisvhere the rules are dynanaind ofabiologicalcell, wherethe
DNA blueprint along withunchangeabli&aws of chemistryand physics goverand dictateall the
reactions the cell participates.in

Table 1classifiesnetworks in complex systems along with three metrics that are used to
compareghem.The first metricaverage path length (Li¥ used to measure the smallest number
of edges connéing nodes A and Bin a fully connected graph, L equalsThe maximal path
length is called theetwork diamete(D). Thedegreg(K) of a nodeA is the number of its
connections or nearest neighbdree second metrichédegree distribution P (ks the
probability distributiorof the node degreesd shows their spread around éverage degreed
neighborhoods the set of K nodes at distance 1 from nod&M#e third metric, thelustering
coefficient(C) (Watts & Strogatz, 19983 the ratio of node AOs neighborhood with all possible
connections from A. The maximum value C is 1.

Structural Metrics (for nodes N)
Network o Average Path D.egr.ee . Clust.ering
Type Description Examples Length (L) and | Distribution coefficient
Diameter (D) (connectivity) ©
P(k)
Regular Each node is connected| Slime mold, Fully Fully connected: | Fully
1. Fully to other node based @n | animal coats, connected: K = N-1, connected:
connected, specific type of sub insect colonies, | LowestL=D=1, | P(k) = f(kN+1) | Highest,
2.2D or 3D | propertysuch as bird flocking, c=1
lattice, geometric constraint or | swarm sync 2D,3D- lattice | 2D,3D-lattice
3.ring-world | any defined constraint and ring world | and ring world 2D,3D
lattice D>>1, Low, lattice and
4. constaints | Fully connected has the L ~ N when P(k) = f(k-K) ring world:
based highest number of edges K<<N High,
C~0.75
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Small-world | Same family of regular | Hollywood, L ~InN Poisson degree | High,
networks with few links | web pages distribution C~0.75 for
breaking the 2D or 3D ol social K>>1
ring-world lattice such
that there is no loss in
clustering, however
reducing path length on
log-scale

Scalefree Built on smaliworld Ecology, L ~InN Power law High,
networks with high Internet, brain, (Newman 2005) | C~0.75 for
vulnerability to targeted | biological cell, K>>1
attacls. Their origin can | gene regulation,
be attributed to two airline, citation,
properties: growth and | metabolic,
preferential attachment | power grid

language,
economy

Table1: Classification of complex networks and their metrics

We put more focus on the scditee networksas theyare the most complex of the three
types Such complexity is evident in various systems that exhihitdree behavior (shown in
Table 1, column 3[Barab1si2003) These systems evolve towards sdade topology to
become resilient anare sometimeslassified a<CAS due to the resultingehavior

2.2 Scale free Networks

In most complex networks found in nature, the nodes are dynamic agents that extend
themselves in an environment to build links with either the envirorseoibjectsr other
agens. These agents are dynamic in the sense that they govern their interactions with their
neighborghrough a dynamic unpredictable environmé# nodes are added incrementadly,
very important phenomenon occurs when the network reaches a critical statgrdbes a state
change wherein it becomes subjected to a new set of irelas starts displaying a totally
different behaviothatit did not manifest initially Thesefundamental shiftareknownas Ogiant
component® mathematic§¢Bradonjic, Hagberg& Percus, 2007)percolation or phase
transition in phgics, or simply a community irosiology (Barab$si2003) Critical state
transitiors impact the behavior of agentshich in turn impacthe link structure and
consequetly, the network topology, brging innew affordances and constraints altogether.

In order to understand why critical state transition occurs, we ask the foltowing

l. How are the rules inside theagentdriggered when Ocritical state transitioc@urs?

I. Doestheagent already haweminherentcapacityanddoesthe presence of a
conducive environmer@nforcethe agento manifest a totally different behavior

[I. Doestheagentlearnnew rulesby active observation in an environnent

V. Do inherent capabilities nka theagentvulnerable teexternal influenc@

! Power law: a slow continuously decreasing curve implying that many small events coexist with few large events.
Each power law has a unique degree exporék).~ K, where Y is the degree. In most oéthetworks, the
number of nodes with exactly K links follows a power law, each with a unique degree exponent Y between 2 and 3
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Thesequestiongaise & understated assumptioFhat is,agentsareapart of a
interconnecteaetwork, the environment &part of the network anthe interactiors exist
between tk agents and the environmeefining boundaries ithereforerather problematic
because weak links and nbnear interactions affect other agents and the environment in
unpredictable ways. These are open systems, where agents are copotctirectly and
indirectly: CAS are open systems.

A group of hghly connected nodes is calledlaster. A network is composed of these
clusters and weak ties connecting these clusféesk ties play a crucial role in network
formation. It is only through these links that new information is acquired by the origimadnk
as the strong ties stay within the clug@arab}si2003; Watts1999) Society is made of many
highly connected clusters connected together by weakTies came to be known as thweall-
world effect NewmanOs wotklewman & Watts, 1999long withBarabisbffered quantitative
evidence thatlusteringis present in social systems and is ubiquitous in natioeegbymaking it
a uniqueorganicproperty of complex network€&lusteringcoefficients measurehe density of a
particular cluste it wasfound that a few links were sufficient to reduce the average separation
of the nodes without making an impact on the clustering coefficient keeping it practically
unchangedWatts & Strogatz, 1998Yhe Gix Degreesf Separation@xperimen{Mil gram,

1967 is famous for describing such phenomenon in social networlesduster, some nodes

may act as connectoror ahub, i.e.nodes with an anomalously large number of lirfsch
hubsare present in every complsystemwhetherit be afinancial system or a cellular network
andis anothefundamental property afomplexnetworks.The formation ohubsand dustering

in a dynamic networkedefine the dynamic landscape a@fcomplex system. In society, these are
people with varied interests, who connect myriad fieddpertiseand experience.

Power lawdegree distributiomarescalefree and most natural complex systems have power
law behavioBuchanan, 2001; NewmaB005) Each scaldree networkhashubsthat
fundamentally definéhe networkOdynamictopology.In mathematical termgower lawis a
notion that a few large events carry most of the acBopanothemuestion is:

V. What makes a nod®s an agenévolve intoa hub?

In order to answethis question, sciergts looked at physics of atoragy.the emergence of
magnet(Stanley, 1971), is a phase transitiosm disorderto order. WilsonOsheory of
Orenormalization@ilson, 1971; Kadanoff, 1993)arted with scalsvariant behavior and
assumed that at the critical poititelaws of physics become applicable in identical manner
across all scales, from atoms to boxes containing millions of identical ,af@sting in unison.
He proved mathematicaltpat at suclan instantpower laws emergearingingforth order from
chaosPower lawsas anotheorganicproperty of complex networkaye patent signatures of
self-organization in complex systems.

All nodes are not equivalent. As nodeish their preferences armases acquire linksheir
behavior seestto facilitate more link making.e. they start portraying affinitior new links.
Eventually, they becomaubs Real networks are governed by two lagiawthand preferential
attachmenti.e. the network is dyamic, links/nodes are dynamic (they can
appear/disappear/rewire) and each link has a probability towards a high affinitfNevdaan,
2001) This preferential attachment is a rule that governs how a network is formed in the first

Pageb of 28



place from individual nalesleading to a scal&éree topology(Jeong, Neda, 8arab$si2003)
Most complex networks of scientific and practical importance are-fesefor example,
metabolic network within ce(lJeonget al.,2000) citation networkgBilke & Peterson, 2001)
economic webs, language networks and many others.

In most complex networks, each node has unique properties and behisati@re apparent
even if its connectivity is unknown. Interestingly, it is these intrinsic propertiepahizlly
define and dede what connectivity this node will eventually have in a competitive environment.
This competitionmay be linked to survivaih a heterogeneous systesiecidesvinners and
losers. The rate at which any node acquires connectivity, gaining tedgecomea hub defines
the new topology and its impact factor in the current netwidhls rateis the quantitative
measure of nodeOs ability toysthead of competition, callefitbessOPreferential attaament
is driven by the product of the nodeOs fitnesstendumber of links it hadhis fitness function
allows a latecoming node (e.g. Google) in the network to impact old connectivity and reorganize
the entire topolgy towards itself, making it au. Theoretically, enhub may formthat can grab
all the links in the existing network, such as in the phenomenon Owinner t@karalltotally
redefine the landscape to an extent that other@dmhavios do not matter. It destroys other
hubsand maksa network statike, i.e. the property of the complex network totally gets
transformedBarab$si2003) In an interconnected world, links represent survival and
competition exists between nodes. In a stigmergic systeenaction ighe very mechanism that
definesthis interconnectedness.

Most reatworld systems are generally resilient and thenctionalityis guaranteed bg
highly interconnected complex networkes$fliencein a scale free network is rooted in its
topology(Barabtsi2003) A significant fraction of nodesan be randomly removed without
breaking the network apart when these nodes are not the hubs. Any targeted attack to these hubs
can disintegrate the network and reduce it to independent cli&tefsinverse phase transition
is evident in cascading netwkofailures,distributed denial of service (DDoS) attacfgd
failures, avalanchegtc.where the load handled by a node is transferred to other neighboring
nodeshatare not prepared to take such lo8dcha phenomenon is also known seif
organizedcriticality. Not understanding how the actions of one node affect other nodes can
inadvertently make the neork vulnerable by hitting theu, leading to cascading failures and
complete breakdown of the topology. In a globalized economy the strengithdfrks
becomes more relevant as the supplier and the buyer are not competitors but partners sharing the
burden of their respective networks. The financiais (IMF, 2009 thatbegan in 2007s
evidencenow thefailure of one large ban reasury, 200) riskedanentire globafinancial
systemSeveral major banking institutioegther failed wereacquired under duress, or were
subject to government takeover. These included Lehman Brothers, Merrill Lynch, Fannie Mae,
Freddie Mac, Washington Mutual, Wachovia, Citigroup and fEman, 2009)

Diffusion and spreading in a complex networklescribedy a threshold modeEach node
has a critical threshold that allows or prevents it from communicating the idea or message to the
next neighbor. Intuitively, i& lub has a lower threshold, such messages are communicgted far
the message is not censored &iltered On the other hand, other nodes that have a higher
threshold will preventhe spreading of the message. This distribution of critical threshold levels
within the network nodes is a property of the netwtbdt explains phenomesach as virus
spread, fire spread, adidpn of innovative ideas and $orth.
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Multi-tasking and concurrency is@herinherent property of most complex systemes
each entity continues to display its behavior in the network environment and affects it. Each
network nale whether simple or complgg modular. Modularity is an essential property and a
defining feature of a complex network whergiis defined through a nodeOs interfadetit
brings to a networkn qualitative termsEach node brings value to the network to keep the
network functionalReal networks are clearly scdlfee and modular at the same time.
Quantitatively, clustering coefficient meassineodularity. However, as clusters are formed and
hubsare born, the co&€ient takeson an inverse behavipre., as hubemergehey reduce their
number of links. Their roleansforms fronbeing a functional participatd amore structural
role where they maintain links with othlaubsto enable connectivity with othetusters giving
rise to weak links across a scéilee network{Barab1si2003) A hierarchy is born and it allows
the evolution of these modules independemtquiring a status dhub entails change in its
dynamic interface that now affords new links amelssages to come across

Realworld networks are selbrganized where independent actions of the constituent nodes
and links lead to emergent behavibne obustness of the laws governing the emergence of
complex networks are not confined to a specedglof systems but are rooted in the properties
and behavior of the nodes guided by two basic conditbmerementalgrowthandpreferential
attachmentnecessary for a scalree topology Adding two more questions to the list:

VI. What dynamics happen within a node that urges it to extend a link, and
VII.  What transpires through when a link is forniesdween two nodées

This section raised some questions on the very foundat@iscdlefree complexnteractive
system. How to determirtBe source of dynamism and how dynamism affects other nodes and
shape the network landscape towards arsétint complex network, are issues that are further
investigated ahead.

3 The Nature of Actionsin a Complex Adaptive System
In this section we taka look at different types of actisthat impact the evolution of the
network. We classify these actions into two broad categamegsntra-actions andnter-actions.

Intra-actions: These are the actions taken by the node internalythese actions impact the
node itselffirst and may impact ber nodes through various irgetions this node participates
in. These actions aigitiated bythe internal dynamics of the node.

Inter-actions: These a the actions taken by the nadean eternal environment.e,, these
actions impact other nodes in the network. This impact to other nodes is communicated through
various modes of communication as allowed by the environment or specified by the properties of
the network. Such interactions lealveen further classified Ii§eil & Goldin (2003)as:

a. Direct interactiors. These interactions are poittkpoint connections and the actions of
one node directly affect other node amabodyelse.

b. Indirect InteractionsThese interactions are publishbscibe phenomenon where a node
publishes its actions (through specific messages) to a shared environment (acting as a
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persistentnedium) and other nodes that are subscribed to this particular type of
messagesdecoming affected through the medium of exchange.

In thereal world, each of agent nod&sd the environment is persistent, i.e. they have
memory. In modeling complex dynamic systems, we must take memory of both the adgents a
the environment into accourt agentssimply respond to a persistent environment and have a
fixed set of rules devoid of any complex learning/an memory apparatus, thagents are
reactive. Stigmergic behavior can stiicurin such an environment. However, for an agent
transform from a node to aub, advanced learning and memory apparatus must be paesent
that can be triggered when critical state transition occurs.

Klein and Goldin(2003 prove that the behavior of computational agents that make use of
indirect irteractons via the real world arecherthanthe behavior of agents that interact directly.
Their proof is based on the result Biegelmanni999) thatthereal world that is analog in
nature may compute algoritheally incomputabldunctions Persistencelays a crucial role in
the definition of indirect interactions. Persistent Turing Machines (PTM), equivealdm
Interactive Transition y&stems (ITS) model combines the constraints of coaipettransitions,
as in Turing machines, with the extensioa horralgorithmic, interactive processing associated
with persistent stat@Golden,et. al 2001; Golding, 2000).

3.1 Stigmergy as a Complex Adaptive System

Stigmergy is a concept that describes howargainization of nodes emergesa persistent
medium tlough an indirect communicatio8elf-organization is the interaction of a set of
processes at a lower level of system to yield structures at a higher glob&Hieleahd &
Melhuish, 1999)This does not imply that setfrganization evolve into a hierduical
organization. For a hierarchie. a lub to appear, the sedfrganization must be coupled with
other constructs such as sehlee nature of underlying netwqrkoherent emergentand
upward as well as downward causatiofisis demarcates the boundary between a stigmergic
system and a CASelf-organization leading to hierarchy has been observed in most natural
CAS.

Indirectinteraction is crucial to angtigmergicsystem to occur in the first placghis kind of
behavior was first observed in aablonies by PierrdaulGrass41959)who was intrigued to
learn how these virtually brainless creatures could create highly sophisticated messaging systems
and build extremely complex architectural structures. Accordi@yasZ, complexity in a
stigmergicsystemarises because the individuals interact not with each other but through an
environment by making changesth@ environmenthat havespatiotemporatharacter to them.
Thesespatiotemporafunctions in the environmenmipact other individuals arttie causal node
itself situatedn the same environmenithe creation opositive and negative feedback lopps
amplification of fluctuationsn thepresence of multiple interactioskape both the individual
and the environmerfCamazine, et al., 2001An individual makslocal changes in its
environment that last long enough for other individuals to detedb@afiected by themSuch
behavior has also been researched in rolh& that displayswarm behaviarOne of the
feauures of MAS and the contained autonomous agents within that exhibit indirect
communication is the notion of Odecentralizeatrol (Doyle & Kalish, 2004) Assumptions
that all weltperforming systems haw@eader®and centralized control apgovenerroreous
(Resnick, 1994; Sulis, 199 ollective robotics is another case whstigmergicconcepts are
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applied(lzquierdeTorres, 2004)Similar work byBrooks(1991)acknowledges the fact that the
fundamental decomposition of intelligent systems ismdteidentification ofindividual
processing producers that must interface with each,dib&n the interactions that these
producers have with the worldrough perception and action.

The capacity to detect ahe affected by changes in the environmasta result of an action
of anothemodein aspatiotemporamannelis guidedand simultaneously constrainkyg boththe
properties of a networknd the internal structu# the node The capacitylo detedDis a
property analogous to preferential attaxent and affinity. The capaci@o beaffectedis a
property analogous tive threshold modelThe third property i€o form weak link®with other
individuals separated by spamed time. Such weak links in aggnergic systenaremade
possiblethroughthe persistent environmeaind the persistent initial state of the agehtese
threeproperties aralsocentral to anyCAS. However, there are son@AS properties, such as
scalefree nature, and the underlying network complettistmay or maynot beportrayed bya
stigmergic systenThis makes a stigmergic system a special cas€Céf&

)*%+,&-JO1+"#2&..
1(3"&%

I"H$Y6&'S(

Figurel: Stigmergy as a special caseGAS

4 Emergenceand Selforganization

Emergencea term coined by Lewes (1873s gained widespread attention in the last two
decades partly due to the analysis capabilities afforded by massive computational power and
partly due to widespread complex systems in everyday use such as World Wide Web.
Emergence has been a nativehafland of &complex systen@and there are four schools of
thought that study emergen@s summarized bByolf & Holvoet (2005)

1. Complex Adaptive Systems thedpncept of mcrolevel patterns arising from
interacting agents

2. Nonlinear Dynamical Systentseory and Chaos theargoncept of attractors that guide
the system behavior

3. The synergistic schooConcept of order parameter that influences which mkswel
phenomena a system exhibits

4. Far-from-equilibrium thermodynamic€oncept of dissipative striuzesand dynamical
systemsarising from faffrom-equilibrium conditions.

We focus mostly on the emergence as addressed in the complex adaptive biesteone

4.1 Strong and Weak Emergence
We begin with alefinition of emergence as given(Wolf & Holvoet, 2005 3):
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A system exhibits emergence when there are cohemsetgenat the macrdevel that dynamically
arise from the interactions between the parts at the Hegrd. Such emergengse novel with
respect to the individual parts of the system

Other definitiors of emergence can feundin (Deguet et a).2006). Banabeau & Dessalles
(1997)in their definitiongive significant importance to the detectionedmethingOThey also
de<ribed how emergence is handleda hierarchical complex system:

When a detector becomes active in such a hierarchy, the active detectors from theviehtieat are
connected to it can be omitted from the description. [E] Emergence is thus a chatactedture of
detection hierarchie@anabeau & Dessalles, 19%j,

We acknowledge th@&mergencés anobservephenomenon and would add that the
emergencéappens only develsabove the interacting agenie. a hierarchy must be present to
detect emergence. The observer is always at a higher level of perception to detect something
emerging. Revisiting the ant colony example, an ant doesnOt know that it is building a colony. It
is the human observer or a highemaal or a detector agettat witness the existence of such
structural functional affordanced/hile these affordancesiay be present in the environment
that would result in the manifested behavior, an observer must be present to label such a
Gaffordanc®in an artificial system thatelf-organizes at the collecti@havior athelevel
above it In an artificial system, the notion observertakes a stronghold as various observers
can be defined at various levels of a hierarchical system that canttletecturrence and
variations in key indicators at specific levels of resolution to categoriegmagenceAnother
way to look at it is through the identification of such key indicators. These key indicators are not
a part of the system they are meant to obs&wmetimes these indicators can be derived from
the lower level constructs and sometimes they are beyohddedlciction andrecompletely
novel(Muller, 2003) This demarcation in detection capabilities was formalizeBanabeau &
Dessalleg1997) asL (1) and L, levels. Ly is alevel where individuals interact in a persistent
environment. kLis a levelabove L.y that observes these global collective propertids,oi.

BothL .1y andL, have their own grammar and representati@oviously,if a pattern in a lower
level L (1) is not formalized as a detectatl, then such pattern will fail t@emerg®atL,. This
correlates with deducibleneergencéBaas, 1994yvhere two disjoint levels are linked by a
computational process i.e. how.ly and L, interact computationalhAlternatively, we as
humans see what we a#drained to see through orich set of experiences. If we are unable to
identify a pattern, it is highlunlikely we will label it as sugh.e. we donOt understand the
grammar at.!

The other viewpoinfrom Bonabeau and Dessalléisg second quo}és congruent with the
nature of complex networks that explains Havbbsare formed irthereal world. To further
analyze this congruence, one has to put the act of observing in the agent itself. When we design
intelligent agents, weouldalso imbue themwith the power to observe the collective whole.
Such power of observing the collective impact of other agedtrectly is readily present in a
stigmergicsystem wherboththe environment and the ageatepersistent. Their actions are
based on this psistence wherein the collectives have been realized in the enviromaent
spatiotemporamatrix. Alternatively, agents in aigmergic environment need not be encoded
with complex detection patterns. Jtis¢ presence of these agentastigmergicscak-free
complex system fulfills the requirement of an observer within an agent. So, it can be argued that
astigmergicsystemprovides a foundation f@mergencéo occur Now, having both a
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stigmergicsystemanda sophisticated detector mechanism in an artificial agelhtmakethis
agentmore competitive to other agenise to its handling of additional percepAs the
emerging properties in the system continue to be detected, the relative strength of these
properties can guide, in reiine, the role of this ageandvarious contingencies that are
enforced in the environment as a result of change agentOs behavidirom a performer at a
specific level of system, on detection of emerging patterns, acgmbecomean enablera hub.
This is the rise of hierarchy in a selfganized manner as has been describ&ahiabtDs work
and the coherent properfyolf & Holvoet, 2005)mentioned irthefirst definition of
emergenceThis aspect of having the awftobservation inside the agaestalso congruent with
ideas of Strong and Weak EmergebgeMuller (2003) Muller also added that in Strong
emergence, the observer has causal powers.

The systendisplays strong emergence whbe emergent behavior is irreducible to either
the agent or the environment as both interact in a dynsppatiotemporamannerThe emergent
behavioralsohas a downward causation at lower le€lalmers, 20063hanging the very
nature of the network beath it. This marks the rise of hierarchy and the critical state transition.
In the case of weak emergence, the emergence phenomenon is reducible to its constituent
componentsind effect of causality on lowdgvels is questionabl&xamples like th€Gameof
Life Gand onnectionist networks are examples of weak emergence where laws encoded in low
level rules result in highevel structures and patterns. Basws result in unexpected behavior
that surprisaus, that can be reduced to simple rules (alleth difficulty but possible) with no
downward causation to impact leevel rules. Astigmergicsystem displays weak emergence
when the agents do not develdprarchy, i.e. do not become athand impact the topologgnt
behavio is example of weak enggnce: arant has bsic rules but no ant becomesubhA
stigmergic system displays bostrongand weak emergence dependiapon the role of observer
in strongemergence. The collective behavior is manifested in the persistent dynamic
environment that #gnagent is part of. The agent detects such changes and acts over them.

4.2 Seltorganization and Emergence

We briefly discussed thiermation of a mbin a gigmergic systemWe now look at the
concept of selbrganizatiorwithin the context of emergence, defd byWolf & Holvoet (2005
7) as Gself-organization is a dynamical and adaptive process where systems acquire and
maintain structure themselves, without external co@rol

Note the keywordsdynamical, adaptive, acquire, maintain, structarglwithout external
control The context can easily be understood with respect to thefsealeetwork and their
emerging topologiesVolf and Holvoet(2005)acknowledge the identification @boundaryof
the system which relates to the modularity principle alesttee network.

While both energence aneelf-organization arelynamic propertiesf complex systemshe
networkOs and the agemtibsistinternal properties together will deciddoth of them are
simultaneouslyortrayed by the systenihree casearise(Wolf & Holvoet, 2005 9-11):

1. Selforganization without Emergence
2. Emergence without Setirganization
3. Emergence and Selirganization together
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The first cases easily understood by looking at classical maljent systems in which the
entities seHassemble to do a particular task. Removal of an entity does not impact the
performance of the task because of the adaptive nature of such asssmallgther e can
replace the lost node: tisgstem carcontinue to display the same behavibinere is naovelty
in the global behavior, hence no emergefite network may or may not be schlee. Growth
and decay are not properties of smifjanization when considered in isolati®el-organization
is an adaptive collective behavior.

The second casemeagence witlout selforganizationcan be understood lan example of a
stationary gas, in the realm of physics. A stationary prasdsse-translation invariant: gas
has a certain volume in space. Thdumeis its emergent property is novel amtique as a
function of its atoms. A system can exhibit chaos that emerges from interaction of these atoms
but no seHorganization as they do not organize to perform a collective behavior.

The third case, the most interesting asdarwe areconcernedis foundin natural systems
whereboth thepersistent environment and producing agents are présenich a dynamical
system, the agentsn hierarchically selbrganize and displagdaptiveemergent phenomena
through their defined actions that resultdynamic scaldreetopologies Providing structure to
such @ emergentomplexadaptivesystemapriori is almost impossiblas the system structure
itself is based on persistemture of componentslynamic interactions and the resulting
topology. As hasbeen evident in evolution of scdiee networks that thieubstend to reduce
complexity(Barab1si2003) similar resultdy Shalizi (2001118 are present in complexity
research that state OE selfganization increases statistical complexity, while emergence,
generally speaking, reduces. itO

Becausdghese systems are intricately linked, they displaylime@ar behaviofHeyligen,
2002; Camazineet al., 2001ywhere a small perturbation can lead to a large effect due to
amplification by positive or negae feedback loops. &work complexity can propagate to a
large portion of networKriggering cascaded effec¥Vhen caught up in a positive tizack
loop, the system willealignwhen it encounters a similar negative feedback loop. Consequently,
in a selforganizing emergent system, the interplay of positive, negative feedback loops,
amplifications, suppressions, taken all togetheraterentidattachment, thresholds and
affinities, becomea function of the environment and the agent taken together. In a complex
adaptiveself-organizingemergensystem, the system continuegedefine the topologyisplay
the anergent propertieand refine th@roperties themselvek fact, thes@ropertieanay very
well enable sucBkelf-organizing and emergent propertieshe first place

5 Discrete Event System¢DEVS) theory and its Variants

The Theory of Modeling and Simulation was firgroduced in(Zeigler, 1976. Some
notableextensions of the original DEVS formalisame Fuzzy DEVS, Dynamic Structure DEVS,
Confluent DEVS, Symbolic DEVS and Rdahe DEVS.DEVS concepts have been applied to
almost every natural phenomenon, from simple state machines-tmeansystems to
continuous systems tmmplexhybrid systemgZeigleret al, 2000) The depth of DEVS
systems formalism was acknowledged by reseasdiker(Vangheluwe, 2000)/ho established
DEVS be the common denominator of all modeling formalisms due to its mathematical
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foundationand rigor(seeFigure2). For more details on eadf the formalismsseeVangheluwe
(2000)
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Figure2: Formalism Transformation Graph
DEVS theory is made up of two orthogocahceptgZeigler et al 2000):

1. Levels of System Specificatidghese describe how systems behave
2. System Specification FormalisniBese incorporate various modeling styles, such as
continuous or discrete

Systems theory distinguishes between system structure (how the system is constituted
internally) and system bewar (how the system manifests externallyhderstanding the system
structure allows us to deduce its behavidre internal structure @ system idadenwith many
concepts, such as:

State representatiomifferent states the system may exist in

Transition functionsmechanisms that allow moving from one state to another

State to output functionmechanisms that make system a producer in an environment
Composition capacity to form a larger system by coupling smaller systems
Decompositioncapady to decompose into smaller systems from a larger system
Hierarchical constructioncapacity to continue to portray composition

Modular. capacity to have defined input and output interfaces to enable composition

NoakwhNpE

Systems theory islosed under compositian that the structure and behavior of a
composition of systems céeexpressed in original system theory terms. This is the foundation
of modular systems that have defined input and output interfaces through which all interaction
with the environment oces. Such modular systems are coupled together to form larger ones
leading to hierarchical construction
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More detailed dscription of alternate system specification formalisms such Differential
Equation System Specification (DESS), Discrete Time Systemftspéon (DTSS), and
Quantized Systentsan be found iriZeigler,et. al,2000) While DESS and DTSS as their name
suggestre self explanatory, Quantized DEVS warrants a definition. Quantization is a process
for representing and simulating continuousayss as an alternative to the more conventional
time axis.It is built onthreshold crossingnodel.While discretizationeads to DTSS,
guantizationleads to discrete event systerdsing quantization to develop abstractitmsCAS
is alsoaddressed in (Zeigler, 2004Higure3 showsa mapping of various formalisms. As can be
seen, the universality of DEVS formalism allows specificatibhybrid systems.
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Figure3: DEVS Formalism and Quantized Systems. ReproducedZeigier,et al 2000.

Having seen the scope of the DEVS formaligrafocus our attentioonthe DEVS
formalism and levels of system specifications.

5.1 Levels of System Specification

TheDEVS levels of system specification has 5 levels. At the most hasel Ois the
Observation frame that definesich inputs stimulate the system, what variables to measure and
how to observe them over a time base. At this level we also think about the possible range of
values the inputs may take. The observation also correlates the input trajectory with specific
outputsthe system produces. Such correlation between inputs and outputs is cil@gain
linked over a timébase. A collection of such 1/O pairs is called/@nbehaviorat Levell. It is
entirely possible that two or more input trajectories may lead tsatime output trajectory. At
Level 1 we have all those trajectories collected and at [2ve distinguish them based on the
initial state of the system when input is injected. The initial state determidesgaedresponse
to any input and is represented ag/@nfunction At Level2 we not onlycandefine the initial
state but also state transitions when the system responds to input traje&tdreasel 3 we have
a system that has a stagace and charactercstunctions that map specific input trajectories to
specific output trajectories. The blkabox system at Level 3 is ant@aicOcomponent in DEVS
parlancecapable of dealing with external inputs dhdtundergoes state transii® to produce
external aitputs.At Level 4 we have coupled and interactive systems that are connected using
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QouplingOrelationshipsThe systems are coupled using ports and outputs of one systizme
connected to inputs @fother system. Such coupling allows composition laiedarchical
construction.

Table 2sumnarizes hese levels.

| Levell Name \ System Specification at this level

4 Coupled Systems Systems built frontomponent systems with a coupling recipe

3 I/O System Structure System with state and transitions to generate the behavior

2 I/O function Collection of input/output pairs constituting the allowed behavior
partitioned according to initial state of thgstem

1 I/O behavior Collection of input/output pairs constituting the allowed behavior ¢
the system from external blatdox view

0 I/O frame Input and output variables and port together with values over a tir
base

Table2: Levels of Systems specifications (reproduced feigler,et al 2000).

5.2 DEVS System Components
Structurallyhierarchical DEVS system is composedtoteelement®atomic, coupled and
associated couplings between the atomic and coupled components.

5.2.1 Atomiccomponent
An atomicparalleIDEVS (paralleDEV3 M (Zeigler,et al 2000)is specified by &-tuple

DI, T T g 1 T 1T1 1L where

TrE$%e ot
Py ={ )P "38%&! | 1" JI# N linput "#$%and "#$%&
Iy D InEinr b te QPorts'v | Yp!} setl" 1"#$"# N"#$%!"# 1"#$%&
I e rggh e & () N#"$!
P 1UT D NIRRT W 45094 " & " #$% &\ &' N "#$% & #

P TUIDICD L 1D 00 i 0 W #1$9%& leransition "#$%8& #
DL LI SHE L e < 1 ()JIIES 18 1HS%&!™ 1"H$%! 81 "HS

L DU D S 1L 1 0 HS068 #( 1" HS Y& & B HS Y& H#

DULL I e g 1 HS %08

UL A S 1 $08& 1" HS%& #

There are no restrictions on the sizes of the sets, which typically are product sets, i.e.,
S=S!S,! ES. In the case ahe state se$, this formalizes multiple concurrent parts of a system,
while it formalizes multiple input and output ports in the case ofb6atglY. The time bas@& is

not mentioned explicitly and is continuous. For a diseestnt model described/fan atomie
DEVS M, the behaviois uniquely determined by the initial total stéte!!,)! ! andis

obtained by means of the following iterative simulation procediger{gure 4.
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Figure4: State transitins of an atomic DEV#&odel

At any given moment, a DEVS model is in state ! . In the absence of external events, it
remains in that state for a period of time defined"b§} ). When!" (1) expires, the model

outputs the valué(s) through a port, and it then changea teew state s1 given by, (! ). This
transition is called an internal transitiand describes the intgction defined in Section Jhen,

the process starts again (bottom gray arrow). On the contrary, an external transition may occur
due to the recejn of external events through input poifthis describes the actions taken by

the DEVS model when it receives an external input as a result chittien (defined in Section

3) by other agents or environment. Theernal transition function determethe new state s

given by! . (11111), wheresis the current state,is the time elapsed since the last transition
(external or internal), anxlis the external event received. After an external transition, the model
is rescheduled and the prosestarts again (left gray arrow), setting the elapsedéditod. In

the situation when the internal transition is about to happen and an external input is received, the
Iy (111, x) selects either ;,,,0r 8+ . From a structure perspective,@&omic model is made of

set of input ports and values specifiedkgg a set of output ports and valued as and a non

empty set of states From a behavior perspective, there aredthg! 4 !! 1y land A.

To summarze: sigmaholds the time remaining to the next internal transition. This is
precisely the tim@advance value to be produced by the tadeance function. In the absence of
external events the system stays in the current state for the time given byTdigrtimme
advance function can take any real number between Goadstate for which ta(s) = 0 is called
transient state. In contrast, if ta(syos then s is said to be a passive state, in which the system
will remain perpetually unless an external event is reckiv

5.2.2 Coupled Component

A coupled mode(Zeigler et al. 2000)N is described by an I/O interfage Y, aset of
component®, and a set of couplings between those components inte(t@)lgnd the parent
coupled mode{EIC and EOC)EIC is the external input couplings that couples N with internal
componeni, € D, and EOC is external output coupling that couplgs= ! to N. No self
coupling is allowed i.e. a models output ports cannot connect to its indatteematically, a
coupkd modeN is described by:
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PL NI p 1 1"#$%&! I 1" 1is the set of input ports and values
P 1"#$%&1 1 e I" }is the set of output ports and values
D isthe set of component names
Ly DI I 1D, Ty, 1T 1 js a DEVS
g LD TR e Ot e IES%&! Lt 1 1"$#$%&8 EOC !
PRI e o 1MES0e& I T T 1"HS0%&!
UL g I T )T L 1HE%& 11 | I1"#$%E,!

This formal description leads to development of hierarchical DEVS models where
subcomponents can be either coupled or atomic with defined ceeseecificationgFigure 5)
M1, M2, and M3 can be either an atomic model or a hierarchical coupled model.

o 05] 00

EN 0
~ #

>
\Z

Figure5: A coupled model showing different type of couplings

Understandinghe dynamics of atomic and coupled DEVS system was essential to
understand how DEVS and its extension, Dynamic Structure DEVS formally describes an
adaptive systenit can now be seen thalEVS system is a hierarchical complex dynamical
systemclosed under couplinsimilar toclosed under compositipmvith modularity at its core.

In its default description, while DEV&an specify a structurally static system, the formal atomic
and coupled mdels can not sufficiently describe the network dynamics and adaptive behavior as
needed fonatural and biological systems, especially weggmergyandemergenceare

occurring together. However, in its current state, it certainly can desegddeemergnce in

isolation. Examples such aa avalanche orsandpile are emergemthenomenavith no self
organization. To moddlierarchicakelf-organization, it is imperative to have a variable structure
capability(Uhrmacher & Zeigler, 1996hat can reconfjure the component systdth

structurally and functionally. The structural capability is manifested externally, outside the
component boundary, while the functional capability is manifested intermathyin a

component

5.3 Dynamic Structurand MultiLevelDEVS

DEVS systems have eontinuougime-base but their execution is evdagsed. A variable
structure discrete event system adds a temporal nature to the structure of the system itself. The
structure of a system can tdgnamic at three iels
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1. Component levekentire substructures are removed or added in a live system
2. Connection levelinteractions are reconfigured in a live system
3. Interface levelinterface of the component itself is subject to reconfiguration

The behavioof a system aabe dynamic in fouways:

1. State space

2. Time advances of each state

3. Transition functiong!" M, TH 11, 11
4. Initial state

More technicdy, such dynamism must be traceable to the levels of system specification
describedn Section 5.1Table3 provides the mappingf how dynamism is introduced at
various levels. It shows what would be an outcome of such dynamic activity. The lashcolu
relates it to the list of questions we encountered in understanding the nature-egcale
networks.

Name How dynamism is introduced Outcome Impact in a

Scalefree network
I, 1v, Vil

4 | Coupla 1.System substructure 1. dynamic component
Systems 2.System couplings structures

3.Subsystem 1/O interfaces 2. dynamic interaction
4.Subsystem active/dormant

3 | I/O System 1.Addition/removal of states | 1. dynamic states [, 11, 1V, VI, VI
2.Augmentation of transitions | 2. dynamic transitions
with constraints/guard 3. dynamic outputs
conditions
2 | I/O Function | 1.Initial state dynamic initial state v
2.Addition/removal of initial
state
3.Addition/removal of /O pairs
1 | /O Behavior | 1.Time scale between the 1/O | dynamic I/O behavior I ITRVAY]
behavior

2.1/0 mappingchanging the
behavior itself

3.Allowed behavior

4. Addition/removal of 1/O pairs|

0 | I/O Frame 1.Allowed values dynamic interfaces 1, VIlI

2.1/0O to port mapping

Table3: Introducingdynamism at various levels of system specifications

The dynamic structure outcomes have been adequately dealt with in our earli@dwork
Zeigler, & Mittal, 2005) formally by Barros (1995; 19971998) Uhrmacher (2001)Jhrmacher
& Priami (2005 andUhrmacheret al 006) Here we will discuss the formal undertaking of
dynamic structure byhrmacher(2001) and Uhrmacheet al 011)as the structural change is
initiated from within the system components rather thapesialized component callé&twork
Executive inBarro® DSDEVSThe first version is named as DynPDEVS. The underlying idea
behind this DEVS extension is to interpret models as a set of models successively generating
themselves by model transitions. Model and network transitions avduced maping the
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current state of a model into a set of models that the model belongs to. The formalism supports
modelsthatadapt their own interaction structure and their own behavior as a result of those
interactionghrough a newly added transititumction! , . The structural changes are induced
bottomup and are communicated through another newly defined transition fufigtiddpecific

types of input and output interfaces are introduced that communicate these structural changes to
other modelsThis version refers to dynamic components and dynamic coupling in a live system.

The second more advanced type is built on DynPDE\dStantroduced dynamic port
interfacesThe ports X, and Y are part of the incarnations of model\k is the most critical of
capabilities requires for metamorphosis of the component allowing plaghititgl et al2005)
for example, imeuronal eresmbles that addendrites and axons to suppitr¢ Hebhan
hypothesisA DEVS neuron with dynamic interfaces requires this capability of dynamic
interfaces as it strengthens or weakens its connections with other neurons. The second version is
named DEVS.Formally, it is described as:

An atomic"DEVSis a structuré ! 11w e Towith! e 11 being the initial
model,and! ;! ! be thei™ incarnation sc andY;. the ports to communicate structural
changes, antll the least set with the following structure:

Porggoe VU magon ! oagoe 1 11 1 1, where
Py Do rnmmmmmmnmn©1£1$04"4#"$
b 1o model transition!"#$%&'#
Fyre b L e #3196 &1 #$%" $#&N"#$%8&' changes

A reflective, higher order network,'/aNDEVS, is the structure
P#$%E& P I b with e, 11 beingthe start configuration, . and!,. the
ports to communicate structural changes, and N the least set with the following structure:

Dpwgoo |0 DILLLI 11,0 1 where

! set of components that are of ty[¥$%
" set of muicouplings

ot network transition function

[ N A structural output function

The value of , preserves the state and the structure of models that belongudfeand
the GhewOcomposition of the networld multicoupling!" ! 1" in this formalism determines
how the outputs are distributed from outputriput ports. In regular DEVS€stion 5.}, if more
than one input port is linked to an output ptirg output values are cloned at all the inports.
When the artifacts and messages are in real world¢@amsumablghysical objects, this may not
be desirable. The standard strategy is useful whenfitrenation is to be broadcagh natural
systems, the capability warrants a function that selects thatqudrt for consumable resources.
A random selection strategy may very well be used in the MC fun&arrigorous
mathematical analysis of this formalism, sdemacherget al. 006).
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The dynamic structure capability thus far definedDEVSis manfested externally in the
topology. An atomic modedan be reincarnated as a coupled model and hierarchy can emerge.
However, he coupled component still acts as a container of other components without any state
and behavior representatidtubs cannot formvithout displaying a behavior. To alleviate this
problem, state and transition functions are introduced at the coupled level . BudHDEVS
(ML-DEVS) (Uhrmacher, et al., 200/MIL-DEVS is an extension dDEVSandconsists of
Micro-DEVS (atomic)andMacro-DEVS (coupled) Let us look at MacrdDEVS first. A Macro-
DEVS has structured input, output and state 3¥geté andSrespectively. An output function
produces output for the output ports and aCset components is specified. A set of multi
couging functionsMC allows specification ofaluecouplings.The state transition functioh
takes into account the current state, the components anedcowyiings to calculate the new
state. A functiorp associates ports with each state. The struathiaige functioscdefines the
correlation between the set of components and +oaltplings for the current state. The
downward causation is enabled!gy,s that couples Macr®EVSO current state variables to
the inputportsof micro-DEVS. The downward activation is done by, function that allows
synchronous activation of micidEVS models in an evetttased manner. The upward causation
is enabled by the port transition function as all the available ports at-DiVS level are
avalable at macrdDEVS level. The transition functidnat MacreDEVS accounts for any
change in ports at the mic@EVS in calculation of next MacfrDEVS state.

A Macro-DEVS is defined as a structure:

R NI TR T T I S TN T I T

! "#$%& # #oo- 1'#$

p: function that maps ports with each state

I innnmnnnmiiiset of submodels which are of type MIGOEVS or MacreDEVS
" set of multicouplings {! P 11t 1ty

N A state transition function

Dpgg 111 1REIHE downward output function

Prgg 1111 value coupling downward

ottt structural change function

Mg THIETEEE D QmEg 11"#$94 - activation function

For more detailed mathematical analysis,dleamacher, et a[2007) The application of
ML-DEVS has been in the areas of computational chemistry and biology. As a result, the
formalism was designed to satisfyetheeds of these disciplines where agents are essentially
reactive. MicreDEVS is a simplified version gfarallelDEVSin which there is nd,.; and
I'wg , but only! .4 to account for external messages. This simplification is undesirable when the
agent is proactive and adaptive with learning behavior. The agentOs internal state is equally
important and is much needed. Consequently, MEYS is unsuitable for modeling GA We
recommend using the atomiDEVSfor CAS. MacreDEVS, being a coupled model, holds
components, but also has state and various transition functions that enable upward and
downward causatio®ther examples in literature that deal with variable streatumultiagent
systems are Agetdriented DEVSUhrmacher & Zeigler, 1996 However, their atomic DEVS
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specification has to be integrated with Ma&BVS to model the transformation of a node into a
hierarchical nodd.e. a Hub.

Coming back to our dcussion of CAS, let us now look at how the dynamic structure DEVS
lends itself tadescribea scalefree CAS.

6 DEVS for Complex Adaptive Systems
The feature list presented Trable4 list just some of the features that we identified émat
can help in modeling CAS with DEVS. Our analysis is based on-Beald¢opologies and €0
occurrence of selbrganization and emergee in an interconnected network of persistent agents
and persistent environmentWe also established thatt@gsnergic system is a type of CAS so
the features categorized @®GOin Table4 are also applicable to CAShe last column shows
the stateof-the-art in modeling CAS and Stigmergy using Dynamic Struduluéi-Level
DEVS.

Feature
ID

What is answered?

Category Dynamic Structure DEVS

(SGI/CAS) Can? | How?
A | Clustering CAS How does a node becom( Yes/ | ! DEVSand MacreDEVS formalism
a hub?How does the Partial | togetherWhile the clustering can easily
network handldubs? be implemented using value couplings

the ransformation of a node ineohub
and dynamic behavior of such
transformation needs to be investigate

B | Scalefree CAS How doesthe network Yes parallelDEVSformalism.
topology structuresn presence of Co-occurrence of hubs and nodes with
power law behaveHow dynamic couplings and dynamic
does the netwarconnect components

nodes, clusters, andibs
in a scalefree topology?

C | Preferential | CAS How doesthenew node | Yes ML-DEVS formalism
attachment in the network choosi¢s Value couplings allovdevelopment of
neighbor based on contingencybased links that could
affinity? reflect affinity and thresholds in a

dynamic manneiOne such framework
called Knowledgebased Contingency
Driven System (KCGS) framework
(Douglass & Mittal, 2012¢ould specify
the multi-level constraint etwork itself!

D | Growthand | SG How dothe network Yes I DEVSformalism.
Decay linkages increase or Internal transition functions can direct
decrease for a node? inport and outport couplingdong with
dynamic component structures.
E | Threshold SG How doesthe agentct Yes parallelDEVSformalism
andAffinity upon various thresholds Transition functions can have thresholg
andhow does it and affinity models
reconfigureits behavior?
F |Inter SG How is the dynamic Yes I DEVSformalism
connectivity nature of network is
specified?
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Modularity SG How doesthe external Yes paralleIDEVSformalism
interfaceof an agent It is the very foundation of DEVS
guideits role in network? sytems

Hierarchy CAS How do clusters and hub | Yes paralleIDEVSformalism
reduce their connectivity DEVS complex systems are hierarchic
and change their role fror by design.

a performer to an enablel

Agent SG How does an agent hand| Yes paralleIDEVSformalism.

Persistence persistent stateidlow is Agents have state variables and are
memory defined in an persistentThe state variables persist
agent? along the entire life cycle of the agent.

Environment | SG How does an environmen Yes Loosely coupledagent is modular and

Persistence handlepersistence®ow environment is external and
do the affordances unpredictable. Environment is availablg
provided by the as an external activity through a
environment persist? Netcentric infrastructureThe agents

developed irparallelDEVSas
implemented using DEVS/SOA
framework are loosely coupled with
external web sefges through modular
interfacegMittal & Martin, 2012.

Interactive SG How does an agentora | Yes paralleIDEVSformalism

Transition system specifyts The three transition functions are base

Systems transition functions in an on a notion of abstract event that eithe
interactive manner? triggers an internal transition or an

external transition or both. A message
exchange is amdication of an event at
both the senderOs and the receiverOs
and is formally dealt with.

Self SG How doesan agent Yes I DEVS and ML-DEVS formakm

organization system orgnizeitself I DEVS handles structural dynamisre.
towards a global componentshehaviorandvalue
behaviorHow does it couplings ML -DEVS allows
reconfigure its behavior? specification of constrainthroughvalue

couplings that dictate coupling
formation Possible integration with
KCGS framework may allow constraint
specification(Douglass & Mittal, 2012)

Weak SG How does a system Yes paralleIDEVSformalism.

Emergence displayglobal behavior Emergence is an outcome. Specific
greater than the behavior observer agents can be coupled to the
of its constituents? system who detecemergerd

parameters and activity

Strong SG How does an observer | Yes/ paralleIDEVSformalism.

Emergence embedded in a persistent Partial | The observer is a DEVS agent that

agenfsuch that it
reconfigures its external
behavior move to a
higher level hierarchy to
enable causal behavior a
lower level?

observes another DEVS agemtany
external modular componerguch an
observer can cause behavior change ii
the observed agent. A tightly coupled
agent+observecoupled system
becomes aompositeagent withan
embedded observek partial workable
solution is thus provided.
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O | Non CAS How does an event Yes QuantizedDEVS and MEDEVS
linearity cascadén a network formalism
resulting in cascaded Value couplings communicate messag
effects? at various levels of hierarchy resulting
macramicro effects!
P | Concurrency | SG Agent displays many Yes paralleDEVS
parallel executing
behaviors
Q | Upward CAS How dothe nodes in a Yes ML-DEVS
Causation hierarchical environmnt
communicate information
to hubs thereby eliciting
reactionat a level above
it?
R | Downward CAS How do the lubs cause | Yes ML-DEVS

causation

changes at lower levels o

hierarchy

Table4: Features requirefbr modeling scaldree CAS capable of selbrganization and emergence

All the feature requirements fdigsnergyand some of the features of CAS are addressed by
DEVS formalism. V& can clearly see thdusteringand strong emergenage the two propées
thatrequire augmentatioto the current DEVS extensionBhe dusteringpropertyspecifically
belong to CASandis not needed for modelingtigmergy The current state of MDEVS s
fully equipped to specify a stigmerggstem except the partial solution provided for strong
emergencelhecurrent state of DEVS extensions is showRigure 6 Augmentatiorof the
strong emergence capabilitye. embedding the observer functionality inside an agent model
will formally specify GstigmergieDEVS.OSimilarly, augmentatiorf the dustering capability,

i.e. transformation of a node into a hub at both the structural and behavioralitavel specify
CAS-DEVS. Since ML:-DEVS is based ohi#$% , the ML-DEVS extension should be

augmented to:

1. Transform an atomic cgoonent to a cluster componeritistrequires addition and
augmentation of new transition functions in a live system such that it performs a macro
role rather than a micrmle. This is réated to rise in abstraction at the DEVS atomic
level. Augmentation should result in an algorithm that transforms a node into a
hierarchical node with MacfDEVS behavior.

2. Strong emergencehis capability requires the agent to reconfigure its behéased on
its observation of the micr@and macrepatterns in a downward gsal manner as

designed by theesigner of the artificial system.

Page23 of 28



~
u$ 1HS$

~
$.25/'6521"#$

( 7

1-43/21965.681.86'%98)% (')96"#$

"#3%&'()* %+, %$-*.196$0'12,213.2+4

. /

> 2

Figure6: Stigmergic DEVS as an extension of Dynamic Structure DEVS

6.1 Discussion

Features listed in Tabkeoperate at various levels of abstractions and an implementation of
these features at the appropriate level of abstraction yields the desired effect. Next, we associate
these features with DEVS Levels of syst@rable 5) The presnce of the same feature at
different levels of DEVS specification implies that the feature needs to be implemented at all
those levels. For example, feature A should be specified at levels 1, 2, 3 and 4 simultaneously to
get the clustering effect. We inttuced axouplingdabstraction level in theotipled system at
Level 4 to clearly mark the features that impact connectivity of atomic and coupled components.
This may imply that there is an additional level of abstraction between the DEVS atomic and
coupkd components that formally specifies a dynamic coupling relation. The dynamic coupling
relation has been described with referenc®®VSandML-DEVS.As can beseen from Table
5, a coupled system at Level 4 is mirroring the feature set of an atoneosgstevel 3 with
the exception of features of hierardliycluding containmentnd environment persistence. This
also reaffirms our thesis that a coupled model specificatiorsteédve abehavior of its own
and not just act as a container. Furthee,¢oupling abstractiomay alsocater to features like
clustering, topology, preferential attachment, growth and decay, interconnectivity and self
organization. This implies

1. That there may be a way to formally define a OrichO coupling specificatibaghat
abovementionedaspects encoded.

2. That some of the beh@v encoded in the nodes can become the behaviors of the
networked system where the formal coupling specification manifests the properties of the
complex network

Level Name Features of scalree CAS

4 Coupled System A,B,C,D,E,G,HILJ KL MNP QR
Couplings A/ B,C,DF,L

3 I/O System A, B,C,D,E,G, LK, L,M,N,O,P, QR

2 I/0O Function A C,D,F,I,N, QR

1 I/O Behavior A,CE,F,HI,K O L MN,QR

0 I/O Frame F,.G,K,N,L,O, Q,R

Table5: Abstraction levels of scalieee CAS features ptraying selforganization andraergence
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Another important aspect warranting discussion istbgure under couplingroperty of
complex systens. The DEVS levels of system specification@osed under coupling.e. the
behavior of aoupled DEVS can be specifiedasatomic DEVS. Thiproperty help®uild
hierarchical complex systems and therent DEVS formalism is positioned to support weak
emergence, whereby the emergent behavior can be reduced to lower level behavior of the
constituent components of the system. In order to display strong emergence, what is needed is an
extension ofZlosue under couplin@property of CAS such that the novel emergent behavior
that is irreducible to the constituent componeats beaccommodatedrhis implies thathe new
observed behaviors (or emergents) that are not part of the Jygdteavel L..1) be made
available as observers at a higher level of hierarchy at Lgybetbomeacquire®behaviors at
Level L. Such acquired behavior should then reconfigure the MaENS behavior
specificationto incorporate the new abstraction and concepts as prawdi observers at,L
Formal analysis of strong emergergel the correspondirgjosure under couplingropertyin
DEVS CAS formalismis left for future work.

7 Conclusions
Complexity is a multifaceted topic and each complex system has its own properties.
However, some of the properties like high interconnectedness, large number of components, and
adaptive behavior aggresenin most naturatomplex systems. We looked at the mechanism
behind interconnectedness using network science that describes many natural systems in the light
of power laws andelf-similar scalefree topologies. Such scdiee topologies bring their own
inherent propertgto the complex system such that the entire system is subjected to the
networkOs structural and functional affordances

It is largely unknown what makes a network evolve into a scaéenetwork, whether it is a
top-down goaldriven phenomena or botteap causation or just asutcome of natural
interactionsTwo conditions have to be present for a network to evolve into afsealeetwork:
1. incremental growth and 2. preferential attachmafet.explored the notions stalefree
nature strong and Ww& emergence, setirganization andtigmergicbehavior in a complex
adaptivesystem with persistent agents getsistenenvironmentWe also related the concept
of emergencéo network science and presented arguments on how hubs and connectors are
formedwhen a complex system is going through a critical phase. We argued that under any
occurrence of botkelf-organized and emergent behavimgethey the properties of scafeee
network exist and one has to look at right level of abstraction in alenglisystem to witness
theinstance baseidteractionsWe established that stigmergy displays stramgrgence and is a
specialized case @AS. We also enumeratdd properties of a CASL1 of which were
properties oktigmergicsystems.

We presented kigh level view ofDEVS theory and how its formal rigag able to specify
complex hierarchical systems. We described variants of dynamic strantlireultilevel
DEVS, and mapped it teome ofthe icentified properties of CAS andigmergy. We detailed
the adaptive nature of complex system with DEVS Level of system specification and what it
means to have dynamic adaptive behavior at different levalsystem During the mapping
process, we found that the following capabilitiesrant formal attentioto extend DEVSheory
of complex systems to a theory of complex adaptive systems
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How clusters are formetiubs appeaand evolve.

How multi-level selforganization occurs

How grong emergenceesults in seHorganizatiorwith an embedded observer capatfie
causal behavicat lower levels of hierarchy

4. How formal attention to coupling specificatiamy provideadditional abstraction
mechanisms to model dynamiterconnected environment

wn P

Finally, werecommendethe augmentation of'#$% !as the foundation for Stigmergic
DEVS, andinvestigationof both!"#$% and ML-DEVS augmentedogether as foundation for
CAS-DEVS.
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