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ABSTRACT 

Sociotechnical systems pervade every facet of our 

life today. These IT systems interact with live users that 

result in emergent behaviors leading to their 

classification as complex adaptive systems (CAS). 

Cyber-CAS (CyCAS) exists in contemporary society 

when such systems have Internet as their platform. 

Modeling and Simulation (M&S) for CyCAS is 

extremely difficult: partly due to inherent complex nature 

of enterprise IT architectures and partly due to lack of 

sufficient formal processes used in enterprise systems 

architecting. Fundamentally, the interaction between 

various elements is hard to pin down as enterprise 

architecture components are often treated as black-box 

with limited information about their internal behaviors. 

In this article, I provide an overview of the M&S 

approach for enterprise frameworks, introduce CyCAS, 

the tools and metrics for various CyCAS Views and the 

sandbox requirements for CyCAS M&S.  
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1. INTRODUCTION 

Today the sociotechnical systems pervade every facet of 

life, such as economics, politics, medicine, agriculture, 

energy, and so on. The information is distributed across 

the entire landscape and there are a million eyes instantly 

reacting to a new technology or a blog post that turns 

viral any minute. Modeling such a system seems 

impossible, as the notion of system cannot be formally 

identified even though everybody talks of a ‘system’ in 

general terms. These Information Technology (IT) 

systems have different architectures for different 

purposes and as human interact with these systems, both 

the IT systems and the interacting users adapt to the 

dynamic landscape. To manage the design of an 

Enterprise IT system, each underlying architecture 

subscribes to an enterprise architecture framework that 

anchors various enterprise architectures towards a 

common goal. Modeling an enterprise framework for the 

formal modeling and simulation effort remains a vision 

and the problem of executable architecture has not yet 

been completely solved. Agent based modeling (ABM) 

is the strongest contender towards modeling and 

simulation of system that require many autonomous or 

semi-autonomous entities. However, ABM alone cannot 

describe these complex adaptive systems in the cyber-

world.  

 In this article, I will define Cyber Complex Adaptive 

Systems (CyCAS) and how the foundation of formal 

modeling and simulation could be applied towards 

developing a framework to study CyCAS. I will 

elaborate on the various perspectives CyCAS can be 

described through and then present the tools and metrics 

required to support the development of these 

perspectives.  

 The article is organized as follows. Section 2 

provides a background overview of foundational M&S 

theory, systems framework and interoperability 

considerations. Section 3 describes the M&S framework 

for tooling and various enterprise architecture 

frameworks that make the problem even more complex. 

A discussion of complexity and system-of-system (SoS) 

perspective is provided in Section 4. Section 5 introduces 

CyCAS with Section 6 proposing various CyCAS Views 

within the CyCAS enterprise framework. Section 7 

elaborates on the sandbox requirements for CyCAS 

modeling. Finally, conclusions are presented. 

 

 

2. M&S ARCHITECTURE, SYSTEMS 

FRAMEWORK AND INTEROPERABILITY  

As we all know, model is an abstraction of reality with 

some valid assumptions and the simulator is an algorithm 

or a program that manifests the behavior of model. The 

discipline of designing a simulator is called Simulation 

engineering and considerable effort has been spent in the 

last few decades in developing robust simulation engines 

that leverage high performance computing (HPC). On 

the contrary, model engineering  (ME) aims at setting up 

a systematic, standardized, and quantifiable engineering 

methodology to manage the data, knowledge, activities, 

processes and organizations/people involved in the full 

life cycle of the model, in order to obtain the general term 

of credible model theory, methods, technology, standards 

and tools with the minimum cost.  

 Model engineering has been in use since the mid-

1980s through the Model-based Engineering (MBE) and 

Model-based Systems Engineering (MBSE) paradigms 

(Zeigler 1976, Zeigler 2000, Mittal and Martin 2013b). 

Progress in ME should profit from the progress made in 

model-based and model-driven methods developed in 

various systems and software engineering communities. 

At the same time, it should address the distinct challenges 

posed in the modeling and simulation (M&S) domain 

clarified by its theoretical and conceptual frameworks. 
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 M&S engineering can be best understood by the 

layered M&S architecture initially proposed by Zeigler, 

Praehofer and Kim (2000), and later elaborated by Mittal 

et.al (2008) in the context of system-of-systems 

engineering, and Linguistic Levels of Interoperability 

(i.e., pragmatic, semantic and syntactic levels). 

Simulation is associated with the computational domain 

while Modeling is generally associated with the semantic 

domain (Figure 1a). They both come together at the 

pragmatic level where the purpose and limitations are 

defined. The development of an M&S solution is guided 

through the pragmatics that involve various 

considerations for M&S engineering, such as, scope, 

collaboration, decision, search-space, and computational 

requirements. Computer and Software Engineers largely 

handle the discipline of simulator engineering while the 

discipline of model engineering accounts for the subject 

matter expert (SMEs) versed in domain theory and the 

model developer. In some cases, either SMEs take the 

plunge to learn various programming languages to 

encode the model (and the associated model editing 

environment) that serve their purposes that go beyond the 

existing simulation tools or they prefer to stay within the 

confines of mathematics. Regardless of the approach, the 

scope of model is defined by the questions it is meant to 

answer or phenomenon it should describe. Certainly, the 

question of which model is accurate is a difficult question 

as it is dependent on the pragmatics (Figure 1b). When 

model accurately represents the pragmatics, it is called a 

valid model and the process is called Validation. When 

the model behavior is correctly implemented by the 

simulator, the model is verified. This process is called 

Verification. For any model engineering effort, the 

verification and validation (V&V) (Figure 1b) studies are 

as critical as the M&S engineering process and any M&S 

effort without V&V raises questions on the credibility of 

the model.  

 The simulators are computational entities built using 

various programming languages with a defined syntax. 

Communication and integration between different 

simulators has been pursued in the derived discipline of 

Distributed Simulation with an objective of achieving 

simulation interoperability. Various standards (DIS, 

HLA, TENA, CORBA, etc.) are in use that have 

facilitated syntactic interoperability. However, the model 

interoperability, as it happens in the semantic domain has 

remained elusive, primarily for the reason that model 

pragmatics are different for different models as 

assumptions are seldom aligned beforehand. When the 

pragmatics are aligned, model interoperability can be 

achieved as the composite model can now be validated.  

 While conceptually, this is easy to understand, the 

problem becomes compounded with complexity when 

the models and simulators are engineered with distinct 

architectures, some proprietary, some open-source, some 

considering model and the simulator as separate elements 

and some coupling them together, making them “silos” 

with no system-of-systems vision and extensibility. As 

they are used in the field, they are called “simulation 

systems” and become black-boxes thereby masking 

away the V&V process that need to be defined for the 

system-of-system (SoS) that they begin to participate in. 

As elaborated in Mittal et.al. (2008), the component-

based nature of SoS needs a next level of specification 

provided by an architecture framework that allows 

specification and integration of architectures. These 

architectures within the enterprise framework can then be 

subjected to the formal Test and Evaluation (T&E) 

procedures thereby validating their designs (Figure 1c). 

Verification in SoS remains elusive and it is largely 

assumed that the component system accurately performs 

the claimed functionality. 

 Model engineering in an enterprise environment 

need to be investigated in more detail and the V&V 

process need to be defined as well. 

 

Figure 1: M&S Theory, Architectures, V&V, T&E and Interoperability 

 



3. MSVC FRAMEWORK AND ENTERPRISE 

ARCHITECTURE FRAMEWORKS 

Modeling editors and simulation engines are distinct 

pieces of an M&S solution and require different 

engineering approaches. However, when there are 

considered one and lack any formal engineering effort, 

they are programmed as one “simulation software” 

intending to serve only the purpose at hand or maybe just 

rapid prototyping.  

 When the model and simulator development is 

considered distinct, and when coupled with formal 

Software Engineering practices, they can be best be 

summarized by the Model-Simulator-View-Controller 

(MSVC) architecture framework (Mittal, Mak, Nutaro 

2006) (Figure 2). As stated earlier, the pragmatics 

provide model’s objective, the semantics provide the 

model definition and the syntax provides the model’s 

computational implementation. In the Software 

Engineering realm, Model-View-Controller (MVC) 

architecture is the most widely used architecture to build 

software that has a decoupled Presentation layer. Many 

extensible Integrated Development Environment (IDE) 

frameworks are available that utilize MVC architecture 

framework (for example Netbeans Rich Client Platform 

(RCP), Eclipse RCP, Enterprise J2EE, Microsoft .NET 

framework, etc.)  

 The Model in MVC is where the actual semantics 

are constructed, the View is where the presentation and 

user-input of model is created and the Control is where 

the communication between the Model and the View is 

engineered. In MSVC, there is an additional component 

of Simulator that represents the underlying platform over 

which the model is executed. Moreover, the Controller 

aspect is made rich and takes active role as it pertains to 

the pragmatics aspect of the M&S development exercise. 

The MSVC framework is discussed at length by Mittal, 

Mak and Nutaro (2006) where they associate it with 

DEVS M&S theory. 

 While usage of RCP platforms provide a solution for 

a desktop environment and the resulting solution can 

effectively be a considered a black-box, enterprise level 

solutions bring more complexity in the mix where 

cohesion and loose-coupling provide a different design 

paradigm. 

 

 

Figure 2: Model Engineering using MSVC Framework and Open Source tools 

 

 

 
Figure 3: MSVC Framework and Enterprise Architectures 

 



3.1. Architecture Frameworks 

Enterprise frameworks are organized in various layers 

where each layer can have its own architecture. These 

layers are identified on the function they provide in 

serving the enterprise. Clearly, separation of concerns is 

at the heart of an enterprise framework, which in turn 

results in specific technologies being developed at each 

layer to enhance its functionality. Some of the identified 

layers are: 

 Governance:  

 Business Logic 

 Execution 

 Application 

 Technology 

 Database 

 Service 

 Security 

 Audit 

 Big Data 

 

These layers, which have their own architectures, 

communicate using enterprise service buses (ESBs) that 

provide atomicity and various other message-based 

reliable communication services. This communication is 

largely in a netcentric domain where many Standards 

exist, facilitating solid integration. Event-driven 

Architectures (EDAs) are the latest in the list of 

enterprise architectures that provide a shared memory-

store (an Event cloud) of user-specified queries and 

patterns that can access various other connected layers 

(Taylor, Yochem, and Phillips 2009).  

 Figure 3 shows the relation of enterprise framework 

with the MSVC pattern. The Controller is analogous to 

the Governance layer, the Model to the Business Logic 

layer, the Simulator to the Execution layer, and the View 

to the Presentation Layer. All the other layers are 

orthogonal to the MSVC layers. The MSVC is coupled 

together as an Application layer, as shown in Figure 3.  

 A framework enables the development of an 

architecture and it is imperative to have a framework to 

manage and utilize various architectures. The reader is 

encouraged to review frameworks like: 

1. DoDAF (CIO 2010): Department of Defense 

Architecture Framework. 

2. MoDAF (MoD 2012): Ministry of Defense 

Architecture Framework 

3. TOGAF (TOG 2011): The Open Group 

Architecture Framework 

4. Zachmann Framework (Zachmann 2008) 

5. NAF (2013): NATO Architecture Framework 

6. DNDAF (2010): Department of National 

Defense/ Canadian Armed Forced Architecture 

Framework 

7. FEAF (2012): The Federal Enterprise 

Architecture Framework 

 

 While it is encouraging to know that these 

framework exists, the major problem that now arises is 

that there are too many frameworks based on the domains 

they serve. The problem initially thought to be contained 

within the confines of a framework, seems compounded 

by the presence of multiple architectures and multiple 

frameworks. Again, no wonder why various agencies 

who like to share information and data are plagued with 

the inherent complexity. Various ontology and data-

dictionary-based solutions are utilized that try to 

harmonize the knowledge between two or more different 

frameworks. Efforts are ongoing (Gorman, Haperen & 

Bailey 2013). 

4. COMPLEXITY AND SOS 

Section 2 provided an overview on the fundamental 

problem of V&V with multiple M&S architectures after 

becoming components within an enterprise framework. 

While there are many examples of enterprise frameworks 

as enumerated in Section 3.1, currently there exists none 

for enabling an M&S enterprise architecture. To that end, 

Joint Live, Virtual and Constructive (JLVC) Vision 2020 

brings together Cloud-enabled Modeling and Simulation 

(CEMS) services (Weter 2012) and Joint Training 

Enterprise Architecture (JTEA), are under development 

(Edgren 2012) for enterprise level Joint Force training 

(Irwin 2012). These assume that the underlying LVC 

environment is indicative of enterprise M&S 

architecture. Technically, the integration problem is 

solved but semantic interoperability remains elusive with 

V&V from M&S perspective still questionable. 

Moreover, it is still not clear how causality, control and 

emergent behaviors need to be addressed in a distributed 

discrete event simulation environment (Rainey and 

Mittal 2014). Indeed, a cloud-based simulation 

framework continues to be a vision where fundamental 

issues of ownership of state, shared environment, truth 

and simulation remain unaddressed (Tolk and Mittal, 

2014). There is a fundamental difference between 

software-based discrete event simulation and systems-

based discrete event simulation. While the former is 

strictly based on object-oriented software engineering 

paradigm, the latter enforces mathematical System 

Theory on the object-oriented discrete event simulation 

engine. A successful solution must incorporate ideas 

from Systems Theory and M&S engineering practices.  

Even though all the above mentioned can be used for 

developing an M&S architecture, the Execution Layer 

(Figure 3) needs to be strengthened by distributed 

simulation architecture based on Systems Theory in a 

netcentric domain as described by Mittal and Martin 

(2013a, b). Until system-based approaches are 

encouraged, the vision of developing an executable 

architecture, where an architecture model can be 

executed over an enterprise simulation infrastructure, 

will continue to be a vision.  

 The problem of emergent behaviors when such 

architectures are brought together as a SoS has gained 

widespread attention in recent years. In addition to the 

five SoS characteristics defined by Maier (1998), where 

the constituent systems are operationally independent, 

managerially independent, have evolutionary nature 



within their own systems development life cycle, are 

geographically distributed and together they portray 

emergent behavior, an SoS also has a purpose, to begin 

with.  Assuming each constituent architecture is a 100% 

functional system, passing all the verification and 

validation tests in isolation, it cannot be determined a 

priori if the same system can perform with an SoS and 

can deliver: (a) the emergent behavior that is desired of 

an SoS and (b) fulfills the overall goal i.e. validation of 

SoS. Each constituent system or an architecture becomes 

an ‘agent’ that has a unique level of autonomy. 

 Finally, the biggest issue of all is the presence of 

humans as an actor in an enterprise solution thereby 

giving a dynamic nature to the entire landscape wherein 

everything is evolving and adapting (which includes, the 

technology, the users, the developers, the knowledge, the 

architectures and the systems themselves). This is how a 

complex adaptive system in an enterprise environment 

comes into being and there exist no mechanisms to 

perform T&E before such SoSs are made live with real 

users. 

5. CYBER COMPLEX ADAPTIVE SYSTEM 

(CYCAS) 

Complex Adaptive Systems (CAS) are systems that 

display strong emergent behavior, have positive- and 

negative-feedback loops and have large number of 

adaptive agents. Examples of such systems include ant 

colonies, the biosphere, the brain, the immune system, 

the biological cell, businesses, communities, social 

systems, stock market, financial systems, High 

Frequency Trading systems, enterprise systems, etc. 

Some of these examples can also be classified as open 

systems. One of the characteristic features of these 

systems is the generation of new knowledge within the 

system that has causal properties resulting in adaptive 

behavior of the system components itself. CyCAS occurs 

in contemporary society where computational systems 

interact with both live human agents and virtual agents 

(software bots). The resulting complex system, for 

example, the World Wide Web, evolves in unknown 

ways not initially thought out by designers. Various types 

of communities emerge, that use the system in ways 

unthinkable by the system designers. Usage of Facebook 

to organize protests, Twitter to coordinate and You Tube 

to showcase demonstrations were critical in the Arab 

Spring revolution. On another note, usage of You Tube 

as a learning system makes everybody an educator. We 

frequently use do-it-yourself (DIY) videos on You Tube 

for our personal advancement and Massive Open Online 

Courses (MOOCs) give these videos a formal structure. 

Learning amidst such CAS happens in leaps and bounds 

and aptly so, the technology to create such systems 

advances in lock-step fashion. While we have 

technologies to engineer such netcentric complex 

systems today, we are short of methodologies to 

understand the emergence of adaptive stance in these 

engineered systems. They are difficult to study due to 

unavailability of a ‘CAS’ sandbox.  

 The engineering process is a formal process that is 

applied to solve a particular problem and deliver a system 

that addresses it. With CyCAS, even the initial objective 

takes a spiral upturn or downturn (based on one’s 

perspective) and continuously evolves. In contemporary 

society, every Cyber-system must have a component of 

computational emergence that studies the life-cycle of 

such systems.  

 I identify eight characteristics of CyCAS as follows: 

5.1. Human-in-the-System  

Every cyber system has a human as a critical component 

of the system. A CyCAS model accordingly must have 

infrastructure to manage user model profiles, the usage 

spread (distribution of users with respect to their roles), 

the capability to understand system responses for various 

usage spreads and the mechanisms to perform role 

switching for each user. Various human behavior 

modeling approaches and context quantification 

approaches (Mittal and Zeigler, 2014) need to be 

incorporated from fields like cybernetics, cognitive 

psychology, agent-based modeling etc.  

5.2. Multi-agent-system 

A CyCAS is a multi-agent system (MAS) where the 

agents can be heterogeneous, homogeneous, deliberative 

or communicative in varying degrees and combinations. 

MAS (Weiss 2000) is a fairly new discipline of 

Distributed Artificial Intelligence (DAI) (Bond, Gasser 

1988) that focuses on behavior management and design 

of agent-based systems. Canonically, such systems are 

multi-level algorithms subjected to multi-level control in 

a real-time environment. 

5.3. Control and communications in a netcentric 

environment 

The communication aspect of CyCAS cannot be 

understated as it is the source of all emergent behavior. 

This Standards-based communication in a netcentric 

environment can be point-to-point, inter and intra-

enterprise, and may include blackboard architectures 

with shared memory infrastructure. The presence of 

communication links at various levels establishes 

positive and negative feedback loops and unless such 

aspect is dealt per Systems Theory-based “closure under 

composition” principle, it is hard to establish who is in 

control of state and time for the resulting non-linear 

system. 

5.4. Resource-constraints and economy of scale 

Each constituent system operate within the confines of 

real world and has finite resources that need to be used 

efficiently and in a priority-based manner as dynamic 

nature of pragmatics within CyCAS re-purpose existing 

resources. Scalability and resourcefulness need to be 

addressed in a formal manner as failure of a constituent 

system may result in cascaded failures. Constraint-

graphs facilitate the evaluation of resource availability 

and limitations. 



5.5. Emergent Attention and Second order 

cybernetics 

As the CyCAS design is motivated by the pragmatics 

(overall SoS goal), various observers (models) and 

auditing systems need to exist within the CyCAS to 

ensure that the resultant emergent behavior is truly the 

intended one. Usage of BigData technologies to engineer 

advanced pre- and post-analytics system must conform 

to Second-order cybernetics philosophy (Heylighen and 

Joslyn, 2001) where both the observer and the observed 

define the actual system. The emergent attention (Mittal 

and Zeigler, 2014) becomes a critical aspect of such 

systems that indicates the most active constituent system 

(or a group of sub-systems) in a resource-limited and 

time-constrained environment. 

5.6. Phase Transition  

As SoS manifests emergent behaviors, the constituent 

systems may respond in unknown ways due to their 

black-box nature. This may lead to emergence of 

unknown behaviors not specified in the design. 

Sometime these behavior are benign and sometimes puts 

the entire SoS into an undesired trajectory. 

Consequently, a CyCAS model must be able to attend to 

these phase transitions through computational emergence 

studies that provides information about the adaptive 

stance of CyCAS and whether it continues to display the 

intended emergent behavior. 

5.7. Structure of knowledge 

Each of the constituent system being a black-box 

implements its own knowledge-base. While they can be 

syntactically integrated successfully, achieving semantic 

interoperability is the holy-grail of systems 

interoperability and CyCAS. Before semantic 

interoperability is achieved, knowledge and ontological 

structures have to be ensured and validated by the SMEs. 

Issues like knowledge sharing, transformation, 

evolution, computational representation (ontology), 

interoperability, context switching according to 

emergent attention, and new knowledge synthesis have 

to be addressed at multiple operational levels. 

Knowledge management and evolution roadmap is a 

critical component of CyCAS and demarcates the 

difference between a weak or a strong emergent system 

(Figure 4) (Mittal, 2013; Mittal and Zeigler, 2014).  

5.8. Resilient or Anti-fragile 

Finally, CyCAS undergo a lot of dynamic 

reconfiguration due to their component nature. It needs 

to be formally determined if the engineered CyCAS is 

fail-fast, resilient/robust or anti-fragile where it continues 

to function, albeit evolving, in unknown ways.  

6. CYCAS FRAMEWORK  

Based on the eight characteristics identified in the 

previous section, this section presents a framework to 

engineer a CyCAS. Following are the assumptions: 

1. CyCAS is a digital complex adaptive system 

where the notion of Object is ubiquitous at 

every level of specification, and is rapidly being 

replaced by the notion of a ‘smart’ object that 

may have sense-making capabilities.  

2. System behavior is indicative of events that are 

manifested externally  by a constituent system 

and are communicated using structured 

messages in a netcentric environment 

3. Human in the most complex and the least 

predictive element. However, it is the most 

critical element that transforms a netcentric 

system into a CyCAS. 

 CyCAS Framework consists of eight views 

corresponding to each of the characteristics. Table 1 lists 

the eight views, the capabilities of tools that implement 

these views and the metrics that ensure that the tools are 

valid.  

  

Figure 4: Strong and Weak Emergence 

 

7. SANDBOX REQUIREMENTS AND THE 

ENGINEERING PROCESS 

As we strive to adhere to Systems Theory for a CyCAS 

sandbox, we must be able to classify the eight CyCAS 

views into structure and behavior. This will allow us to 

separate the static and dynamic nature of the views. 

However, one has to remember the fact that the CyCAS 

structure continuously changes as the CyCAS behavior 

evolves. In a CyCAS, variable structure modeling is a 

critical capability (Mittal, 2013). Following is the 

classification: 

I.Structure 

a. Control and Communication View 

b. Resource and Constraints View 

c. Knowledge View 

d. Resilience View 

II.Behavior 

a. Human View 

b. Multi-agent View 

c. Emergence View 

d. Phase Transition View 



Table 1: CyCAS Views, tool capabilities and various metrics for model engineering 

ID CyCAS Views Tool Capabilities Metrics 

5.1 Human View Cognitive architectures, Live, Virtual 

and Constructive (LVC) environments, 

user behavior modeling 

Behavior quality, spread and quantification, 

cognitive plausibility, contextual realism, 

quantized context 

5.2 Multi-agent 

View 

Agent structure, behavior and 

interactions with other agents or 

environment, closed-under-composition  

Ease of model-transformation and model 

integration, partial observability, group cohesion, 

shared goals   

5.3 Control and 

Communication 

View 

Hierarchical organization, logical 

structures and supervisory control 

(similar to DoDAF OV-7 and SV-7) 

Degree of control (from centralized and 

totalitarian to completely decentralized and 

autonomous), feedback loops 

5.4 Resource and 

Constraints 

View 

Similar to DoDAF 2.0 System View 4, 

5 resources. Constraints similar to 

policy considerations in DoDAF OV-6a 

Utilization, availability, limitations, affordance 

5.5  Emergence 

View 

Multi-level instrumentation, Big Data, 

expected behaviors, causal behaviors, 

novel behaviors 

Multi-level behavior validation and recognition, 

computational emergence, agent adaptation 

5.6 Phase 

Transition View 

System behavior transition matrix 

(similar to DoDAF SV-3) 

Multi-level transition probabilities, credit 

assignment and new behavior detection and 

encoding 

5.7 Knowledge 

View 

Ontologies (data and its relationships)  Semantic network, semantic validity through SME 

and keyword-rank 

5.8 Resilience View Experimental frames Degree of robustness at multiple-levels 

 While providing further details on each of the views 

is outside the scope of the article and is left for future 

work, I would like to describe the Multi-agent View in a 

bit more detail. As a CyCAS is a MAS at the fundamental 

level, there are many agent-based modeling (ABM) tools 

available. For example, JAMES II, Repast, NetLogo, 

Mason, Flame, Soar, Swarm, etc. To the best of my 

knowledge, none conforms to the Systems Theory’s 

closure under composition principle and infact, many 

leverage the flat nature of agent based systems with 

limited encapsulation and hierarchy. The problem is 

rooted in usage of only the Software Engineering 

practices and ignoring the Systems Theory.  

 In the classical paradigm, and not going too far back 

for the purpose of this discussion, let us look at the 4th 

generation languages such as C. There is the main 

function and there are subroutines that invoke each other.  

Then came the Object-Oriented paradigm which brought 

forward concepts like inheritance, data encapsulation, 

and polymorphism, and grouped the set of subroutines 

within an Object as its ‘behavior’. Capitalizing on this, 

the ABM community made the Object an Agent by 

adding constructs like purpose, behaviors and 

capabilities (i.e. a smart object). They also provided an 

agent execution environment where these agents could 

manifest their behavior with a virtual environment. All 

the existing ABM tools with the exception of JAMES II, 

have this notion of software agent with varying 

implementations and integration with a real or synthetic 

environment. Sometimes, there is a scientific theory 

behind the ABM tool, for example SOAR has cognitive 

psychology as its foundation (Laird, 2012). On the other 

hand, a Systems-based agent, for example, a DEVS 

agent, has the notion of a system attached to it (Figure 5). 

It is built on formal semantics and adheres to the Systems 

Theory (Zeigler, Praehofer and Kim, 2000, Mittal, 2013). 

It also provides a simulator, a simulation protocol and a 

distributed high performance engine for agent/system 

model’s execution and ensures that Systems Theory is 

not violated. The DEVS M&S theory (Zeigler, Praehofer 

and Kim, 2000) is applicable to both discrete and 

continuous hybrid systems and has the notion of abstract 

time. It models the dynamical behavior and has the 

notion of elapsed time. Work by Mittal and Martin 

(2013a,b) packages all these functionalities in a 

netcentric DEVS Virtual Machine (VM) that provides an 

agent-execution environment in a CyCAS setting.    

 To develop a CyCAS sandbox, Table 2 provides an 

overview of the DEVS M&S elements as applicable to 

implementation of the structural and behavioral 

components of CyCAS.  The DEVS Unified Process and 

the related work by Mittal, Martin and Zeigler in the last 

decade (Zeigler 2013) bring technologies like DEVSML 

Stack, DEVSVM, metamodeling, domain specific 

languages (DSLs) to be integrated with the   DEVS M&S 

environment based on dynamical Systems Theory 

towards the pursuit of multi-paradigm modeling, a prime 

requirement for integrating multiple modeling 

architectures. The CyCAS sandbox based on such ideas 

will be reported in future work. 



 

Figure 5: From a Software Agent to a DEVS Agent 

 

Table 2: CyCAS and Model Engineering 

CyCAS View DEVS Element Alternatives 

Human Dynamical agent behavior modeling in Atomic 

DEVS subject to SME validation 

Cognitive agents, software agents, DEVS 

behavior models, SOAR agents 

Multi-agent Atomic, Coupled and Multi-Level DEVS  Object interaction diagrams 

Control and 

Communication 

Levels of Systems specifications Subsumption architectures 

Resource and 

Constraints 

Atomic DEVS and network-delay models External systems with defined I/O interfaces, 

constraint graphs 

Emergence Atomic observers at higher levels of hierarchy, 

Experimental Frames 

Pattern matchers 

Phase 

Transition 

Atomic observers at multiple levels of system 

specifications, Experimental Frames 

Pattern matchers 

Knowledge Representation through pragmatic frames within 

the System Entity Structure (SES) theory 

Triple stores, RDF stores, etc. 

Resilience Experimental Frame, Atomic DEVS - 

 

8. CONCLUSIONS 

Many enterprise architecture frameworks provide 

various views and perspectives to facilitate architecture 

development and capture the true purpose behind the 

enterprise architecture. Enterprise IT Systems underwent 

a lot of transformation in the last decade and robust 

technologies exist that deliver scalable enterprise 

solutions. Multiple enterprise architecture frameworks 

exists that serve different niche and efforts are underway 

to consolidate them towards a unified framework and 

none mandate the formal M&S engineering methodology 

to develop an executable architecture. Enterprise systems 

modeling is a different problem altogether and new 

approaches are needed to model such complex multi-

faceted systems. Cyber complex adaptive systems are 

specialized cases of CAS in the cyber domain where both 

the systems and the system users adapt in unknown ways. 

Consequently, it is impossible to conduct studies before-

hand as both sides of the equation are in constant flux. In 

this article, I introduced the CyCAS concept, essential 

elements of CyCAS and various perspectives that are 

needed to understand it. The CyCAS perspectives can be 

used in conjunction with the existing architecture 

frameworks and as of this article, they are by no means 

the only perspectives that are needed to understand the 

holistic behavior of CyCAS. I also introduced the 

sandbox requirements for modeling and simulation of 

CyCAS and related it to the fundamental Systems 

Theory. I also stressed the importance of using 

frameworks like DEVS Unified Process that is based on 

formal discrete event systems (DEVS) theory to be 

applied to CyCAS M&S. Further details will be 

presented in the future work.  
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