
MODEL ENGINEERING FOR CYBER COMPLEX ADAPTIVE SYSTEMS

Saurabh Mittal

Dunip Technologies LLC, Colorado, USA

smittal@duniptech.com

ABSTRACT

Sociotechnical systems pervade every facet of our

life today. These IT systems interact with live users that

result in emergent behaviors leading to their

classification as complex adaptive systems (CAS).

Cyber-CAS (CyCAS) exists in contemporary society

when such systems have Internet as their platform.

Modeling and Simulation (M&S) for CyCAS is

extremely difficult: partly due to inherent complex nature

of enterprise IT architectures and partly due to lack of

sufficient formal processes used in enterprise systems

architecting. Fundamentally, the interaction between

various elements is hard to pin down as enterprise

architecture components are often treated as black-box

with limited information about their internal behaviors.

In this article, I provide an overview of the M&S

approach for enterprise frameworks, introduce CyCAS,

the tools and metrics for various CyCAS Views and the

sandbox requirements for CyCAS M&S.

Keywords: Cyber Complex Adaptive Systems, CyCAS,

DUNIP, second order cybernetics, DEVS

1. INTRODUCTION

Today the sociotechnical systems pervade every facet of

life, such as economics, politics, medicine, agriculture,

energy, and so on. The information is distributed across

the entire landscape and there are a million eyes instantly

reacting to a new technology or a blog post that turns

viral any minute. Modeling such a system seems

impossible, as the notion of system cannot be formally

identified even though everybody talks of a ‘system’ in

general terms. These Information Technology (IT)

systems have different architectures for different

purposes and as human interact with these systems, both

the IT systems and the interacting users adapt to the

dynamic landscape. To manage the design of an

Enterprise IT system, each underlying architecture

subscribes to an enterprise architecture framework that

anchors various enterprise architectures towards a

common goal. Modeling an enterprise framework for the

formal modeling and simulation effort remains a vision

and the problem of executable architecture has not yet

been completely solved. Agent based modeling (ABM)

is the strongest contender towards modeling and

simulation of system that require many autonomous or

semi-autonomous entities. However, ABM alone cannot

describe these complex adaptive systems in the cyber-

world.

 In this article, I will define Cyber Complex Adaptive

Systems (CyCAS) and how the foundation of formal

modeling and simulation could be applied towards

developing a framework to study CyCAS. I will

elaborate on the various perspectives CyCAS can be

described through and then present the tools and metrics

required to support the development of these

perspectives.

 The article is organized as follows. Section 2

provides a background overview of foundational M&S

theory, systems framework and interoperability

considerations. Section 3 describes the M&S framework

for tooling and various enterprise architecture

frameworks that make the problem even more complex.

A discussion of complexity and system-of-system (SoS)

perspective is provided in Section 4. Section 5 introduces

CyCAS with Section 6 proposing various CyCAS Views

within the CyCAS enterprise framework. Section 7

elaborates on the sandbox requirements for CyCAS

modeling. Finally, conclusions are presented.

2. M&S ARCHITECTURE, SYSTEMS

FRAMEWORK AND INTEROPERABILITY

As we all know, model is an abstraction of reality with

some valid assumptions and the simulator is an algorithm

or a program that manifests the behavior of model. The

discipline of designing a simulator is called Simulation

engineering and considerable effort has been spent in the

last few decades in developing robust simulation engines

that leverage high performance computing (HPC). On

the contrary, model engineering (ME) aims at setting up

a systematic, standardized, and quantifiable engineering

methodology to manage the data, knowledge, activities,

processes and organizations/people involved in the full

life cycle of the model, in order to obtain the general term

of credible model theory, methods, technology, standards

and tools with the minimum cost.

 Model engineering has been in use since the mid-

1980s through the Model-based Engineering (MBE) and

Model-based Systems Engineering (MBSE) paradigms

(Zeigler 1976, Zeigler 2000, Mittal and Martin 2013b).

Progress in ME should profit from the progress made in

model-based and model-driven methods developed in

various systems and software engineering communities.

At the same time, it should address the distinct challenges

posed in the modeling and simulation (M&S) domain

clarified by its theoretical and conceptual frameworks.

mailto:smittal@duniptech.com

 M&S engineering can be best understood by the

layered M&S architecture initially proposed by Zeigler,

Praehofer and Kim (2000), and later elaborated by Mittal

et.al (2008) in the context of system-of-systems

engineering, and Linguistic Levels of Interoperability

(i.e., pragmatic, semantic and syntactic levels).

Simulation is associated with the computational domain

while Modeling is generally associated with the semantic

domain (Figure 1a). They both come together at the

pragmatic level where the purpose and limitations are

defined. The development of an M&S solution is guided

through the pragmatics that involve various

considerations for M&S engineering, such as, scope,

collaboration, decision, search-space, and computational

requirements. Computer and Software Engineers largely

handle the discipline of simulator engineering while the

discipline of model engineering accounts for the subject

matter expert (SMEs) versed in domain theory and the

model developer. In some cases, either SMEs take the

plunge to learn various programming languages to

encode the model (and the associated model editing

environment) that serve their purposes that go beyond the

existing simulation tools or they prefer to stay within the

confines of mathematics. Regardless of the approach, the

scope of model is defined by the questions it is meant to

answer or phenomenon it should describe. Certainly, the

question of which model is accurate is a difficult question

as it is dependent on the pragmatics (Figure 1b). When

model accurately represents the pragmatics, it is called a

valid model and the process is called Validation. When

the model behavior is correctly implemented by the

simulator, the model is verified. This process is called

Verification. For any model engineering effort, the

verification and validation (V&V) (Figure 1b) studies are

as critical as the M&S engineering process and any M&S

effort without V&V raises questions on the credibility of

the model.

 The simulators are computational entities built using

various programming languages with a defined syntax.

Communication and integration between different

simulators has been pursued in the derived discipline of

Distributed Simulation with an objective of achieving

simulation interoperability. Various standards (DIS,

HLA, TENA, CORBA, etc.) are in use that have

facilitated syntactic interoperability. However, the model

interoperability, as it happens in the semantic domain has

remained elusive, primarily for the reason that model

pragmatics are different for different models as

assumptions are seldom aligned beforehand. When the

pragmatics are aligned, model interoperability can be

achieved as the composite model can now be validated.

 While conceptually, this is easy to understand, the

problem becomes compounded with complexity when

the models and simulators are engineered with distinct

architectures, some proprietary, some open-source, some

considering model and the simulator as separate elements

and some coupling them together, making them “silos”

with no system-of-systems vision and extensibility. As

they are used in the field, they are called “simulation

systems” and become black-boxes thereby masking

away the V&V process that need to be defined for the

system-of-system (SoS) that they begin to participate in.

As elaborated in Mittal et.al. (2008), the component-

based nature of SoS needs a next level of specification

provided by an architecture framework that allows

specification and integration of architectures. These

architectures within the enterprise framework can then be

subjected to the formal Test and Evaluation (T&E)

procedures thereby validating their designs (Figure 1c).

Verification in SoS remains elusive and it is largely

assumed that the component system accurately performs

the claimed functionality.

 Model engineering in an enterprise environment

need to be investigated in more detail and the V&V

process need to be defined as well.

Figure 1: M&S Theory, Architectures, V&V, T&E and Interoperability

3. MSVC FRAMEWORK AND ENTERPRISE

ARCHITECTURE FRAMEWORKS

Modeling editors and simulation engines are distinct

pieces of an M&S solution and require different

engineering approaches. However, when there are

considered one and lack any formal engineering effort,

they are programmed as one “simulation software”

intending to serve only the purpose at hand or maybe just

rapid prototyping.

 When the model and simulator development is

considered distinct, and when coupled with formal

Software Engineering practices, they can be best be

summarized by the Model-Simulator-View-Controller

(MSVC) architecture framework (Mittal, Mak, Nutaro

2006) (Figure 2). As stated earlier, the pragmatics

provide model’s objective, the semantics provide the

model definition and the syntax provides the model’s

computational implementation. In the Software

Engineering realm, Model-View-Controller (MVC)

architecture is the most widely used architecture to build

software that has a decoupled Presentation layer. Many

extensible Integrated Development Environment (IDE)

frameworks are available that utilize MVC architecture

framework (for example Netbeans Rich Client Platform

(RCP), Eclipse RCP, Enterprise J2EE, Microsoft .NET

framework, etc.)

 The Model in MVC is where the actual semantics

are constructed, the View is where the presentation and

user-input of model is created and the Control is where

the communication between the Model and the View is

engineered. In MSVC, there is an additional component

of Simulator that represents the underlying platform over

which the model is executed. Moreover, the Controller

aspect is made rich and takes active role as it pertains to

the pragmatics aspect of the M&S development exercise.

The MSVC framework is discussed at length by Mittal,

Mak and Nutaro (2006) where they associate it with

DEVS M&S theory.

 While usage of RCP platforms provide a solution for

a desktop environment and the resulting solution can

effectively be a considered a black-box, enterprise level

solutions bring more complexity in the mix where

cohesion and loose-coupling provide a different design

paradigm.

Figure 2: Model Engineering using MSVC Framework and Open Source tools

Figure 3: MSVC Framework and Enterprise Architectures

3.1. Architecture Frameworks

Enterprise frameworks are organized in various layers

where each layer can have its own architecture. These

layers are identified on the function they provide in

serving the enterprise. Clearly, separation of concerns is

at the heart of an enterprise framework, which in turn

results in specific technologies being developed at each

layer to enhance its functionality. Some of the identified

layers are:

 Governance:

 Business Logic

 Execution

 Application

 Technology

 Database

 Service

 Security

 Audit

 Big Data

These layers, which have their own architectures,

communicate using enterprise service buses (ESBs) that

provide atomicity and various other message-based

reliable communication services. This communication is

largely in a netcentric domain where many Standards

exist, facilitating solid integration. Event-driven

Architectures (EDAs) are the latest in the list of

enterprise architectures that provide a shared memory-

store (an Event cloud) of user-specified queries and

patterns that can access various other connected layers

(Taylor, Yochem, and Phillips 2009).

 Figure 3 shows the relation of enterprise framework

with the MSVC pattern. The Controller is analogous to

the Governance layer, the Model to the Business Logic

layer, the Simulator to the Execution layer, and the View

to the Presentation Layer. All the other layers are

orthogonal to the MSVC layers. The MSVC is coupled

together as an Application layer, as shown in Figure 3.

 A framework enables the development of an

architecture and it is imperative to have a framework to

manage and utilize various architectures. The reader is

encouraged to review frameworks like:

1. DoDAF (CIO 2010): Department of Defense

Architecture Framework.

2. MoDAF (MoD 2012): Ministry of Defense

Architecture Framework

3. TOGAF (TOG 2011): The Open Group

Architecture Framework

4. Zachmann Framework (Zachmann 2008)

5. NAF (2013): NATO Architecture Framework

6. DNDAF (2010): Department of National

Defense/ Canadian Armed Forced Architecture

Framework

7. FEAF (2012): The Federal Enterprise

Architecture Framework

 While it is encouraging to know that these

framework exists, the major problem that now arises is

that there are too many frameworks based on the domains

they serve. The problem initially thought to be contained

within the confines of a framework, seems compounded

by the presence of multiple architectures and multiple

frameworks. Again, no wonder why various agencies

who like to share information and data are plagued with

the inherent complexity. Various ontology and data-

dictionary-based solutions are utilized that try to

harmonize the knowledge between two or more different

frameworks. Efforts are ongoing (Gorman, Haperen &

Bailey 2013).

4. COMPLEXITY AND SOS

Section 2 provided an overview on the fundamental

problem of V&V with multiple M&S architectures after

becoming components within an enterprise framework.

While there are many examples of enterprise frameworks

as enumerated in Section 3.1, currently there exists none

for enabling an M&S enterprise architecture. To that end,

Joint Live, Virtual and Constructive (JLVC) Vision 2020

brings together Cloud-enabled Modeling and Simulation

(CEMS) services (Weter 2012) and Joint Training

Enterprise Architecture (JTEA), are under development

(Edgren 2012) for enterprise level Joint Force training

(Irwin 2012). These assume that the underlying LVC

environment is indicative of enterprise M&S

architecture. Technically, the integration problem is

solved but semantic interoperability remains elusive with

V&V from M&S perspective still questionable.

Moreover, it is still not clear how causality, control and

emergent behaviors need to be addressed in a distributed

discrete event simulation environment (Rainey and

Mittal 2014). Indeed, a cloud-based simulation

framework continues to be a vision where fundamental

issues of ownership of state, shared environment, truth

and simulation remain unaddressed (Tolk and Mittal,

2014). There is a fundamental difference between

software-based discrete event simulation and systems-

based discrete event simulation. While the former is

strictly based on object-oriented software engineering

paradigm, the latter enforces mathematical System

Theory on the object-oriented discrete event simulation

engine. A successful solution must incorporate ideas

from Systems Theory and M&S engineering practices.

Even though all the above mentioned can be used for

developing an M&S architecture, the Execution Layer

(Figure 3) needs to be strengthened by distributed

simulation architecture based on Systems Theory in a

netcentric domain as described by Mittal and Martin

(2013a, b). Until system-based approaches are

encouraged, the vision of developing an executable

architecture, where an architecture model can be

executed over an enterprise simulation infrastructure,

will continue to be a vision.

 The problem of emergent behaviors when such

architectures are brought together as a SoS has gained

widespread attention in recent years. In addition to the

five SoS characteristics defined by Maier (1998), where

the constituent systems are operationally independent,

managerially independent, have evolutionary nature

within their own systems development life cycle, are

geographically distributed and together they portray

emergent behavior, an SoS also has a purpose, to begin

with. Assuming each constituent architecture is a 100%

functional system, passing all the verification and

validation tests in isolation, it cannot be determined a

priori if the same system can perform with an SoS and

can deliver: (a) the emergent behavior that is desired of

an SoS and (b) fulfills the overall goal i.e. validation of

SoS. Each constituent system or an architecture becomes

an ‘agent’ that has a unique level of autonomy.

 Finally, the biggest issue of all is the presence of

humans as an actor in an enterprise solution thereby

giving a dynamic nature to the entire landscape wherein

everything is evolving and adapting (which includes, the

technology, the users, the developers, the knowledge, the

architectures and the systems themselves). This is how a

complex adaptive system in an enterprise environment

comes into being and there exist no mechanisms to

perform T&E before such SoSs are made live with real

users.

5. CYBER COMPLEX ADAPTIVE SYSTEM

(CYCAS)

Complex Adaptive Systems (CAS) are systems that

display strong emergent behavior, have positive- and

negative-feedback loops and have large number of

adaptive agents. Examples of such systems include ant

colonies, the biosphere, the brain, the immune system,

the biological cell, businesses, communities, social

systems, stock market, financial systems, High

Frequency Trading systems, enterprise systems, etc.

Some of these examples can also be classified as open

systems. One of the characteristic features of these

systems is the generation of new knowledge within the

system that has causal properties resulting in adaptive

behavior of the system components itself. CyCAS occurs

in contemporary society where computational systems

interact with both live human agents and virtual agents

(software bots). The resulting complex system, for

example, the World Wide Web, evolves in unknown

ways not initially thought out by designers. Various types

of communities emerge, that use the system in ways

unthinkable by the system designers. Usage of Facebook

to organize protests, Twitter to coordinate and You Tube

to showcase demonstrations were critical in the Arab

Spring revolution. On another note, usage of You Tube

as a learning system makes everybody an educator. We

frequently use do-it-yourself (DIY) videos on You Tube

for our personal advancement and Massive Open Online

Courses (MOOCs) give these videos a formal structure.

Learning amidst such CAS happens in leaps and bounds

and aptly so, the technology to create such systems

advances in lock-step fashion. While we have

technologies to engineer such netcentric complex

systems today, we are short of methodologies to

understand the emergence of adaptive stance in these

engineered systems. They are difficult to study due to

unavailability of a ‘CAS’ sandbox.

 The engineering process is a formal process that is

applied to solve a particular problem and deliver a system

that addresses it. With CyCAS, even the initial objective

takes a spiral upturn or downturn (based on one’s

perspective) and continuously evolves. In contemporary

society, every Cyber-system must have a component of

computational emergence that studies the life-cycle of

such systems.

 I identify eight characteristics of CyCAS as follows:

5.1. Human-in-the-System

Every cyber system has a human as a critical component

of the system. A CyCAS model accordingly must have

infrastructure to manage user model profiles, the usage

spread (distribution of users with respect to their roles),

the capability to understand system responses for various

usage spreads and the mechanisms to perform role

switching for each user. Various human behavior

modeling approaches and context quantification

approaches (Mittal and Zeigler, 2014) need to be

incorporated from fields like cybernetics, cognitive

psychology, agent-based modeling etc.

5.2. Multi-agent-system

A CyCAS is a multi-agent system (MAS) where the

agents can be heterogeneous, homogeneous, deliberative

or communicative in varying degrees and combinations.

MAS (Weiss 2000) is a fairly new discipline of

Distributed Artificial Intelligence (DAI) (Bond, Gasser

1988) that focuses on behavior management and design

of agent-based systems. Canonically, such systems are

multi-level algorithms subjected to multi-level control in

a real-time environment.

5.3. Control and communications in a netcentric

environment

The communication aspect of CyCAS cannot be

understated as it is the source of all emergent behavior.

This Standards-based communication in a netcentric

environment can be point-to-point, inter and intra-

enterprise, and may include blackboard architectures

with shared memory infrastructure. The presence of

communication links at various levels establishes

positive and negative feedback loops and unless such

aspect is dealt per Systems Theory-based “closure under

composition” principle, it is hard to establish who is in

control of state and time for the resulting non-linear

system.

5.4. Resource-constraints and economy of scale

Each constituent system operate within the confines of

real world and has finite resources that need to be used

efficiently and in a priority-based manner as dynamic

nature of pragmatics within CyCAS re-purpose existing

resources. Scalability and resourcefulness need to be

addressed in a formal manner as failure of a constituent

system may result in cascaded failures. Constraint-

graphs facilitate the evaluation of resource availability

and limitations.

5.5. Emergent Attention and Second order

cybernetics

As the CyCAS design is motivated by the pragmatics

(overall SoS goal), various observers (models) and

auditing systems need to exist within the CyCAS to

ensure that the resultant emergent behavior is truly the

intended one. Usage of BigData technologies to engineer

advanced pre- and post-analytics system must conform

to Second-order cybernetics philosophy (Heylighen and

Joslyn, 2001) where both the observer and the observed

define the actual system. The emergent attention (Mittal

and Zeigler, 2014) becomes a critical aspect of such

systems that indicates the most active constituent system

(or a group of sub-systems) in a resource-limited and

time-constrained environment.

5.6. Phase Transition

As SoS manifests emergent behaviors, the constituent

systems may respond in unknown ways due to their

black-box nature. This may lead to emergence of

unknown behaviors not specified in the design.

Sometime these behavior are benign and sometimes puts

the entire SoS into an undesired trajectory.

Consequently, a CyCAS model must be able to attend to

these phase transitions through computational emergence

studies that provides information about the adaptive

stance of CyCAS and whether it continues to display the

intended emergent behavior.

5.7. Structure of knowledge

Each of the constituent system being a black-box

implements its own knowledge-base. While they can be

syntactically integrated successfully, achieving semantic

interoperability is the holy-grail of systems

interoperability and CyCAS. Before semantic

interoperability is achieved, knowledge and ontological

structures have to be ensured and validated by the SMEs.

Issues like knowledge sharing, transformation,

evolution, computational representation (ontology),

interoperability, context switching according to

emergent attention, and new knowledge synthesis have

to be addressed at multiple operational levels.

Knowledge management and evolution roadmap is a

critical component of CyCAS and demarcates the

difference between a weak or a strong emergent system

(Figure 4) (Mittal, 2013; Mittal and Zeigler, 2014).

5.8. Resilient or Anti-fragile

Finally, CyCAS undergo a lot of dynamic

reconfiguration due to their component nature. It needs

to be formally determined if the engineered CyCAS is

fail-fast, resilient/robust or anti-fragile where it continues

to function, albeit evolving, in unknown ways.

6. CYCAS FRAMEWORK

Based on the eight characteristics identified in the

previous section, this section presents a framework to

engineer a CyCAS. Following are the assumptions:

1. CyCAS is a digital complex adaptive system

where the notion of Object is ubiquitous at

every level of specification, and is rapidly being

replaced by the notion of a ‘smart’ object that

may have sense-making capabilities.

2. System behavior is indicative of events that are

manifested externally by a constituent system

and are communicated using structured

messages in a netcentric environment

3. Human in the most complex and the least

predictive element. However, it is the most

critical element that transforms a netcentric

system into a CyCAS.

 CyCAS Framework consists of eight views

corresponding to each of the characteristics. Table 1 lists

the eight views, the capabilities of tools that implement

these views and the metrics that ensure that the tools are

valid.

Figure 4: Strong and Weak Emergence

7. SANDBOX REQUIREMENTS AND THE

ENGINEERING PROCESS

As we strive to adhere to Systems Theory for a CyCAS

sandbox, we must be able to classify the eight CyCAS

views into structure and behavior. This will allow us to

separate the static and dynamic nature of the views.

However, one has to remember the fact that the CyCAS

structure continuously changes as the CyCAS behavior

evolves. In a CyCAS, variable structure modeling is a

critical capability (Mittal, 2013). Following is the

classification:

I.Structure

a. Control and Communication View

b. Resource and Constraints View

c. Knowledge View

d. Resilience View

II.Behavior

a. Human View

b. Multi-agent View

c. Emergence View

d. Phase Transition View

Table 1: CyCAS Views, tool capabilities and various metrics for model engineering

ID CyCAS Views Tool Capabilities Metrics

5.1 Human View Cognitive architectures, Live, Virtual

and Constructive (LVC) environments,

user behavior modeling

Behavior quality, spread and quantification,

cognitive plausibility, contextual realism,

quantized context

5.2 Multi-agent

View

Agent structure, behavior and

interactions with other agents or

environment, closed-under-composition

Ease of model-transformation and model

integration, partial observability, group cohesion,

shared goals

5.3 Control and

Communication

View

Hierarchical organization, logical

structures and supervisory control

(similar to DoDAF OV-7 and SV-7)

Degree of control (from centralized and

totalitarian to completely decentralized and

autonomous), feedback loops

5.4 Resource and

Constraints

View

Similar to DoDAF 2.0 System View 4,

5 resources. Constraints similar to

policy considerations in DoDAF OV-6a

Utilization, availability, limitations, affordance

5.5 Emergence

View

Multi-level instrumentation, Big Data,

expected behaviors, causal behaviors,

novel behaviors

Multi-level behavior validation and recognition,

computational emergence, agent adaptation

5.6 Phase

Transition View

System behavior transition matrix

(similar to DoDAF SV-3)

Multi-level transition probabilities, credit

assignment and new behavior detection and

encoding

5.7 Knowledge

View

Ontologies (data and its relationships) Semantic network, semantic validity through SME

and keyword-rank

5.8 Resilience View Experimental frames Degree of robustness at multiple-levels

 While providing further details on each of the views

is outside the scope of the article and is left for future

work, I would like to describe the Multi-agent View in a

bit more detail. As a CyCAS is a MAS at the fundamental

level, there are many agent-based modeling (ABM) tools

available. For example, JAMES II, Repast, NetLogo,

Mason, Flame, Soar, Swarm, etc. To the best of my

knowledge, none conforms to the Systems Theory’s

closure under composition principle and infact, many

leverage the flat nature of agent based systems with

limited encapsulation and hierarchy. The problem is

rooted in usage of only the Software Engineering

practices and ignoring the Systems Theory.

 In the classical paradigm, and not going too far back

for the purpose of this discussion, let us look at the 4th

generation languages such as C. There is the main

function and there are subroutines that invoke each other.

Then came the Object-Oriented paradigm which brought

forward concepts like inheritance, data encapsulation,

and polymorphism, and grouped the set of subroutines

within an Object as its ‘behavior’. Capitalizing on this,

the ABM community made the Object an Agent by

adding constructs like purpose, behaviors and

capabilities (i.e. a smart object). They also provided an

agent execution environment where these agents could

manifest their behavior with a virtual environment. All

the existing ABM tools with the exception of JAMES II,

have this notion of software agent with varying

implementations and integration with a real or synthetic

environment. Sometimes, there is a scientific theory

behind the ABM tool, for example SOAR has cognitive

psychology as its foundation (Laird, 2012). On the other

hand, a Systems-based agent, for example, a DEVS

agent, has the notion of a system attached to it (Figure 5).

It is built on formal semantics and adheres to the Systems

Theory (Zeigler, Praehofer and Kim, 2000, Mittal, 2013).

It also provides a simulator, a simulation protocol and a

distributed high performance engine for agent/system

model’s execution and ensures that Systems Theory is

not violated. The DEVS M&S theory (Zeigler, Praehofer

and Kim, 2000) is applicable to both discrete and

continuous hybrid systems and has the notion of abstract

time. It models the dynamical behavior and has the

notion of elapsed time. Work by Mittal and Martin

(2013a,b) packages all these functionalities in a

netcentric DEVS Virtual Machine (VM) that provides an

agent-execution environment in a CyCAS setting.

 To develop a CyCAS sandbox, Table 2 provides an

overview of the DEVS M&S elements as applicable to

implementation of the structural and behavioral

components of CyCAS. The DEVS Unified Process and

the related work by Mittal, Martin and Zeigler in the last

decade (Zeigler 2013) bring technologies like DEVSML

Stack, DEVSVM, metamodeling, domain specific

languages (DSLs) to be integrated with the DEVS M&S

environment based on dynamical Systems Theory

towards the pursuit of multi-paradigm modeling, a prime

requirement for integrating multiple modeling

architectures. The CyCAS sandbox based on such ideas

will be reported in future work.

Figure 5: From a Software Agent to a DEVS Agent

Table 2: CyCAS and Model Engineering

CyCAS View DEVS Element Alternatives

Human Dynamical agent behavior modeling in Atomic

DEVS subject to SME validation

Cognitive agents, software agents, DEVS

behavior models, SOAR agents

Multi-agent Atomic, Coupled and Multi-Level DEVS Object interaction diagrams

Control and

Communication

Levels of Systems specifications Subsumption architectures

Resource and

Constraints

Atomic DEVS and network-delay models External systems with defined I/O interfaces,

constraint graphs

Emergence Atomic observers at higher levels of hierarchy,

Experimental Frames

Pattern matchers

Phase

Transition

Atomic observers at multiple levels of system

specifications, Experimental Frames

Pattern matchers

Knowledge Representation through pragmatic frames within

the System Entity Structure (SES) theory

Triple stores, RDF stores, etc.

Resilience Experimental Frame, Atomic DEVS -

8. CONCLUSIONS

Many enterprise architecture frameworks provide

various views and perspectives to facilitate architecture

development and capture the true purpose behind the

enterprise architecture. Enterprise IT Systems underwent

a lot of transformation in the last decade and robust

technologies exist that deliver scalable enterprise

solutions. Multiple enterprise architecture frameworks

exists that serve different niche and efforts are underway

to consolidate them towards a unified framework and

none mandate the formal M&S engineering methodology

to develop an executable architecture. Enterprise systems

modeling is a different problem altogether and new

approaches are needed to model such complex multi-

faceted systems. Cyber complex adaptive systems are

specialized cases of CAS in the cyber domain where both

the systems and the system users adapt in unknown ways.

Consequently, it is impossible to conduct studies before-

hand as both sides of the equation are in constant flux. In

this article, I introduced the CyCAS concept, essential

elements of CyCAS and various perspectives that are

needed to understand it. The CyCAS perspectives can be

used in conjunction with the existing architecture

frameworks and as of this article, they are by no means

the only perspectives that are needed to understand the

holistic behavior of CyCAS. I also introduced the

sandbox requirements for modeling and simulation of

CyCAS and related it to the fundamental Systems

Theory. I also stressed the importance of using

frameworks like DEVS Unified Process that is based on

formal discrete event systems (DEVS) theory to be

applied to CyCAS M&S. Further details will be

presented in the future work.

REFERENCES

Bond, A., L. Gasser, 1988. A Survey of Distributed

Artificial Intelligence., Available at:

http://www.exso.com/nsurvo.pdf, Last accessed:

July 31, 2014

CIO, DoD, The DoDAF Architecture Version 2.02,

Available at:

http://dodcio.defense.gov/TodayinCIO/DoDArchit

http://www.exso.com/nsurvo.pdf
http://dodcio.defense.gov/TodayinCIO/DoDArchitectureFramework.aspx

ectureFramework.aspx, Last accessed, July 31,

2014

DNDAF, 2010. DND/CF Architecture Framework

(DNDAF) Version 1.7 Home Page. Available at:

http://trak-

community.org/index.php/wiki/DNDAF, Last

accessed: July 31, 2014

Edgren, M. 2012. Joint M&S Strategy, WJTSC M&S

Working Group, Defense Technical Information

Center. Available at:

http://www.dtic.mil/doctrine/training/conferences/

wjtsc12_2/wjtsc12_2_jmsc_msstrategy.pdf, Last

accessed July 22, 2014

FEAF, 2012. The Common Approach to Federal

Enterprise Architecture. Available at:

http://www.whitehouse.gov/sites/default/files/omb

/assets/egov_docs/common_approach_to_federal_

ea.pdf, Last accessed: July 31, 2014

Gorman, P., K. Haperen, I. Bailey, 2013. An Update on

the Convergence of MOD and NATO Architecture

Frameworks, Available at: http://nafdocs.org/wp-

content/uploads/2013/07/Gorman-Bailey-Van-

Haperen-IEA14-v2.pdf, Last accessed: July 31,

2014

Heylighen, F., and C. Joslyn, 2001. Cybernetics and

Second Order Cybernetics, in: R. A. Meyers (ed.),

Encyclopedia of Physical Science & Technology, 4,

155-170, Academic Press, New York

Irwin, T., 2012, Enabling Training Technologies for

Joint Force 2020, Available at:

http://www.ndia.org/Resources/OnlineProceedings

/Documents/21M0/Joint_Forces_2020/Intro_and_

Overview_Thomas_Irwin.pdf, Last accessed, July

22, 2014

Laird, J. 2012, The SOAR Cognitive Architecture, MIT

Press, Cambridge, MA

Maier, M.W. 1998. "Architecting Principles for Systems-

of-Systems." Systems Engineering 1 (4): 267-284.
Mittal, S., E. Mak, and J.J. Nutaro. 2006. "DEVS-Based

Dynamic Model Reconfiguration and Simulation

Control in the Enhanced doDAF Design Process."

Journal of Defense Modeling and Simulation 3 (4).

Mittal, S., B.P. Zeigler, J.L.R Martin, F. Sahin, and M.

Jamshidi. 2008. "Modeling and Simulation for

System of Systems Engineering." In System of

Systems Engineering for 21st Century, by M. (ed.)

Jamshidi. Wiley.

Mittal, S., 2013. Emergence in Stigmergic and Complex

Adaptive Systems, Journal of Cognitive Systems

Research, 21, 26-39.

Mittal, S., and J. L. R. Martin. 2013a. Netcentric System

of Systems with DEVS Unified Process. Boca

Raton, FL: CRC Press.

Mittal, S., and J. L. R. Martin. 2013b. Model-driven

Systems Engineering in a Netcentric Environment

with DEVS Unified Process, Winter Simulation

Conference

Mittal, S., and B. P. Zeigler, 2014. Context and Attention

in Activity-based Intelligent Systems”, ITM Web

of Science, 2.

MoD, UK. 2012. MOD Architecture Framework.

Available at: https://www.gov.uk/mod-

architecture-framework, Last accessed: July 31,

2014

NAF, 2013. NATO Architecture Framework: MODEM

Review. Available at: http://nafdocs.org/wp-

content/uploads/2013/07/20130816_MODEM_to_

NAF_Review_V1_1-U.pdf, Last accessed: July 31,

2014

Rainey, L., S. Mittal, eds., 2014. Agent-based modeling

for understanding complexity: Lessons learned

from defense domain where lack of adherence to

Systems theory lead to unpredictable behavior,

Special Issue Journal of Defense Modeling and

Simulation, Call for Papers. SCS.

Taylor, H., A., Yochem, L. Phillips, F. Martinez, 2009.

Event-Driven Architecture: How SOA enables the

real-time enterprise, Boston, MA., Addison-

Wesley

TOG 2012. An Introduction to ToGAF 9.1, The Open

Group. Available at:

https://www2.opengroup.org/ogsys/catalog/w118,

Last accessed: July 31, 2014

Tolk, A., and S. Mittal, 2014 “A Necessary Paradigm

Change to Enable Composable Cloud-based M&S

Services”, Winter Simulation Conference,

Savannah, GA, USA

Weiss, G., (ed.) 2000. Multiagent Systems: A Modern

Approach to Distributed Artificial Intelligence,

MIT Press, Cambridge, MA

Weter, D., 2012, Joint Staff J7 Modeling & Simulation

Program Update, available at:

http://www.rolands.com/jtls/j_iuc2012/JSJ7_Wete

r.pdf, last accessed: July 22, 2014

Zachmann, J.A., 2008. The Zachmann Framework

Evolution, Available at:

https://www.zachman.com/ea-articles-

reference/54-the-zachman-framework-evolution,

Last accessed: July 31, 2014

Zeigler, B.P. 1976. Theory of modeling and simulation.

Wiley Interscience.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory

of Modeling and Simulation: Integrating Discrete

Event and Continuous Complex Dynamic Systems.

New York, NY: Academic Press.

Zeigler, B. P. 2013. “Grand Challenges in Modeling and

Simulation, What can DEVS Theory do to meet

them? Parts 1 and 2” Seminar to School of

Automation Science and Electrical Engineering,

Beihang University, Beijing, China.

BIOGRAPHY

SAURABH MITTAL is the founder and president of

Dunip Technologies LLC, CO USA. He earned his MS

(2003) and PhD (2007) in Electrical and Computer

Engineering from the University of Arizona, Tucson. His

current interests include modeling and simulation of

complex natural systems, distributed artificial

intelligence, multi-agent systems and complex adaptive

systems. He can be reached at smittal@duniptech.com

http://dodcio.defense.gov/TodayinCIO/DoDArchitectureFramework.aspx
http://trak-community.org/index.php/wiki/DNDAF
http://trak-community.org/index.php/wiki/DNDAF
http://www.dtic.mil/doctrine/training/conferences/wjtsc12_2/wjtsc12_2_jmsc_msstrategy.pdf
http://www.dtic.mil/doctrine/training/conferences/wjtsc12_2/wjtsc12_2_jmsc_msstrategy.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/common_approach_to_federal_ea.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/common_approach_to_federal_ea.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/common_approach_to_federal_ea.pdf
http://nafdocs.org/wp-content/uploads/2013/07/Gorman-Bailey-Van-Haperen-IEA14-v2.pdf
http://nafdocs.org/wp-content/uploads/2013/07/Gorman-Bailey-Van-Haperen-IEA14-v2.pdf
http://nafdocs.org/wp-content/uploads/2013/07/Gorman-Bailey-Van-Haperen-IEA14-v2.pdf
http://www.ndia.org/Resources/OnlineProceedings/Documents/21M0/Joint_Forces_2020/Intro_and_Overview_Thomas_Irwin.pdf
http://www.ndia.org/Resources/OnlineProceedings/Documents/21M0/Joint_Forces_2020/Intro_and_Overview_Thomas_Irwin.pdf
http://www.ndia.org/Resources/OnlineProceedings/Documents/21M0/Joint_Forces_2020/Intro_and_Overview_Thomas_Irwin.pdf
https://www.gov.uk/mod-architecture-framework
https://www.gov.uk/mod-architecture-framework
http://nafdocs.org/wp-content/uploads/2013/07/20130816_MODEM_to_NAF_Review_V1_1-U.pdf
http://nafdocs.org/wp-content/uploads/2013/07/20130816_MODEM_to_NAF_Review_V1_1-U.pdf
http://nafdocs.org/wp-content/uploads/2013/07/20130816_MODEM_to_NAF_Review_V1_1-U.pdf
https://www2.opengroup.org/ogsys/catalog/w118
http://www.rolands.com/jtls/j_iuc2012/JSJ7_Weter.pdf
http://www.rolands.com/jtls/j_iuc2012/JSJ7_Weter.pdf
https://www.zachman.com/ea-articles-reference/54-the-zachman-framework-evolution
https://www.zachman.com/ea-articles-reference/54-the-zachman-framework-evolution
mailto:smittal@duniptech.com

