
 
 

DEVSML 2.0: The Language and the Stack 
 

Saurabh Mittal 
L-3 Communications, Air Force Research Laboratory, 

Wright-Patterson AFB, OH 45433 USA 
Saurabh.Mittal@L-3com.com  

Scott A. Douglass 
Air Force Research Laboratory, 

Wright-Patterson AFB, OH 45433 USA 
Scott.Douglass@wpafb.af.mil  

 
 

Keywords: DSL, DEVSML, SOA, FDDEVS, Natural 
Language, Xtext, EMF, interoperability 
 
Abstract 
 This paper presents a revised version of DEVSML 
stack. The earlier version introduced the concept of 
transparent simulators in a netcentric domain. This version 
of DEVSML 2.0 stack introduces the transparent modeling 
concept and how a platform independent DEVS Modeling 
Language based on Finite Deterministic DEVS can help 
achieve model interoperability. Further, the new stack opens 
up the DEVS framework [1] to customized Domain Specific 
Languages (DSLs) and facilitates DEVS adoption to a much 
wider audience. The paper describes the EBNF grammar for 
DEVSML language and a natural language DEVS DSL that 
is semantically anchored to the described language. 
 
1. INTRODUCTION 
 This paper presents a platform independent DEVS 
Modeling language based on Finite Deterministic DEVS [2] 
and revises the earlier developed DEVSML framework 
[3,4]. The proposed DEVSML 2.0 framework has two 
pieces i.e. the stack and the language itself. The earlier stack 
realized the transparent simulation framework with 
DEVS/SOA [5,6] and focused more on the simulation layer. 
This paper is geared towards the modeling layer. 
 A domain specific language (DSL) is a dedicated 
language for a specific problem domain and is not intended 
to solve problems outside it. For example, HTML for web 
pages, Verilog and VHDL for hardware description, etc. are 
DSLs for very specific domains. A DSL can be textual or a 
graphical language or a hybrid one. A DSL builds 
abstractions so that the respective domain experts can 
specify their problem well suited to their domain 
understanding without paying much attention to the general 
purpose computational programming languages such as C, 
C++, Java, etc. which have their own learning curve. The 
notion of domain specific modeling arises from this concept 
and the DSL designers are tasked with creating a domain 
specific modeling language. If a DSL is also meant for 
simulation purposes, then one more task of mapping a 
specific DSL to a general purpose computational language 
is also on the cards. In this paper, we propose a DEVS DSL 
as a component of DEVSML 2.0. The proposed stack also 
integrates the transparent modeling framework with the 

inclusion of domain specific languages (DSLs) and various 
transformations. We describe how platform independent 
DSLs can be transformed in this framework and finally into 
the DEVS formalism [1]. Decoupling the model from the 
simulation platform has many benefits as it allows the 
modeler to construct models in a platform of his choice. The 
ability to execute DEVS models in multiple platforms has 
already been achieved. This ability provides a solution to 
scale, integration and interoperability [4-9]. Having a 
process to transform any DSL to DEVS components, 
especially to the DEVSML platform independent 
specification, then has obvious advantages.  
 The paper starts with the foundation for component-
based modeling and simulation framework. In Section 2, it 
provides an overview of DEVS. Section 3 extends the older 
DEVSML stack to incorporate Domain Specific Languages 
(DSLs) that are platform independent and are made 
executable using the Model-to-Model (M2M), Model-to-
DEVSML (M2DEVSML) and Model-to-DEVS (M2DEVS) 
transformations. Section 4 describes the EBNF grammar for 
the DEVSML language along with code generation and 
model validation features. Section 5 describes the code 
generation features with the Eclipse Xtext framework [10] 
based on Eclipse Modeling Framework (EMF). Section 6 
describes a new DSL called Natural Language DEVS 
(NLDEVS) that is semantically anchored in DEVSML 
language. Finally, the conclusions are presented in the last 
section. 
 
2. DEVS FORMALISM 
 Discrete Event System Specification (DEVS) [1] is a 
formalism which provides a means of specifying the 
components of a system in a discrete event simulation. The 
DEVS formalism consists of the model, the simulator and 
the experimental frame as shown in Figure 1. The Model 
component represents an abstraction of the source system 
using the modeling relation. The simulator component 
executes the model in a computational environment and 
interfaces with the model using the simulation relation or 
the DEVS simulation protocol in the present case. The 
Experimental Frame facilitates the study of the source 
system by integrating design and analysis requirements into 
specific frames that support analyses of various situations 
the source system is subjected to. 
 



 
 

 

Figure 1. DEVS Framework elements 

 While historically models have been closely linked to 
the platform (such as Java, C, C++) in which the simulator 
was written, recent developments in platform independent 
modeling and transparent simulators [3,5] have allowed the 
development of both the models and simulators in disparate 
platform. Current efforts are focusing on a standardization 
process [11-13] wherein the simulation relation can be 
standardized for further interoperability. 
 In DEVS formalism, one must specify Basic Models 
and how these models are connected together. These basic 
models are called Atomic Models (Figure 2) and larger 
models which are obtained by connecting these atomic 
blocks are called Coupled Models (Figure 2). Each of these 
atomic models has inports (to receive external events), 
outports (to send events), a set of state variables, an internal 
transition function (to specify state transitions with 
timeouts), an external transition function (to specify state 
transitions on receiving external event), a confluent 
transition function (to specify in explicit terms whether to 
execute internal transition and/or external transition on the 
event of receiving external input when making internal 
transition)  and a time advance function.  The models 
specification uses or discards the message in the event to 
compute, deliver an output message on the outport, and 
make a state transition.  
 

 

Figure 2. Atomic and Coupled models 

 A DEVS-coupled model designates how atomic models 
are coupled together and how they interact with each other 
to form a complex model. The coupled model can be 
employed as a component in a larger coupled model and can 

construct complex models in a hierarchical way. The 
specification provides components and coupling 
information. A Java based implementation (DEVSJAVA 
[14]) can be used to implement these atomic or coupled 
models.  
 
3. DSL AND MODEL INTEROPERABILITY USING 

DEVSML 2.0 STACK 
 The earlier version of DEVSML stack [3,4] developed 
models in Java and in platform independent DEVS 
Modeling Language that used XML as a means for 
specification and transformation. The model semantics were 
bound together by XML and XML-based JavaML. The 
latest version for the stack was first proposed as a part of 
Air Force Research Laboratory’s Large Scale Cognitive 
Modeling (LSCM) initiative [18]. As a part of the proposed 
stack DEVSML 2.0, the proposed DEVS modeling 
language, is based on EBNF grammar as described in the 
next section and is supported by DEVS middleware API. 
The middleware is based on DEVS M&S Standards 
compliant (under evaluation) API and interfaces with a net-
centric DEVS simulation platform such as a service oriented 
architecture (SOA) that offers platform transparency. With 
the maturation of technologies like Eclipse Xtext 2.1 [10] 
and Xtend 2.0 [15], we now have extended the concept of 
XML-based DEVSML to a much broader scope wherein 
other DSLs can continue to be expressed in all their richness 
in a language independent manner that is devoid of any 
DEVS and programming language constructs (Figure 3).  
 

 

Figure 3. DEVSML 2.0 stack employing M2M and 
M2DEVS transformations for Model and simulator 

transparency 

 We need to make a clear distinction here that the DEVS 
Modeling ‘language’ is a DEVS modeling specification 
language that is anchored to DEVS simulation layer using 
the simulation relation in DEVS Middleware API. 
Consequently, a DEVSML specified model is a DEVS 
executable. The idea of including other DSLs at the top 



 
 

layer of the stack is a major addition in the proposed 
DEVSML 2.0 stack. In addition, the stack in Figure 3 adds 
three transformations at the top layer: 

1. Model-to-Model (M2M) 
2. Model-to-DEVSML (M2DEVSML) 
3. Model-to-DEVS (M2DEVS) 

  
 The key idea being domain specialists (the end-user) 
need not delve in the DEVS world to reap the benefits of 
DEVS framework. The end-user as indicated in Figure 3 
will develop models in their own DSL and the DEVS expert 
along with the DSL designer will help develop the M2M 
and M2DEVSML transformation to give a DEVS backend 
to the DSL models. While M2DEVSML transformation 
delivers an intermediate DEVS DSL (the DEVSML DSL), 
the M2DEVS transformation directly anchors any DSL to 
platform specific DEVS. On a reverse note, a DEVS expert 
is ideally suited to develop DSLs in other domains as 
developing transformations like M2DEVS and 
M2DEVSML need not be negotiated with the DSL expert. 
A DEVS expert with DEVSML skill set can perform a dual 
job of both the DSL and DEVSML expert. Table 1 
summarizes the state of DEVSML as viewed from the 
perspectives of a DEVSML expert and other DSL expert.
 There are many DEVS DSLs that implement a subset of 
rigorous DEVS formalism. One example of DEVS DSL is 
XML-based Finite Deterministic DEVS (XFDDEVS) [16]. 
DEVSpecL [17] built on BNF grammar is another example 
of DEVS DSL. DSL writing tools like Xtext, Ruby, etc. 
focusing directly on the EBNF grammar provide a much 
easier foundation to develop the Abstract Syntax Tree 
(AST) for M2M transformations. The rich integration and 
code generation capabilities with open source tools like 

Eclipse give them strong acceptance in the software 
modeling community.  
 While M2M transformation is not really needed here, 
we have included it in the DEVSML 2.0 stack to close the 
loop per Model Driven Engineering (MDE) paradigm where 
meta-modeling allows such transformations. The 
metamodeling approach to Model Integrated Computing 
(MIC) brings more focus to these transformations. It also 
supports the Formalism Transformation Graph (FTG) with 
DEVS as the common denominator for multi-formalism 
hybrid systems modeling as mentioned by Vangheluwe in 
[19]. 
  The addition of M2M, M2DEVSML and M2DEVS 
transformations to the DEVSML stack adds true model and 
simulator transparency to a net-centric M&S SOA 
infrastructure. The transformations yield platform 
independent DEVS models (PIMs) that can be developed, 
compared and shared in a collaborative process within the 
domain. Working at the level of DEVS DSL allows the 
models to be shared among the broad DEVS community 
that brings additional benefits of model integration and 
composability. DEVSML 2.0 stack allows DSLs to interact 
with DEVS middleware through an API. This capability 
enables the development of simulations that combine and 
execute DEVS and non-DEVS models [9]. This hybrid 
M&S capability facilitates interoperability. The scale is 
provided by the underlying SOA infrastructure that is 
largely made of virtualization technologies and utilizes 
platform as a service (PaaS) capabilities provided by 
enterprise containers such as Glassfish 4.0 [20-22]. 
 The next sections will describe the DEVS modeling 
language 2.0 and how the semantics are then transformed to 
a DEVS executable model. 

 
Features DSL Expert DEVS Expert 
Domain 
understanding 

Develops domain modeling 
language with domain experts 

Develops M2DEVSML or M2DEVS with DSL expert 

Simulation / 
DSL 
execution 

Has to ensure the computational 
mapping and transformations 
taking all abstractions to code level 

DEVS simulation is a ‘given’ as a part of DEVSML 2.0 
framework 

Scalability Maybe. Has to implement an entire 
framework. 

DEVSML compliant model is scalable at simulation 
layers with DEVS/SOA 

Collaboration Maybe. Has to implement an entire 
framework. 

DEVSML compliant model is ready for collaborative 
development using Netcentric platform 

Integration Maybe. Has to implement an entire 
framework and component based 
infrastructure. 

The DEVSML 2.0 framework with DEVS system 
foundation provides model integration and composition 
features as a part of collaborative modeling effort.  

Platform 
neutrality 

Maybe. Has to implement an entire 
framework. 

DEVSML compliant model is platform independent both 
in modeling and simulation layers. The same model is 
executable in any DEVS simulator in any language. 

Table 1: Comparing DSL Expert with DEVSML Expert 

 



 
 

4. DEVS MODELING LANGUAGE 
 The DEVS Modeling Language is an extension of the 
earlier work on XFDDEVS which was first developed in 
Mittal’s doctoral work [4,16]. Though XFDDEVS was a 
good start towards platform independent DEVS modeling, it 
had many shortcomings, such as, no confluent function, no 
multiple inputs, no multiple outputs, no complex message 
types and no state variables. These shortcomings are 
removed in the proposed language which is closer to the 
true DEVS formalism with some necessary abstractions. It 
provides a platform independent way to specify DEVS 
models that are transformed to platform specific language 
implementation in Java, C++ or any other programming 
language. Like any language, the DEVSML has the 
following keywords (Table 2): 
 

package import entity 
extends coupled models 
interfaceIO couplings atomic 
ic eoc eic 
vars state-time-advance state-machine 
start in confluent deltint 
deltext outfn sigma 
continue reschedule ignore-input 
input-only input-first input-later 
infinity int double 
String boolean input 
output S: S”: 
this X:[] Y:[] 

Table 2. DEVSML keywords 

 A DEVSML file is of the extension .fds and the 
specification language contains three primary element types 
i.e. the Atomic, the Coupled and the Entity.  
 
Type:  
 Atomic | Coupled | Entity; 
  
 While the atomic DEVS formalism has a notion of 
ports (input and output), the DEVSML language has a 
notion of messages specified as Entity structures that are 
eventually transformed to port definitions. The DEVSML 
grammar is specified using Eclipse Xtext Extended Backus-
Naur Form (EBNF) notation. The Xtext framework 
automatically generates a compiler, an editor, a rich 
validation framework, including an Eclipse ecore model for 
further extensions into the Eclipse Modeling Framework 
(EMF) and Eclipse Graphical Modeling Framework (GMF). 
For more details on Xtext EBNF capabilities, see [8]. In the 
following sub-sections we will look at each of the elements. 
 

4.1. Entity 
DEVS is a component-based framework where each of 

the components communicates using messages. When 
DEVS is tied to a platform specific implementation, these 
messages are object instances defined in the implemented 
language. These message objects are exchanged according 
to the port-value pairs specified in the atomic model 
structure. Consequently, the message structure is declared 
and defined in an atomic model, to begin with. Using the 
object-oriented principles, this message object structure is 
then reused in other atomic models. In DEVSML, as the 
port-value assignment is abstracted and automated, the 
entities are defined not as a part of the component but as a 
first-class citizen. These entities are then declared in atomic 
or coupled components for their reuse. The components 
exchange these entities through automated assignments as 
port-entity pairs. Such framework allows these entities to be 
used in other standardized message-exchange frameworks 
such as WSDL-based Service Oriented Architecture.. 
 The EBNF specification of Entity is as follows: 
 
Entity:  
 'entity' name=ID  
 ('extends' superType = [Entity|QualifiedName])?  
 ('{' (pairs += Variable)* '}')? ; 
 
Variable:  
 Type = VarType name=ID; 
 
VarType: 
 simple = ('int'|'double'|'String'|'boolean') |          
 complex = [Entity | QualifiedName] ; 
 
An Entity is specified by a name, name=ID. It may or may 
not extend another entity. The expression 
[Entity|QualifiedName] means that the superType is to 
be specified as a QualifiedName, which is an Xtext 
construct and is of type Entity. It provides the full package 
path of the entity defined in the project. For more details on 
QualifiedName, refer Xtext manual. Each Entity contains a 
set of key-value pairs as Variable that contains a VarType, 
which may be of primitive type 
('int'|'double'|'String'|'boolean') or a complex 
type [Entity | QualifiedName]. 

 
4.2. Atomic 
 While designing the Atomic DEVSML grammar we 
have tried to stay as close as possible to the parallel DEVS 
Atomic formalism. However, some abstractions were 
necessary. The primary abstraction as laid out in Section 4.1 
is the port-value to message-entity abstraction. The other 
omission is the notion of elapsed time in the external event 
transition. The handling of elapsed time is limited to the 
implementation of features like ‘continue’ and ‘reschedule’ 
keywords, which are described later in the section. The 
other last piece of omission is the state transition based on 



 
 

the message content. We believe that once the message 
content is copied over to the locally scoped variables, all the 
operations can be executed on the message content. 
However, any state change based on the message content is 
where the limitations of Finite Deterministic DEVS come 
into the picture.  
 The Atomic type is specified in EBNF grammar as: 
 
Atomic: 'atomic' name=ID  
('extends' superType=[Atomic|QualifiedName])?'{' 
 'vars''{'(variables += Variable)*'}' 
 'interfaceIO' '{'(msgs += Msg)*'}' 
 'state-time-advance' '{'(stas += STA)*'}' 
 'state-machine''{' 
   'start in ' init=InitState 
   (atBeh += AtomicBeh)* '}' 
'}'; 
 
Msg: type = ('input'|'output')  
 ref=[Entity|QualifiedName] name=ID ; 
STA: name=ID timeAdv=TimeAdv; 
TimeAdv:  
 tav=FLOAT | inf="infinity" | var=[Variable]; 
InitState: state=[STA] (code=Code)?; 
AtomicBeh:  
 stm1=Deltext | stm2=Outfn | stm3=Deltint |   
 stm4=Confluent; 
Code: '{'str=STRING '}'; 
 

The Atomic Type can extend from another Atomic type and 
is composed of: 
• set of variables of type Variable. These are the locally 

scoped variables for the defined atomic model. 
• interfaceIO specification that has a set of messages of 

type Msg. A Msg is either an input or an output message 
and is referenced as an Entity type. Notice that the 
keywords 'input' or'output'are used to automate the 
port-entity assignments and map them to the port-value 
definitions in the canonical DEVS formalism. 

• Set of states and the associated time-advances. Each 
state-time-advance pair is defined as STA. The time-
advance TimeAdv can have values of either FLOAT, 
infinity or a Variable declared above in the atomic 
model. Using the declared variable allows the user to 
specify the value at execution time. This value gets 
assigned in the model initialization phase. 

• State machine that contains the initial state InitState 
and the atomic behavior AtomicBeh.  

 
 Now let us look at the atomic state machine definition 
in more detail. The InitState specifies the initial state of 
the atomic model. The expression state=[STA] implies that 
the model references the state already defined in the 
construct STA defined earlier in the model. An element is 
said to have been defined when there is an ID associated 
with it. The next expression (code=Code)? implies that 
there may be code snippet associated with setting up of the 
initial state. As we shall see in a later section on code 

generation, the code expressed as a STRING is syntactically 
checked at run-time for any compilation errors.  
 The atomic DEVS formalism has deltint, deltext, 
deltcon, lamda functions to specify the atomic behavior and 
is implemented accordingly as functions in DEVSJAVA. 
Consequently, the DEVSML has a set of atomic behaviors 
and a behavior AtomicBeh is of the form of: 
 
AtomicBeh:  
 stm1=Deltext | stm2=Outfn | stm3=Deltint |   
 stm4=Confluent; 
 
Let’s look at each of these: 
 
Deltint: 'deltint' '(''S:'state=[STA] ')''=>' 
'S":'target=[STA] (code=Code)?; 
 
The Deltint specification refers a source state 
'(''S:'state=[STA] ')'and always transitions '=>'  to 
the target state 'S":'target=[STA]. Transition to the same 
source state is allowed. 
 
Deltext: 'deltext' '(''S:'state=[STA]',''X:' 
'['(in += [Msg])+ '])' '=>' 'S":'(target=[STA])? 
(res = Resched | cont = 'continue')? (code=Code)?; 
Resched: 'reschedule''(' setSig = SetSigma ')'; 
 
The Deltext specification refers a source state and an input 
message reference set '(''S:'state = [STA]',''X:' 

'['(in += [Msg])+ '])' that may transitions to a target 
state. The 'continue' keyword allows the model to stay in 
the same source state but advance the elapsed time and 
redefine the sigma or time-advance as sigma-e. The 
'reschedule' keyword allows the resetting of time-
advance of the target state. This feature overrides the time-
advance of the referenced state defined earlier in STA. This 
rescheduling is characteristic of the FDDEVS specification. 
 
Confluent: 'confluent' con=('ignore-input'|'input-
only'|'input-first'|'input-later') ; 
 

The Confluent specification has four implementations as 
the options suggest above. During code generation, the 
option translates to making calls to either deltint or deltext 
or both in a specific order as dictated by the selection. 
 
Outfn: 'outfn' '(''S:'state = [STA]')' '=>' 'Y:' 
'['(out += [Msg])+ ']' (code=Code)?; 
 
Finally, the Outfn refers a source state '(''S:'state = 
[STA]')' and maps it to an output message set 'Y:' 
'['(out += [Msg])+ ']'.  
 All the above behavior specifications are code-assisted 
and validated as behavior is specified in the editor. Let’s 
look at some of those. 
 



 
 

4.2.1. Code-assist features for Atomic DEVSML: 
 Xtext is seamlessly integrated with Eclipse Modeling 
Framework (EMF) and the designed EBNF grammar is 
transformed into the native ecore format for Abstract Syntax 
Tree (AST) manipulations and code-generation. As the 
DEVSML editor is text-based to begin with, the code assist 
feature in Eclipse provides recommendations and code 
completion capabilities by pressing Ctrl+Space. All the 
references in the grammar specified as [elementX] are 
available during the model design phase.  As a result, once 
the element is defined in early stages of the design and is 
identified by name=ID, it is available as a reference if the 
scope permits it. By default, the element is visible in the 
package scope, but it is highly customizable. As we shall 
see in the later section, we use this capability to expedite the 
couplings design in a Coupled model. 
 To reap the benefits of the code completion features, 
the sequential process to design an atomic DEVSML model 
is as follows: 
1. Define entities. They may be in the same package or in 

a different file with a different package.  
2. Declare an atomic model type with a name and import 

the package containing entities. Now all the entities are 
available as references for their reuse as message types 
with Ctrl+Space. 

3. Start with defining atomic model variables. Here also 
entities are available for complex variable types. 

4. Define interface inputs and outputs. Entities are 
available as message types 

5. Define states and their time advance. All the states will 
be available in the state machine from this point 
onwards. This is important as the state-machine must 
not use any state for which time-advance has not been 
defined. The time advance can be a double, a string 
‘infinity’ or a variable that may be assigned a value in 
the initialize code snippet. If there is no value specified, 
the default value for double is assigned which is zero.  

6. Define the state machine 
a. Begin with an initial state. Select any state from the 

state-set defined in previous step. Ctrl+space gives 
you all the available states. 

b. Now you are in a position to specify either 
Deltint, Deltext, Outfn or Confluent 
behavior. Type the appropriate keyword i.e. 
‘deltint’, ‘deltext’, ‘outfn’ or 
‘confluent’ and press Ctrl+Space. Appropriate 
hints and options will appear that speed up the 
behavior specification process. 

 
4.2.2. Run-time model validation of Atomic 

DEVSML 
 The Xtext framework provides a rich validation 
extension mechanism that allows writing customized 
validators for the defined EBNF grammar. We have 

currently defined the following validations that execute at 
run-time when the atomic behavior is being designed in the 
DEVSML eclipse editor: 
1. Unique Model names across packages 
2. No same source state for internal transitions i.e. there 

should be no two internal transitions with same source 
state. 

3. Output message in Outfn must be defined in interfaceIO 
i.e. the message being sent in Outfn must be defined as 
an ‘output’ in atomic models’ interfaceIO definition. 

4. Input message in Deltext must be referenced in 
interfaceIO i.e. the message being received in Deltext 
must be defined as an ‘input’ in atomic models’ 
interfaceIO definition 

5. No same source state and input message set for external 
input transitions i.e. there should be no two external 
input transitions with same source state and identical 
input message set. 

6. No same source state for output functions i.e. there 
should be only one output function associated with a 
specific state. 

 
 These validations provide the next level of model 
checking. The first level is provided by the scoping the 
references available as explained earlier. The transformed 
code after this validation is DEVS-correct by construction. 
 
4.3. Coupled 
 The DEVSML specification of a coupled DEVS is as 
follows: 
  
Coupled: 'coupled' name=ID  
 ('extends' superType=[Coupled|QualifiedName])?'{' 
 'models' '{'(components += Component)*'}' 
 'interfaceIO' '{'(msgs += Msg)*'}' 
 'couplings' '{' (couplings += Coupling)*'}' 
 '}'; 
Component: AtomicComp | CoupledComp; 
AtomicComp:  
 'atomic' at = [Atomic | QualifiedName] name=ID; 
CoupledComp:  
 'coupled' cp = [Coupled | QualifiedName] name=ID; 
Coupling: ic=IC | eoc=EOC | eic=EIC; 
EIC: 'eic'  
 'this'':' msgtype = [Msg] '->'  
 dest = [Component]':' destMsgType = [Msg]; 
IC:'ic'  
 src= [Component | QualifiedName] ':'  
 msgtype =  [Msg] '->'  
 dest= [Component | QualifiedName] ':'    
 destMsgType = [Msg]; 
EOC: 'eoc'  
 src = [Component] ':' msgtype = [Msg] '->'  
 'this'':' destMsgType = [Msg] ; 
 
The Coupled DEVSML type can extend from another 
DEVSML Coupled component. It is composed of: 
• Set of models, of type Component. The Component can 

be of either type AtomicComp or CoupledComp. Note 



 
 

that each has a name. This allows multiple components 
of the same type within a coupled model. For example, 
multiple Processor components with different name, all 
of type Processor.  

• interface specification: Please see atomic above for 
detailed description 

• Set of Couplings of type Coupling. In the original 
DEVS formalism, the couplings are specified by 
connecting port specifications from one component to 
other. In DEVSML, as we abstracted away from port 
specifications, we use the message Msg entity that flows 
between the components. This abstraction is 
transformed to port specification in the code-generation 
phase. Each Coupling specification is of any of the 
following types: 
o External Input Coupling EIC: This type of coupling 

is defined for connections originating from input 
interface of the coupled model to its 
subcomponents. Consequently, the source is 
identified as 'this' keyword and the coupling 
allows routing of input message defined in its 
'interfaceIO' to the destination sub-model 
specified through Component.  

o Internal Coupling IC: This type of coupling is 
specified between the sub components as 
enumerated in Component.  

o External Ouput Coupling EOC: This type of coupling 
is specified from the contained Component to the 
outside interface of the coupled model. 
Consequently, the destination is specified as 'this'.  

 
4.3.1. Code-assist features of Coupled DEVSML 

 Having designed the atomic DEVSML models, the 
eclipse Xtext editor is further used to design the 
coupled DEVSML models. The coupled model may be 
in the same package as an atomic model or in a 
different package or in a different file altogether. Usage 
of import statements provides dependencies from other 
components. To define a coupled model following steps 
are executed. The code assist features are made 
available incrementally. 
1. Specify the package and imports 
2. Specify the coupled model name and any supertype 

of type Coupled 
3. Specify components. The components are 

referenced on 'atomic'or 'coupled' keyword 
4. Specify the 'interfaceIO' using 'input'or 

'output' keyword. Based on the package scope or 
imports the message entities are made available. 

5. Specify couplings. The coupling statements begin 
with 'eic', 'ic' or 'eoc' keywords.  
a. IC coupling: Pressing Ctrl+Space will show up 

the available subcomponents defined in the 
Component section above. Pressing Ctrl+space 

for the Message outgoing source will show up 
the referenced message name defined in 
interfaceIO of the selected subcomponent. If 
there is no output interface message, then no 
message is available as an option. 
Consequently, this subcomponent cannot have 
any output couplings. Here the scope of the 
output source message has been customized. 
Pressing Ctrl+Space again, select the 
destination subcomponent model. Again, using 
scopes, only those components will show up in 
content assist that can receive the same Entity. 
Moving along, all the input messages of the 
selected destination subcomponent are made 
available using Ctrl+space that are of the same 
Entity type.  

b. EIC coupling: All the operations remaining 
same as above, the only change is that the 
source is always available as ‘'this' and the 
outgoing source message is scoped from the 
interfaceIO defined for the current coupled 
model. 

c. EOC coupling: All the operations remaining 
same as above, the change is visible in the 
destination component as ‘this’ and input 
destination message is scoped from the 
interfaceIO defined for the current coupled 
model. 

   
4.3.2. Run-time model validation of Coupled 

DEVSML 
 We have currently defined the following validations for 
a coupled DEVSML model 
1. Unique model names across packages 
2. Model types for super type and component set are 

already filtered based on the keyword 'atomic'or 
'coupled' 

3. IC coupling:  
• Source output message must be defined in the 

interfaceIO of the source component as 'output' 
• Destination input message must be defined in 

destination interfaceIO as 'input' and of the same 
type Entity as source message type. 

4. EIC coupling 
• Source output message must be defined in current 

coupled models’ interfaceIO as 'input' 
• Destination input message must be defined in 

destination interfaceIO as 'input' and of the same 
type Entity as source message type. 

5. EOC coupling 
• Source output message must be defined in 

component’s interfaceIO as 'output' 
• Destination input message must be defined in the 

current coupled model’s interfaceIO as 'output' 



 
 

 When the coupled models are constructed using code-
assist features and validated by the rules above, the coupled 
DEVSML models are DEVS-correct. The next section will 
describe the code generation mechasnisms within the Xtext 
Eclipse framework 
 
5. DYNAMIC CODE GENERATION 
 Once the models are created using Xtext Eclipse based 
editor, the next step is to get an executable DEVS code. The 
DEVSML is semantically anchored in DEVS formalism and 
the abstractions in DEVSML are unpacked during the code 
generation phase. The most prominent abstraction is the 
port-value to message-entity mapping.  
 After the specification of Fds grammar, the Xtext 
framework generates a bunch of artifacts to specify the 
scope providers, validators and code generators. These are 
provided as functions that can be overridden to support the 
grammar under design. The platform specific code that takes 
any .fds file and generates DEVSJAVA code is specified in 
the FdsGenerator.xtend. This specific file is a holder for 
class called FdsGenerator that implements the 

org.eclipse.xtext.generator.IGenerator interface. It provides 
only one method doGenerate(Resource resource, 
IFileSystemAccess fss){} that needs to be overridden to 
provide our DEVSJAVA code. The entire Fds Abstract 
Syntax Tree is available to us for manipulation and code 
generation in the .xtend file.  
 The first step is extracting elements of specific types 
(Figure 4). Recall from previous section that there are 3 
types in Fds grammar i.e. Entity, Atomic and Coupled. 
Providing complete code generator for each of them is 
outside the scope of this paper and will be reported in our 
extended article. For overview, we shall take the example of 
Coupled types. The procedure of extracting any element 
from AST (Coupled in this case) is provided in a library 
function: 
 

 
 

 

Figure 5. Coupled Code generation in FdsGenerator.xtend 

 Then using the xtend language syntax, we can define a 
function that compiles the extracted entity. Figure 5 shows 
the template for a Coupled DEVSJAVA file. The grey areas 
show actual tab spaces that the generated .java file will 
contain. Consequently, other elements such as Entity and 
Atomics are generated and package declarations are 
maintained. As the Xtext framework is seamlessly 
integrated with the Eclipse Java framework, any save 
process (by invoking the Ctrl+S) in the editor invokes the 

doGenerate() function that generates the entire code-base. 
As a result, one can dynamically view the generated code 
from the abstract DEVSML .fds specification. As we will 
see in the next section, this capability is one of the very 
important features in our current selection of Xtext 
framework, the logic code specified in the CODE element in 
Atomic files is readily checked for syntactical errors. Since 
the generated code is already in an Eclipse java project, the 



 
 

modeler is informed of any compilation errors that 
DEVSML model might introduce.  
 The generated codebase also contains a Main.java file 
that invokes the Simview DEVSJAVA viewer as the 
generated java code-base is available compiled. 
 
6. EXAMPLE 
 To illustrate the capability of the DEVSML, we use the 
classic EFP hierarchical model. EFP contains two models 
viz. coupled EF and atomic Processor. The coupled EF 
internally contains two models viz. atomic Genr and atomic 
Transd. The Genr sends entity Job at a periodic rate. The 
processor Proc receives the generated Job and gets busy 
processing it. On completion it reports it to the transducer 
Transd that keeps a count of generated as well as processed 
job. The Transd and Genr are part of the Experimental 
Frame EF. The Transd has an observation time after which 
it reports the throughput.  
  

 

Figure 5.  DEVSML Entity 

The entities exchanged between the components are shown 
in Figure 5. The entities are in package ent. The outline 
view shows the package containment. 
 Figure 6 shows the Genr DEVSML model in Eclipse 
workbench. The first column shows the TestFds2 Java 
project. The second column shows the gpt.fds file and the 
package gpAtomics containing the atomic Genr DEVSML 
specification. Notice the keyword highlighting based on Fds 
EBNF grammar and state-machine specification statements 
starting with keywords deltint, deltext, outfn etc. The third 
column shows the autogenerated Genr.java file that is 
synchronized with the Genr.fds file. Every Save operation 
results in code sync from .fds .java. Notice the generated 
java code in the third column. It synthesizes the inports, the 
outports and the test-inputs. Further, the state-time-advances 
are stored in a hashtable and the time advance for a state is 
retrieved from it at runtime. The last column on the right 
shows the hierarchical Outline structure of the Genr.fds file 
with rich icons and other supplemental information. 
Similarly, the processor Proc and the transducer Transd are 
designed using the workbench. The generated files are held 
in src-gen folder that is compiled using the 
DEVSJAVA31.jar on the project classspath. 
 Figure 7 shows the two coupled models EF and EFP. 
The figures are self-explanatory. The autogenerated code 
can be seen in the third column along with the Outline in the 
last column. Figure 8 shows the fully functional model 
along with tooltip for Transd. 

 

Figure 6. Atomic DEVSML Genr and the generated artifacts 



 
 

 

Figure 7. Coupled DEVSML EFP and the generated artifacts 

 
 

Figure 8. Fully functional autogenerated DEVSJAVA code in Simview 

 

Figure 9. Moving up the abstraction and loss of 
rigor 

 



 
 

 
 

Figure 10. NLDEVS description of atomic Genr 

 
7. DSL FOR NATURAL LANGUAGE DEVS 

Now, having described the DEVSML platform 
independent language that is semantically anchored to 
DEVSJAVA, we would like to go a step further and design 
another DSL that can be transformed to DEVSML. One 
such example has been demonstrated in our earlier work 
[18] in which a cognitive domain DSL was transformed 
using M2DEVSML and DEVS homomorphism concepts 
[1]. Such transformation (M2DEVSML) is according to 
conceptual framework laid out in Section 3. Providing 
details about the M2DEVSML transformation is outside the 
scope of this article and will be reported in our extended 
article. 

We designed another grammar based on structured 
natural language and call it Natural Language DEVS 
(NLDEVS). The earlier version of NLDEVS was done in 
[16] which was bounded by the XFDDEVS specification. 
Consequently, it had a lot of inherent limitations. NLDEVS 
is mentioned here to establish the concrete nature of the 
DEVSML 2.0 stack. NLDEVS can be directly mapped into 
either the DEVSML using M2DEVSML transformation or 
into the DEVS middleware using M2DEVS transformation. 
The relationship between NLDEVS, DEVSML and DEVS 
middleware is summarized in Figure 9. Figure 10 shows 
result of M2DEVSML transformation where NLDEVS is 
transformed to DEVSML. A sample of atomic NLDEVS is 
shown in Figure 10 that shows the state-machine description 
of the Genr atomic component.  

As can be easily seen, the keywords of NLDEVS are 
totally different from that of DEVSML. The NLDEVS 
editor is replete with code completion and model checking 

such that the designed model is DEVS-correct. The 
autogenerated DEVSVML Genr.fds can be seen in the right 
column and any validation checks at the DEVSML layer are 
made visible during the incremental Save operations. 

 
8. CONCLUSIONS 
The work on platform independent DEVS specification 
began with XFDDEVS with Mittal’s doctoral work. The 
XML-based DEVS was a significant development towards 
the development of Netcentric DEVS Unified Process. 
However, XFDDEVS had many shortcomings, such as, no 
confluent function, no multiple inputs, no multiple outputs, 
no complex message types and no state variables. The 
earlier proposed DEVSML stack also used XML-based 
transformations and used JavaML to specify the XML-based 
DEVS logic. This again was not true platform 
independence. With the proposed DEVSML 2.0 stack and 
the language, we have covered all the shortcomings of our 
earlier work and with advanced code generation framework 
like Xtext, we have shown how a DEVS and non-DEVS 
DSL can be effectively used to write a fully functional 
DEVS executable code. We have also shown in our earlier 
work the use of homomorphisms in transformation of non-
DEVS DSLs to a DEVS DSL and also shown that a DEVS 
simulation is platform transparent with DEVS/SOA. With 
the capability presented in this paper, we are now in a 
position to achieve model transparency with M2DEVS and 
M2DEVSML transformations. It should be noted that the 
complexity of these transformations are on a case by case 
basis depending on the abstractions of a particular DSL. 
However, as a DEVS expert, the design of such 



 
 

transformations will reap far reaching benefits to the 
execution, scalability, interoperability, integration and 
collaborative capabilities for any DSL. Further with DEVS 
as common denominator in multi-formalism hybrid 
modeling effort, DEVSML 2.0 framework provides many 
advantages. We highlighted the roles of a DSL expert and a 
DEVS expert in the context of a DSL and a simulation DSL. 
We also showed how a natural language based DSL can be 
semantically anchored to the designed DEVS modeling 
language. This paper has made two major contributions. 
First, the DEVS modeling language called DEVSML that is 
very close to the true DEVS formalism and second, the 
DEVSML2.0 stack that integrates DSLs to DEVS 
transparent simulation infrastructure using M2DEVS and 
M2DEVSML transformations.  
 
Acknowledgements 
 This work has been supported by AFOSR grant # 
10RH05COR 
 
References 
[1] Zeigler, BP, Kim, TG and Praehofer, H, "Theory of Modeling 

and Simulation" New York, NY, Academic Press, 2000 
[2] Hwang, MH, Zeigler, BP, “Reachability Graph of Finite 

Deterministic DEVS”, IEEE Transactions on Automation 
Science and Engineering, 2007 

[3] Mittal, S, Martin, JLR, Zeigler, BP, "DEVSML: Automating 
DEVS Simulation over SOA using Transparent Simulators", 
DEVS Symposium, 2007 

[4] Mittal, S, "DEVS Unified Process for Integrated Development 
and Testing of Service Oriented Architectures", Ph. D. 
Dissertation, University of Arizona, 2007  

[5] Mittal, S, Martin, JLR, Zeigler, BP, "DEVS-Based Web Services 
for Net-centric T&E", Summer Computer Simulation 
Conference, 2007 

[6] Mittal, S, Martin, JLR, Zeigler, BP, "DEVS/SOA: A Cross-
Platform Framework for Net-Centric Modeling and Simulation 
in DEVS Unified Process", SIMULATION: Transactions of 
SCS, Vol. 85, No. 7, pp. 19-450, 2009 

[7] Zeigler, BP, Mittal, S & Hu, X, “Towards a formal standard for 
interoperability in M&S/system of systems integration” Proc. 
GMU-AFCEA Symposium on Critical Issues in C4I, 2008 

[8] Mittal, S, Zeigler, BP, Martin, JLR, "Implementation of Formal 
Standard for Interoperability in M&S/System of Systems 
Integration with DEVS/SOA", International Command and 
Control C2 Journal, Special Issue: Modeling and Simulation in 
Support of Network-Centric Approaches and Capabilities, Vol. 
3, No. 1, 2009 

[9] Martín, JLR, Moreno, A, Aranda, J, Cruz, JM, “Interoperability 
between DEVS and non-DEVS models using DEVS/SOA”. In 
SpringSim'09: Proceedings of the 2009 spring simulation 
multiconference: 1-9 (San Diego, CA, USA, 2009) 

[10] Xtext Language Development Framework accesible at: 
http://www.eclipse.org/Xtext/ 

[11] Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin, 
JLR, Sarjoughian, H, Touraille, L, Traore, M, Zeigler, BP, 
"DEVS Standardization: Ideas, Trends and Future", chapter in 

"Discrete Event Modeling and Simulation: Theory and 
Applications", 2010, CRC Press. 

[12] Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin, 
JLR, Sarjoughian, H, Touraille, L, Traore, M, Zeigler, BP, 
"Standardizing DEVS Model Representation", chapter in 
"Discrete Event Modeling and Simulation: Theory and 
Applications", 2010, CRC Press. 

[13] Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin, 
JLR, Sarjoughian, H, Touraille, L, Traore, M, Zeigler, BP, 
"Standardizing DEVS Simulation Middleware", chapter in 
"Discrete Event  Modeling and Simulation: Theory and 
Applications", 2010, CRC Press 

[14] DEVSJAVA: 
http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/C
BMSManuscript.zip 

[15] Xtend, accessible at http://www.eclipse.org/Xtext/#xtend2  
[16] Mittal, S, Zeigler, BP, Hwang, MH, “XFDDEVS: XML-Based 

Finite Deterministic DEVS”, last accessed Jan 2011 at:  
http://www.duniptechnologies.com/research/xfddevs/ 

[17] Hong. KJ, Kim, TG, "DEVSpecL-DEVS specification language 
for modeling, simulation and analysis of discrete event systems," 
Information and Software Technology, Vol. 48, No. 4, pp. 221 - 
234, Apr., 2006 

[18] Mittal S, Douglass, SA., “From Domain Specific Languages to 
DEVS Components: Applications to Cognitive M&S”, Spring 
Simulation Multiconference, April 2011, Boston.  

[19] Vangheluwe, HLM, “DEVS as a common denominator for 
multi-formalism hybrid systems modeling”, IEEE International 
Symposium on Computer Aided Control System Design, 2000. 

[20] Wiki: Platform as a Service, 
http://en.wikipedia.org/wiki/Platform_as_a_service, last accessed 
Feb 2012 

[21] Mittal, S, Martin, JLR, “Netcentric System of Systems 
Engineering with DEVS Unified Process”, CRC Press, Nov 2012 

[22] Oracle Wiki: Glassfish PaaS Functional Specification, 
https://wikis.oracle.com/display/GlassFish/GlassFish+PaaS+FSD
, last accessed Feb 2012 

 
 
Biography 
 
Saurabh Mittal is a research scientist at AFRL for L-3 
Communications. He received both his PhD (2007) and MS (2003) 
in Electrical and Computer Engineering from the University of 
Arizona. His current research interests include executable 
architectures using SOA, DEVS Unified Process, executable 
architectures, Cognitive systems and multiplatform modeling. He 
can be reached at saurabh.mittal@l-3com.com.  
 
Scott Douglass is a research psychologist with the Cognitive 
Models and Agents Branch of AFRL’s Human Effectiveness 
Directorate. He received his PhD (2007) in Cognitive Psychology 
from Carnegie Mellon University. His current research interests 
include large-scale cognitive modeling, generative cognitive 
architectures and the modeling of situated action. He can be 
reached at scott.douglass@wpafb.af.mil. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [4000 4000]
  /PageSize [612.000 792.000]
>> setpagedevice


