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Abstract 

 Air Force Research Lab (AFRL) research efforts 

employing cognitive and behavioral modeling are growing 

in scope and complexity as they work to integrate models  

into larger distributed systems as cognitive agents, synthetic 

teammates or human operator surrogates. Efforts to 

transition cognitive modeling from the laboratory to 

operational environments are stymied by the isolated nature 

of current cognitive modeling software tools that are not 

readily extensible, interoperable or scalable e.g. ACT-R. In 

this paper, we describe an attempt to build a component-

based architecture using the Discrete Event Systems Unified 

Process (DUNIP) on a distributed net-centric platform that 

eliminates these impediments. We show how the ACT-R 

architecture is extensible and can serve as a component in 

larger net-centric systems of systems frameworks such as 

Department of Defense Architecture Framework. We will 

also address the issue of platform independent modeling and 

how Domain Specific Languages (DSLs) can be integrated 

within DUNIP. We then demonstrate how developing the 

architecture and related software infrastructure in DUNIP 

gives it net-centric capabilities that support large-scale 

integration.  

 

1. INTRODUCTION 

 AFRL research efforts employing cognitive and 

behavioral modeling are growing in scope and complexity. 

These research efforts are developing complex high-fidelity 

synthetic entities capable of functioning as teammates and 

instructors in complex distributed training environments. In 

today‟s context these distributed frameworks have taken the 

shape of net-centric frameworks wherein heterogeneous 

components communicate each other through defined World 

Wide Web Consortium (W3C) standards such as XML 

schema, Web Service Description Language (WSDL), 

Simple Object Access Protocol (SOAP), HTTP etc. A net-

centric system is a distributed system that provided 

interoperability at the semantic level as opposed to syntactic 

level in a distributed system. A Service Oriented 

Architecture (SOA) is one such net-centric framework that 

incorporates these standards to provide the needed 

interoperability. 

 These efforts to transition cognitive modeling from the 

laboratory to operations settings are pushing currently 

available cognitive modeling languages and tools to their 

limits. AFRL scientists wanting to build large-scale models 

of human cognitive activity are therefore facing core 

challenges associated with: (1) increasing the scale of their 

models; and (2) integrating them into simulations and 

synthetic task environments that are integrated with larger 

distributed system of systems frameworks such as 

Department of Defense Architecture Framework (DoDAF) 

[1]. An AFRL Large-Scale Cognitive Modeling (LSCM
1
) 

initiative is currently researching and developing a solution 

to these challenges based on high-level languages for 

describing cognitive models and simulation frameworks 

supporting these languages based on the Discrete Event 

System Specification (DEVS) modeling and simulation 

formalism [2] on a SOA platform. This paper describes the 

basic nature of this solution. 

 The paper starts with a description of The Adaptive 

Character of Thought-Rational (ACT-R), a unified theory of 

human cognition and a cognitive modeling and simulation 

framework [3] in Section 2. ACT-R is an example of a 

cognitive modeling framework being pushed to its limits by 

large-scale modeling. Section 3 describes the DEVS Unified 

Process that provides a foundation for making ACT-R 

component-based. It provides an overview of DEVS 

implemented on Service Oriented Architecture (SOA) 

execution platform and extends the existing DEVS 

Modeling Language (DEVSML) stack to incorporate 

Domain Specific Languages (DSLs) that are platform 

independent and are made executable using various model 

to DEVS transformations. Section 4 next describes how 

ACT-R has been decomposed and formalized using the 

DEVS formalism.  Some of the scale and integration 

benefits of the DEVS formalization of ACT-R components 

are discussed in this section. Section 5 next contrasts this 

new architecture with ACT-R‟s current implementation and 

presents a range of benefits obtained by the new 

architecture. Finally, the paper will describe how future 

work will integrate DEVS/ACT-R into a net-centric 

infrastructure on SOA. The transition of DEVS/ACT-R to a 

SOA will further extend AFRL‟s abilities to scale and 

integrate large models of cognitive activity in system of 

systems. 

                                                
1
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2. OVERVIEW OF ACT-R  

 Many cognitive scientists consider cognitive activity to 

be a product of an essentially permanent open system that 

interacts with the environment [4]. This perspective has 

motivated such cognitive scientists to study cognitive 

architecture, the invariant structural and behavioral system 

properties underlying cognitive activity that remain constant 

across time and situation. The Adaptive Character of 

Thought-Rational (ACT-R) is a theory of human cognition 

in the form of a cognitive architecture and a cognitive 

modeling and simulation framework [3]. A key 

characteristic of the ACT-R cognitive architecture is that it 

distinguishes between declarative and procedural 

knowledge. 

 Declarative knowledge represents factual information 

that can be retrieved and acted upon. The name of the 

newest Associate Justice of the United States Supreme 

Court is an example of a unit of declarative knowledge. 

Units of declarative knowledge are known as chunks in 

ACT-R. Declarative knowledge chunks are stored in a long-

term associative memory. 

 Procedural knowledge represents steps of central 

cognitive processing. Instances of procedural knowledge are 

known as productions in ACT-R.. Productions represent 

associations between context-constraints and actions. For 

example, a production might represent the contextual pre-

conditions and subsequent actions required to shift visual 

attention to a novel aspect of visual context. Productions are 

stored in a flat procedural memory. 

 
Module Buffer(s) Role in Cognition 

Audio aural-location, 

aural 

Localizing and identifying sounds 

in the environment 

Declarative retrieval Storing and retrieving information 
in an associative memory 

Goal goal Tracking progress towards current 

goals and intentions 

Imaginal imaginal, 

imaginal-action 

Maintaining internal 

representations of problems & 
situations 

Motor manual Controlling the hands 

Procedural production Initiating and coordinating the 

behavior of all other modules 

Speech vocal Producing speech 

Vision visual-location, 

visual 

Identifying objects in the visual 

field 

Table 1. The modules and buffers making up ACT-R‟s 

architectural core. 

 The base architecture of ACT-R consists of a set of 

independent modules that each processes a different kind of 

declarative knowledge. Table 1 lists the central modules in 

ACT-R. Transient declarative knowledge is stored in 

module buffers. Only the module maintaining a buffer or the 

procedural module can modify the contents of that buffer. 

Cognitive activity arises from interactions between a central 

production system and these modules. This central cognitive 

process operates through a series of recognize-decide-act 

cycles during which contextually appropriate productions 

are executed. If multiple productions match context, they 

form a conflict set. Under these circumstances, production 

utilities based on a type of reinforcement learning are used 

to determine which production fires. 

 Overall processing activity in ACT-R consists of a 

mixture of parallel and serial processing in and across the 

modules. Parallel activity can occur within each of the 

modules. For example, retrieval requests processed by the 

declarative module are based on a parallel search through 

long-term memory for chunks matching constraints 

expressed in retrieval requests. Parallel processing can also 

occur across the modules. For example, the motor module 

can manipulate the hands while the vision module identifies 

an object in the visual field. 

 Architectural constraints impose important limits on 

parallelism in ACT-R. A constraint that buffers can only 

hold one chunk of knowledge at a time leads to a serial 

bottleneck in each of the modules. For example, since the 

retrieval buffer of the declarative module can only hold one 

chunk at a time, an ACT-R model can only request/retrieve 

one declarative fact at a time. Additionally, a constraint that 

only one production can fire at a time in the procedural 

module leads to a serial bottleneck in central cognition. 

  
Common Name Equation 

Activation 𝐴𝑖 = 𝐵𝑖 +  𝑊𝑗 𝑆𝑗𝑖

𝑗∈𝐶

 

Base-Level Learning 
𝐵𝑖 = ln   𝑡𝑘

−𝑑

𝑛

𝑘=1

  

Attention Weighting 𝑊𝑗 = 𝑊
𝑛  

Associative Strength 𝑆𝑗𝑖 = ln 𝑝𝑟𝑜𝑏 𝑖 𝑗 /𝑝𝑟𝑜𝑏 𝑖   

Retrieval Time 𝑇𝑖𝑚𝑒 = 𝐹𝑒−𝐴𝑖  

Retrieval Probability 𝑃𝑟𝑜𝑏 = 1/ 1 + 𝑒− 𝐴𝑖−𝑡 /𝑠  

Utility 𝑈𝑖 𝑛 = 𝑈𝑖 𝑛 − 1 +∝  𝑅𝑖 𝑛 

− 𝑈𝑖(𝑛 − 1)  

Conflict Resolution 
𝑃𝑖 =

𝑒𝑈𝑖/𝑠

 𝑒𝑈𝑗 /𝑠
𝑗

 

Table 2. Equations describing chunk activation and 

production utility in ACT-R. 

 One of the most empirically verified aspects of the 

ACT-R cognitive architecture is its declarative module. 

Human behavior is as flexible as it is because we know lots 

of facts about objects, situations and effective actions. This 

vast repository of knowledge allows us to, with seemingly 

little effort, use what we know to craft contextually 

appropriate and effective actions in diverse circumstances. 

We know a lot and we can quickly cull through all that we 

know and retrieve and apply the right knowledge given our 

circumstances. The heart of ACT-R‟s memory system is a 
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set of equations describing how sub-symbolic calculations 

based on the frequency and recency of chunk utilization and 

context priming effects underlie these critical properties of 

human memory.  

 Collectively, the equations in Table 2 precisely explain 

how changes in activation and utility over time allow 

knowledge and behavior to fit the information structure of 

the environment (see [3][5] for detailed descriptions). 

 The behavioral semantics of ACT-R are based on well 

implemented discrete event simulation system. This discrete 

event system realizes the recognize-decide-act cycle 

producing cognitive activity in ACT-R by managing 

information sharing though buffers and coordinating module 

activities. Unfortunately, the technically isolated nature of 

ACT-R‟s discrete event simulator isolates cognitive models 

from the methods, libraries and tools utilized by the larger 

systems engineering community. This isolation leads to 

significant interoperability challenges when a modeler 

wants to integrate a non-trivial cognitive model into a larger 

simulation or synthetic task environment. 

 

3. DEVS UNIFIED PROCESS 

 The DEVS Unified Process [6] is an overarching 

process employing the DEVS framework in a net-centric 

domain that links requirements with the model under study. 

It is based on elements such as DEVS formalism, the 

emerging DEVS standard for M&S interoperability, 

platform independent modeling, transparent simulators in a 

net-centric domain and model continuity principles. The 

following sub-sections provide a brief overview.  

 

3.1. DEVS Formalism 

 Discrete Event System Specification (DEVS) [2] is a 

formalism which provides a means of specifying the 

components of a system in a discrete event simulation. The 

DEVS formalism consists of the model, the simulator and 

the experimental frame as shown in Figure 1. The Model 

component represents an abstraction of the source system 

using the modeling relation. The simulator component 

executes the model in a computational environment and 

interfaces with the model using the simulation relation or 

the DEVS simulation protocol in the present case. The 

Experimental Frame facilitates the study of the source 

system by integrating design and analysis requirements into 

specific frames that support analyses of various situations 

the source system is subjected to. 

 While historically models have been closely linked to 

the platform (such as Java, C, C++) in which the simulator 

was written, recent developments in platform independent 

modeling and transparent simulators [7] have allowed the 

development of both the models and simulators in disparate 

platform. Current efforts are focusing on a standardization 

process [8-10] wherein the simulation relation can be 

standardized for further interoperability 

 

Figure 1. DEVS Framework elements 

 In DEVS formalism, one must specify Basic Models 

and how these models are connected together. These basic 

models are called Atomic Models (Figure 2) and larger 

models which are obtained by connecting these atomic 

blocks are called Coupled Models (Figure 2). Each of these 

atomic models has inports (to receive external events), 

outports (to send events), a set of state variables, an internal 

transition function (to specify state transitions with 

timeouts), an external transition function (to specify state 

transitions on receiving external event), a confluent 

transition function (to specify in explicit terms whether to 

execute internal transition and/or external transition on the 

event of receiving external input when making internal 

transition)  and a time advance function.  The models 

specification uses or discards the message in the event to 

compute, deliver an output message on the outport, and 

make a state transition.  

 

 

Figure 2. Atomic and Coupled models 

 A DEVS-coupled model designates how atomic models 

are coupled together and how they interact with each other 

to form a complex model. The coupled model can be 

employed as a component in a larger coupled model and can 

construct complex models in a hierarchical way. The 

specification provides components and coupling 

information. A Java based implementation (DEVSJAVA 

[11]) can be used to implement these atomic or coupled 

models.  

 

3.2. DEVS/SOA 

 The DEVS/SOA framework [12] is analogous to other 

DEVS distributed simulation frameworks like DEVS/HLA, 

DEVS/RMI and DEVS/CORBA [13-17]. The distinguishing 

mark of DEVS/SOA is that it uses SOA as the network 

communication platform and XML as the middleware and 
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thus acts as a basis of interoperability using XML [18]. 

Furthermore, it uses web-services as the underlying 

technology to implement the DEVS simulation protocol. 

The complete setup requires one or more servers that are 

capable of running DEVS Simulation Service, as shown in 

Figure 3. The capability to run the simulation service is 

provided by the server side design of DEVS Simulation 

protocol supported by the latest DEVSJAVA Version 3.1 

[11]. 

 Once a DEVS model package is developed, the next 

step is simulation as illustrated in Figure 3. The DEVS/SOA 

client (Figure 3) takes the DEVS models package and 

through the dedicated servers hosting DEVS simulation 

services, it performs the following operations: 

1. Using the client application locate DEVS 

simulation servers 

2. Select the Simulation resources 

3. Compose your root coupled model 

4. Perform Simulation on SOA 

a. Upload the models to specific IP locations 

i.e. partitioning  

b. Run-time compile at respective sites 

c. Simulate the coupled-model 

5. Receive the simulation output at clients end 

 

 

Figure 3. DEVS/SOA Execution flow 

3.3. Model and Simulator Interoperability using 

DEVSML 

 The earlier version of DEVSML stack [7] developed 

models in Java and in platform independent DEVS 

Modeling language that used XML as a means for 

transformation. The model semantics were bound together 

by XML. The latest version of the DEVSML, the language, 

is based on EBNF grammar and is supported by DEVS 

middleware API. The middleware is based on DEVS M&S 

Standards compliant (under evaluation) API and interfaces 

with a net-centric DEVS simulation platform such as a 

service oriented architecture (SOA) that offers platform 

transparency. With the maturation of technologies like Xtext 

[20] and Xpand [21] we have now extended the concept of 

XML-based DEVSML to a much broader scope wherein 

Domain Specific Languages (DSL) can continue to be 

expressed in all their richness in a platform independent 

manner that is devoid of any DEVS and programming 

language constructs (Figure 4). The key idea being domain 

specialists need not delve in the DEVS world to reap the 

benefits of DEVS framework.  

 The DEVSML 2.0 stack in Figure 4 adds three 

transformations at the top layer: 

1. Model-to-Model (M2M) 

2. Model-to-DEVSML (M2DEVSML) 

3. Model-to-DEVS (M2DEVS) 

 

 The end-user as indicated in Figure 4 will develop 

models in their own DSL and the DEVS expert will help 

develop the M2M and M2DEVSML transformation to give 

a DEVS backend to the DSL models [19]. The 

M2DEVSML transformation will give us the DEVS models 

in a platform independent manner that is now open for 

collaborative development per DEVS Unified Process 

(Section 3.4). While M2DEVSML transformation delivers 

an intermediate DEVS DSL (the DEVSML DSL), the 

M2DEVS transformation directly anchors any DSL to 

platform specific DEVS. There are many DEVS DSLs that 

implement a subset of rigorous DEVS formalism. One 

example of DEVS DSL is XML-based Finite Deterministic 

DEVS (XFFDEVS) [21]. DEVSSpecML [22] built on BNF 

grammar is another example of DEVS DSL. 

 Below the DEVS Modeling Language layer, there is a 

DEVS middleware that translates the semantics into 

syntactic operations and hand it over to the DEVS/SOA 

layer for simulation purposes. This stack also allows certain 

DSL at the end user layer who can directly communicate 

with DEVS middleware through an API. Recent 

developments provide evidence that a hybrid simulation of 

DEVS and non-DEVS models can be executed using 

DEVS/SOA. 

 

 

Figure 4. DEVSML stack employing M2M and M2DEVS 

transformations for Model and simulator transparency 
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3.4. Complete process  

 This section describes the bifurcated Model-Continuity 

process [22] and how various elements like automated 

DEVS model generation, automated test-model generation 

(and net-centric simulation over SOA are put together in the 

process, resulting in DEVS Unified Process (DUNIP) 

[6][23]. The design of simulation-test framework occurs in 

parallel with the simulation-model of the system under 

design. The DUNIP process consists of the following 

elements: 

1. Automated DEVS Model Generation from various 

requirement specification formats 

2. Collaborative model development using DEVS 

Modeling Language (DEVSML) 

3. Automated Generation of Test-suite from DEVS 

simulation model 

4. Net-centric execution of model as well as test-suite 

over SOA 

 

 Considerable amount of effort has been spent in 

analyzing various forms of requirement specifications, viz, 

state-based, Natural Language based, UML-based, Rule-

based, BPMN/BPEL-based and DoDAF-based, and the 

automated processes which each one should employ to 

deliver DEVS hierarchical models and DEVS state 

machines [6][24]. Simulation execution today is more than 

just model execution on a single machine. With Grid 

applications and collaborative computing the norm in 

industry as well as in scientific community, a net-centric 

platform using XML as middleware results in an 

infrastructure that supports distributed collaboration and 

model reuse. The infrastructure provides for a platform-free 

specification language DEVS Modeling Language 

(DEVSML) [7] and its net-centric execution using Service-

Oriented Architecture called DEVS/SOA [12,26]. Both the 

DEVSML and DEVS/SOA provide novel approaches to 

integrate, collaborate and remotely execute models on SOA. 

This infrastructure supports automated procedures for test-

case generation leading to test models. 

 Using XML as the system specifications in rule-based 

format, a tool known as Automated Test Case Generator 

(ATC-Gen) was developed which facilitated the automated 

development of test models [22][25]. DUNIP (Figure 5) can 

be summarized as the sequence of the following steps: 

1. Develop the requirement specifications in one of 

the chosen formats such as BPMN, DoDAF, 

Natural Language Processing (NLP) based, UML- 

based, DSL or simply DEVS-based for those who 

understand the DEVS formalism.  

2. Using the DEVS-based automated model 

generation process as per the M2M transformation 

or M2DEVS transformation as outlined in Section 

3.3, generate the DEVS atomic and coupled models 

from the requirement specifications 

3. The generated models which are Platform 

Independent Models (PIMs) in XML/DSL can 

participate in collaborative development using 

DEVSML middleware. 

4. From step 2, either the coupled model can be 

simulated using DEVS/SOA or a test-suite can be 

generated based on the DEVS models.  

5. The simulation can be executed on an isolated 

machine or in distributed manner (using SOA 

middleware if the focus is net-centric execution). 

The simulation can be executed in real-time, 

virtual-time, logical-time or wall-clock time [2].  

6. The test-suite generated from DEVS models can be 

executed in the same manner as laid out in Step 5. 

The results from Step 5 and Step 6 can be compared for 

verification and validation process using the Experimental 

Frames that are designed from the requirements in Step 1. 

 

Figure 5. DEVS Unified Process 
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This section has described the overarching DEVS 

Unified Process that will serve as the enabling framework 

for implementing a cognitive architecture. The subsequent 

sections will focus on the cognitive architecture aspects and 

how they are formalized into DEVS. 
 

4. FORMALIZATION OF ACT-R COMPONENTS 

 We shall now see how a process-oriented architecture is 

componentized and ultimately formalized in the discrete 

event specifications. The first step is to identify a clear 

separation of concerns between various elements of ACT-R 

architecture. Once such separation is made, the next step is 

to identify the behavior of interacting components such that 

the coupled behavior is identical to the original process- 

oriented system. In a process oriented system, the elements 

communicate each other by way of function calls and 

arguments. As a result, we have to identify such method 

calls and exchanged messages towards an „interface‟ in 

component-based methodology. After extraction of such 

interfaces, the behavior of each of these elements is 

described using a state machine or a DEVS atomic to be 

precise. Finally, coupled model of ACT-R architecture is 

created by specifying couplings per interfaces and 

hierarchical construction. The following subsections provide 

more in-depth analysis. 

 

4.1. Separation of concerns in ACT-R architecture 

 As laid out in Section 2, ACT-R architecture has the 

following system level functions: 

I. Productions evaluate the encoded conditions 

represented in buffer data and execute actions which 

impact buffer data 

II. Of the set of productions that match context 

conditions, a single winner is selected (based on the 

Utility equation) and allowed to execute its actions. 

III. Buffers are interfaced with corresponding modules and 

are the only means by which productions can access 

modules. 

IV. Declarative memory is queried via retrieval requests. 

The Activity equation is used to select a single chunk 

from the set meeting the constraints of the request.  

V. The productions evaluate their condition every 

simulation cycle to learn about changed buffer data. 

VI. Each Module interfaces with a corresponding Buffer 

that interfaces with productions. 

VII. Goal buffer interacts with productions to keep the 

current goal into focus as updated by last winning 

production 

 

 Consequently, these system level functions are now 

assigned to the components so that behavior can be 

accounted for. From Table 3, it is clear that the component 

Production replicates the base behavior of ACT-R 

productions as other components of the architecture and in 

addition performs the function of evaluating the condition 

whenever any buffer is updated. There is also a 

conceptualization of a new component, called Selector that 

performs the job of selecting a winning production based on 

Utility equation. 

 
Function Component Feature 

Existing/Modified/New 

I Production Existing 

II Selector New 

III Buffer Existing 

IV Declarative Memory Module Existing   

V Production Modified 

VI Buffer-module relationship Existing 

VIII Goal Buffer Existing 

Table 3. Function to component mapping   

4.2. Casting in DEVS Formalism 

 After understanding the separation of concerns, various 

architectural elements of the ACT-R theory were mapped to 

the corresponding primitives in the DEVS domain as shown 

in Table 4.  

  
Component/ 

Primitive 

Formal Description 

Production  P = (D, Bp, Z, C, A) where, 
-D is usual atomic DEVS 

D=(X,S,Y,dint, dext, dcon, l, ta) 

-Bp is set of Buffer proxies 
-Z is a set of bindings between 

buffer-slots and local variables 

-C is set of Conditions 
-A is set of Actions 

Slot  SL = (Key, Value) 

ChunkType CT = <SL> [set of slots] 

Chunk CH = (CT, <SL>) 

Buffer B = (D, CH, DoubleprocessingTime) 

SlotCompare SLC = (SL, Boolequals) 

Condition C = (Pname, Bname, BoolclearBuf, <SLC>) 

Action A = (Pname, Bname, CT, BoolclearBuf, <SL>) 

Declarative Memory MDM = (D, <CH>) 

Selector S = (D) 

Module MO = (D) 

ModuleSystem MS = (B, MO) 

Actr Model M = (C, <CT>, <P>, <B>) where, 

     -C is usual DEVS coupled C = (X, Y, 

M, EIC, EOC, IC) 

Table 4. Formal description of DEVS/ACT-R primitives 

Figure 6 shows the DEVS/ACT-R System Entity Structure 

(SES) [2] diagram. It shows which entities are formalized as 

DEVS components while others are supporting data 

structures.  The DEVS/ACT-R System at the top is an entity 

that is made of Components, Models and DEVS formalism. 

The entity Components is made of many such Component, 

which can be Chunks, ChunkTypes, Selector, Buffers, 

Productions and Module Systems entities. A ChunkType is 
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made of Slots and each Slot is made of key value pair. A 

Chunk is made of a Chunk Type. A Buffer is made of 

Chunk and can be a Vision, Goal, Imaginal or Retrieval 

buffer. A Buffer is also an atomic, like the Selector. A 

Module System component can be a coupled and is made of 

a Module and a Buffer. A Module can be specialized into a 

Vision module, Manual module or a Declarative Memory 

module. These interfaces of these modules can very well be 

formalized so as to make them visible using a WSDL in a 

net-centric deployment. A Production is an atomic 

component and is made up of Bindings, Conditions and 

Actions. A DEVS/ACT-R System Model is a coupled entity 

and is made of ChunkTypes, Productions, and Buffers. And 

finally, DEVS is made of Model and Simulator as distinct 

entities. Model can be a coupled or atomic where coupled is 

made of Couplings and Components. Simulator can be 

implemented on a local machine or a net-centric platform 

such as DEVS/SOA.  

 The component Production is a central piece of the 

architecture, and it is worth looking at its design in further 

detail. In Figure 7, we see a DSL that formalizes the 

information needed to specify a production i.e. a set of 

bindings, a set of conditions and a set of actions. This DSL 

closely matches the original ACT-R production 

specification which can be viewed at [3]. 

Figure 8 shows the behavior represented in DEVS 

state machine. The solid lines show external event 

transitions that occur on the advent of event (prefix with ? 

and shown in blue). The dotted lines show internal 

transitions. The generated output at specific states is shown 

in green (prefix with !). The DSL was developed using 

Xtext [20] that builds a fully functional Eclipse textual 

editor with syntax checking and code completion. 

Underlying that editor is an Extended Bachus Naur Form 

(EBNF) grammar. Using the code generation tool Xpand 

[21], the grammar is then transformed to a platform specific 

model (PSM) in Java. The PSM implementation translates 

the Bp, Z, C, A in DSL and inherits the DEVS atomic 

Production that is specified as per Figure 8. Finally, such 

productions are coupled together to have a running DEVS 

model (Figure 9). The execution of the model, example and 

comparison of the log traces were demonstrated at [27]. 

 

 

Figure 6.  System Entity Structure for DEVS/ACT-R 

 

 

Figure 7. DSL for Production 

 

Figure 8. DEVS Behavior for Production 
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Figure 9. From DSL to DEVS Execution 

5. DISCUSSION 

 We have shown how a procedural system like ACT-R 

can be componentized using DEVS component-based 

modeling and simulation framework. In this section we will 

contrast the developed DEVS/ACT-R framework with the 

original one and evaluate how this new framework provides 

additional benefits.  

 

5.1. Contrasting the original ACT-R simulator with 

DEVS/ACT-R Simulator 

 The original ACT-R architecture is distributed as an 

integrated piece of software that runs in Common Lisp. The 

end user is required to program in Lisp and consequently, 

must overcome two learning curves before becoming 

proficient in ACT-R. In addition, there are many aspects 

where the newly developed DEVS/ACT-R shows 

advantages over the existing ACT-R Version 6.0 software. 

Table 5 lists some of the comparisons. While it is easy to 

see that the component-based architecture of DEVS/ACT-R 

has inherent benefits such as extensibility, scalability, 

plugin framework, etc., the major benefit of this effort is the 

development of simulator in Discrete Event formalism as 

opposed to a programmatic event scheduler that looks at a 

queue to execute the next event. By working towards the 

identification of communication interfaces of these modules, 

we came about a position in which we can send message 

explicitly to the intended recipient. This had a major effect 

on the simulator efficiency. We know that productions 

interface with Buffers which in turn interface with Modules. 

Productions are responsive to the updates in the buffers.  In 

the original ACT-R architecture, all the productions in the 

model evaluate their conditions whenever any buffer update 

occurs. Clearly, not all the productions need to observe all 

the buffers. For example, a production that is just listening 

to Visual buffer and is not interested about what happens in 

the Retrieval buffer need not evaluate its condition. With 

DEVS/ACT-R all such unnecessary processing is avoided 

as each production is now explicitly coupled to the desired 

buffer. Hence, whenever a buffer update is made as a result 

of action by a production or through processing by the 

corresponding module, the intended productions are sent the 

buffer updates. On receiving these selective updates, the 

intended productions evaluate their conditions and the 

process repeats over. There is just the needed processing in 

discrete event simulator based on DEVS. 

 One other major gain from the component based 

architecture is separation of concerns in components like 

Selector (executes Utility equation) and the Declarative 

Memory module (executes Activity equation). As there is no 

way for parallelism in the underlying simulator in original 

ACT-R, let alone separation of concerns, the performance 

takes a hit when the number of productions is huge. The 

conditions inside each production have no complex 

mathematics but only key-value comparisons which require 

very less resources. The bulk of computation is happening 

in these two components, which now in DEVS/ACT-R can 

be placed on high number crunching machines with may be 

parallel architectures. Further, an altogether different 

Declarative Memory module can be plugged in as a 

replacement or for evaluation purposes. 

 
S.No. Aspect ACT-R DEVS/ACT-R 

1 Modular Yes Yes 

2. Component-based Yes, but in Common Lisp only. Yes. Platform independent 

3. Language 
independent 

No. Only works with Lisp. Yes. Model is platform independent and can be DSL 
semantically anchored in DEVSML or DEVS. 

4. Simulator efficiency Very limited. The event scheduling loop is the 

only place where optimizations can be made. 

Yes. Discrete Event simulator that advances time based on 

events explicitly communicating to imminent components. 

5 Module Plugin 

framework  

Yes. Additional modules can be developed in 

Lisp. 

Yes. Capable of adding/removing modules based on defined 

interfaces 

6 Communication 
between modules 

No explicit message passing. Method-call is the 
chosen mode of action 

Yes. Component updates are communicated precisely to the 
intended components by way of explicit coupling 

7. Scalability No. The underlying event scheduler is the 

bottleneck. 

Yes. The simulator has been proven in distributed 

environment. Models are separated from simulators.  

8. Extensibility No. It is cumbersome to make it as a component 

in larger System of System. 

Yes. With DEVS structure in the underlying architecture, it 

can very well serve as a black-box in larger System of systems 

9. Net-centric No. There are no standardized interfaces Yes. All the message passing is in XML 

 Table 5. Comparison of ACT-R and DEVS/ACT-R capabilities
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5.2. Verification and Validation of existing ACT-R 

models 

In general M&S, verification attempts to establish the 

correctness of morphism between the simulator and the 

model.  Due to a lack of verification support tools, cognitive 

modelers, rarely if ever, determine the correctness of the 

mapping between their model and the underlying software 

systems responsible for simulation.  

In general M&S, validity is a property of the 

relationships between a model, a system being studied, and 

an experimental frame [2].  Replicative validity relates 

model to system at the I/O behavior level.  Cognitive 

modelers assess the replicative validity of their models by 

comparing their I/O behavior to human performance data. 

They currently lack tools that automate this process. 

Predictive validity combines replicative validity and an 

ability to correspond to unseen system behavior.  Cognitive 

modelers sometimes demonstrate a compelling “modeling 

relation” using model/data comparisons that demonstrate 

predictive validity across multiple tasks. Structural validity 

relates model and system at the state transition and coupled 

levels—a structurally valid model replicates/predicts system 

behavior AND mimics the “state-by-state and component-

by-component” mechanisms underlying the system. While 

cognitive modelers would welcome the opportunity to 

explore and describe the structural validity of their models, 

they currently lack the methods and tools to do so.  

As the DEVS/ACT-R framework matures, it will be 

possible for cognitive modelers using it to unify parts of 

their modeling life-cycle with the life-cycle seen in general 

M&S.  Cognitive modelers will benefit considerably from 

the verification and validation capabilities available in the 

DEVS Unified Process after such unification.  

 

Summary 

 We have contrasted DEVS/ACT-R with the standard 

ACT-R and have delineated major benefits of the 

component-based architecture. We also have shown how 

such DEVS based component architecture is inherently 

subjected to hierarchy of system specification [2] leading to 

observations at various levels. Such capability to monitor at 

a specific level of resolution is instrumental in the 

development of verification and validation frameworks 

which we intend to pursue further in the near future. Next 

section will make it a component in larger System of 

Systems. 

 

6. NET-CENTRIC ACT-R AND SYSTEM OF 

SYSTEMS 

 Organizations such as AFRL, promote Technology 

Readiness Levels (TRLs) as a means of evaluating the 

readiness of technologies to be incorporated in a weapon or 

Military System [28]. However, we often fail to account for 

the critical human element [29]. Therefore, additional 

methodologies are needed that would capture this human 

element as the integral part of systems engineering and 

technology transitions.  The level of technology that US 

provide to its armed forces is unparalleled. However, the 

technology is as good as its usage by the user in the real 

world and human operator is a critical piece in this puzzle. 

While the technology is ready, the failure to make the 

human ready brings a huge gap in what the „system‟ is 

supposed to do and what actually happens in real world.  

 While the Modeling and Simulation community can 

help simulate these systems to a good degree of fidelity, the 

absence of human operator model that is cognitively 

plausible presents with results that are difficult to map in the 

real world. The present work with componentizing ACT-R 

towards a systems component is a work in this direction 

wherein a cognitively plausible agent can represent a human 

operator at the required time scales. To address this critical 

component in larger DoD frameworks such as Department 

of Defense Architecture Framework (DoDAF)[1] or 

Ministry of Defense Architecture Framework (MoDAF, 

UK) [30], a Human View is proposed that addresses this 

critical need [31]. These architecture frameworks produce 

common Systems Engineering (SE) approaches to 

development, presentation, and integration of current and 

future system of systems. Newer architectures like DoDAF 

V2.0 address Net-centric, System of Systems and 

System/Services concepts.  

 Human View is to enable effective Human System 

Integration (HSI) processes within the design of these 

complex, large-scale, socio-technical systems. The North 

Atlantic Treaty Organization (NATO) Human View 

Handbook [32] facilitate design decisions by identifying 

relevant elements emphasizing the explicit need of merging 

seamlessly and efficiently with sound systems engineering 

practice. It establishes a logical and systematic framework 

for HSI studies and makes explicit human, crew, and team 

socio-behavioral processes as integral to total systems 

performance. Although HSI is a fundamental component of 

a total systems approach, the successful integration of HSI 

into systems engineering and acquisition life cycles 

continues to be a challenge [33].  

 In our earlier work, we have already shown how 

DoDAF-DEVS mapping can help develop an executable 

architecture with formal rigor and methodology [34-35]. We 

have also shown how any DEVS component can be made 

net-centric or any web service description (WSDL) can be 

made a DEVS component [36] and interoperate with an 

existing DEVS net-centric system as fully deployed 

software [37]. Making ACT-R now DEVS enabled allows 

us to take the ACT-R theoretical framework to larger system 

of system in which a network node can host the entire 

DEVS/ACT-R system. Each instance of the proposed 

DEVS/ACT-R system becomes a cognitively plausible 

agent and can be coupled together towards formation of 
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crew, teams etc. in a hierarchical manner with shared 

knowledge structures and environment. The component 

based framework allows consolidation of components at 

different levels of hierarchy. The next subsection presents 

the overall net-centric architecture of DEVS/ACT-R. 

 

6.1. Netcentric ACT-R (NACT-R) 

Figure 9 shows the architecture for Net-centric 

DEVS/ACT-R. For better usability and acceptance by the 

end user, the formal DEVS/ACT-R is structured in a client-

server paradigm. The server side rests on net-centric 

infrastructure such as SOA or it may be a virtual machine 

(eg. Java Virtual Machine) that runs locally on client‟s 

machine for experimental use. On top of it is the DEVS run-

time environment that encapsulates the DEVS middleware 

and DEVS/SOA layers in DEVSML Stack (Section 3.3). 

Next is the NACT-R middleware layer that interfaces with 

with various ACT-R components.  The client side of the 

NACT-R architecture is the end-user that is provided with a 

Workbench that can be used to develop Productions, Agents 

and Experimental Frames. The workbench allows accessing 

the NACT-R repository which may be local or on network. 

It also provides a Registry that makes available the 

theoretical components of ACT-R architecture which the 

end-user can reference in his models. There is a Visualizer 

to view various facets of the simulation model and finally, 

the Controller to perform the simulation or dynamically 

control the running simulation [35]. 
 

 

Figure 9. Net-centric DEVS/ACT-R 

 While the vision of this work is towards the 

development of human operator in larger system of systems, 

the NACT-R in its present architecture is currently confined 

to initial studies and analysis of the entire approach. In our 

future work we will augment the architecture with more 

components as we move towards the SoS integration. 

 

7. CONCLUSIONS AND FUTURE WORK 

 This paper begins with the premise that efforts to 

develop large-scale cognitive models and integrate them 

into software-intensive distributed synthetic task 

environments are pushing cognitive modeling frameworks 

to their limits. To give the reader a sense for the current 

state-of-the-art in cognitive modeling, the ACT-R cognitive 

architecture and simulation framework were described. This 

paper then described how ACT-R has been decomposed and 

re-implemented in the DEVS formalism in order to extend 

its limits. This process of formalizing ACT-R in DEVS 

followed the DEVS Unified Process and led to DEVS/ACT-

R. DEVS/ACT-R represents a full circle resulting in the 

development of new ACT-R implementation that transforms 

models specified in platform independent DSLs to a 

platform specific execution framework using DEVS. We 

also extended the earlier DEVSML stack with DSL‟s and 

suggested M2M, M2DEVSML and M2DEVS 

transformations as the preferred way to achieve model 

interoperability and larger integration of modeling 

framework with an underlying DEVS distributed simulation 

net-centric infrastructure. We illustrated this concept by 

developing a DSL for ACT-R and executing it on DEVS 

platform. In addition, some of the immediate scale and 

integration benefits of making ACT-R component-based in 

DEVS were discussed. 

 Current efforts to make DEVS/ACT-R net-centric will 

allow cognitive modelers to evaluate and field their models 

through Service Oriented Architectures (SOA) and other 

net-centric infrastructures. This paper lays the foundation 

and suggests how future work will amplify the benefits of 

componentizing ACT-R in DEVS. By unifying ACT-R 

modeling practices into the DEVS Unified Process, future 

versions of DEVS/ACT-R will facilitate the verification and 

validation of ACT-R models within the DEVS hierarchy of 

system specification. Refinements and extensions to net-

centric DEVS/ACT-R will enable cognitive scientists to 

“black-box” models of cognitive activity into larger system 

of systems. Such capabilities will help AFRL addresses the 

Human Factor Integration aspect in framework like DoDAF 

and MoDAF. 

 The work described in this paper illustrates how 

methods and processes common in general M&S can be 

exploited by other fields—in this case cognitive modeling. 

The immediate contribution of this work is DEVS/ACT-R, 

an architecture that is allowing AFRL to begin integrating 

cognitive models into net-centric infrastructures such as a 

Service Oriented Architecture (SOA). The transition of 

DEVS/ACT-R to a SOA has the potential to literally 

revolutionize how AFRL develops and fields large-scale 

cognitive models. 
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