
1

Net-centric ACT-R-Based Cognitive Architecture with DEVS Unified Process

Saurabh Mittal

L-3 Communications, Air Force Research Laboratory,

Mesa, AZ 85212 USA

Saurabh.Mittal@L-3com.com

Scott A. Douglass

Air Force Research Laboratory,

Mesa, AZ 85212, USA

Scott.Douglass@mesa.afmc.af.mil

Keywords ACT-R, DUNIP, DSL, SOA, DEVSML,

DoDAF

Abstract

 Air Force Research Lab (AFRL) research efforts

employing cognitive and behavioral modeling are growing

in scope and complexity as they work to integrate models

into larger distributed systems as cognitive agents, synthetic

teammates or human operator surrogates. Efforts to

transition cognitive modeling from the laboratory to

operational environments are stymied by the isolated nature

of current cognitive modeling software tools that are not

readily extensible, interoperable or scalable e.g. ACT-R. In

this paper, we describe an attempt to build a component-

based architecture using the Discrete Event Systems Unified

Process (DUNIP) on a distributed net-centric platform that

eliminates these impediments. We show how the ACT-R

architecture is extensible and can serve as a component in

larger net-centric systems of systems frameworks such as

Department of Defense Architecture Framework. We will

also address the issue of platform independent modeling and

how Domain Specific Languages (DSLs) can be integrated

within DUNIP. We then demonstrate how developing the

architecture and related software infrastructure in DUNIP

gives it net-centric capabilities that support large-scale

integration.

1. INTRODUCTION

 AFRL research efforts employing cognitive and

behavioral modeling are growing in scope and complexity.

These research efforts are developing complex high-fidelity

synthetic entities capable of functioning as teammates and

instructors in complex distributed training environments. In

today‟s context these distributed frameworks have taken the

shape of net-centric frameworks wherein heterogeneous

components communicate each other through defined World

Wide Web Consortium (W3C) standards such as XML

schema, Web Service Description Language (WSDL),

Simple Object Access Protocol (SOAP), HTTP etc. A net-

centric system is a distributed system that provided

interoperability at the semantic level as opposed to syntactic

level in a distributed system. A Service Oriented

Architecture (SOA) is one such net-centric framework that

incorporates these standards to provide the needed

interoperability.

 These efforts to transition cognitive modeling from the

laboratory to operations settings are pushing currently

available cognitive modeling languages and tools to their

limits. AFRL scientists wanting to build large-scale models

of human cognitive activity are therefore facing core

challenges associated with: (1) increasing the scale of their

models; and (2) integrating them into simulations and

synthetic task environments that are integrated with larger

distributed system of systems frameworks such as

Department of Defense Architecture Framework (DoDAF)

[1]. An AFRL Large-Scale Cognitive Modeling (LSCM
1
)

initiative is currently researching and developing a solution

to these challenges based on high-level languages for

describing cognitive models and simulation frameworks

supporting these languages based on the Discrete Event

System Specification (DEVS) modeling and simulation

formalism [2] on a SOA platform. This paper describes the

basic nature of this solution.

 The paper starts with a description of The Adaptive

Character of Thought-Rational (ACT-R), a unified theory of

human cognition and a cognitive modeling and simulation

framework [3] in Section 2. ACT-R is an example of a

cognitive modeling framework being pushed to its limits by

large-scale modeling. Section 3 describes the DEVS Unified

Process that provides a foundation for making ACT-R

component-based. It provides an overview of DEVS

implemented on Service Oriented Architecture (SOA)

execution platform and extends the existing DEVS

Modeling Language (DEVSML) stack to incorporate

Domain Specific Languages (DSLs) that are platform

independent and are made executable using various model

to DEVS transformations. Section 4 next describes how

ACT-R has been decomposed and formalized using the

DEVS formalism. Some of the scale and integration

benefits of the DEVS formalization of ACT-R components

are discussed in this section. Section 5 next contrasts this

new architecture with ACT-R‟s current implementation and

presents a range of benefits obtained by the new

architecture. Finally, the paper will describe how future

work will integrate DEVS/ACT-R into a net-centric

infrastructure on SOA. The transition of DEVS/ACT-R to a

SOA will further extend AFRL‟s abilities to scale and

integrate large models of cognitive activity in system of

systems.

1
 This research is being funded through AFOSR grant # 10RH05COR

mailto:Saurabh.Mittal@L-3com.com
mailto:Scott.Douglass@mesa.afmc.af.mil

2

2. OVERVIEW OF ACT-R

 Many cognitive scientists consider cognitive activity to

be a product of an essentially permanent open system that

interacts with the environment [4]. This perspective has

motivated such cognitive scientists to study cognitive

architecture, the invariant structural and behavioral system

properties underlying cognitive activity that remain constant

across time and situation. The Adaptive Character of

Thought-Rational (ACT-R) is a theory of human cognition

in the form of a cognitive architecture and a cognitive

modeling and simulation framework [3]. A key

characteristic of the ACT-R cognitive architecture is that it

distinguishes between declarative and procedural

knowledge.

 Declarative knowledge represents factual information

that can be retrieved and acted upon. The name of the

newest Associate Justice of the United States Supreme

Court is an example of a unit of declarative knowledge.

Units of declarative knowledge are known as chunks in

ACT-R. Declarative knowledge chunks are stored in a long-

term associative memory.

 Procedural knowledge represents steps of central

cognitive processing. Instances of procedural knowledge are

known as productions in ACT-R.. Productions represent

associations between context-constraints and actions. For

example, a production might represent the contextual pre-

conditions and subsequent actions required to shift visual

attention to a novel aspect of visual context. Productions are

stored in a flat procedural memory.

Module Buffer(s) Role in Cognition

Audio aural-location,

aural

Localizing and identifying sounds

in the environment

Declarative retrieval Storing and retrieving information
in an associative memory

Goal goal Tracking progress towards current

goals and intentions

Imaginal imaginal,

imaginal-action

Maintaining internal

representations of problems &
situations

Motor manual Controlling the hands

Procedural production Initiating and coordinating the

behavior of all other modules

Speech vocal Producing speech

Vision visual-location,

visual

Identifying objects in the visual

field

Table 1. The modules and buffers making up ACT-R‟s

architectural core.

 The base architecture of ACT-R consists of a set of

independent modules that each processes a different kind of

declarative knowledge. Table 1 lists the central modules in

ACT-R. Transient declarative knowledge is stored in

module buffers. Only the module maintaining a buffer or the

procedural module can modify the contents of that buffer.

Cognitive activity arises from interactions between a central

production system and these modules. This central cognitive

process operates through a series of recognize-decide-act

cycles during which contextually appropriate productions

are executed. If multiple productions match context, they

form a conflict set. Under these circumstances, production

utilities based on a type of reinforcement learning are used

to determine which production fires.

 Overall processing activity in ACT-R consists of a

mixture of parallel and serial processing in and across the

modules. Parallel activity can occur within each of the

modules. For example, retrieval requests processed by the

declarative module are based on a parallel search through

long-term memory for chunks matching constraints

expressed in retrieval requests. Parallel processing can also

occur across the modules. For example, the motor module

can manipulate the hands while the vision module identifies

an object in the visual field.

 Architectural constraints impose important limits on

parallelism in ACT-R. A constraint that buffers can only

hold one chunk of knowledge at a time leads to a serial

bottleneck in each of the modules. For example, since the

retrieval buffer of the declarative module can only hold one

chunk at a time, an ACT-R model can only request/retrieve

one declarative fact at a time. Additionally, a constraint that

only one production can fire at a time in the procedural

module leads to a serial bottleneck in central cognition.

Common Name Equation

Activation 𝐴𝑖 = 𝐵𝑖 + 𝑊𝑗 𝑆𝑗𝑖

𝑗∈𝐶

Base-Level Learning
𝐵𝑖 = ln 𝑡𝑘

−𝑑

𝑛

𝑘=1

Attention Weighting 𝑊𝑗 = 𝑊
𝑛

Associative Strength 𝑆𝑗𝑖 = ln 𝑝𝑟𝑜𝑏 𝑖 𝑗 /𝑝𝑟𝑜𝑏 𝑖

Retrieval Time 𝑇𝑖𝑚𝑒 = 𝐹𝑒−𝐴𝑖

Retrieval Probability 𝑃𝑟𝑜𝑏 = 1/ 1 + 𝑒− 𝐴𝑖−𝑡 /𝑠

Utility 𝑈𝑖 𝑛 = 𝑈𝑖 𝑛 − 1 +∝ 𝑅𝑖 𝑛

− 𝑈𝑖(𝑛 − 1)

Conflict Resolution
𝑃𝑖 =

𝑒𝑈𝑖/𝑠

 𝑒𝑈𝑗 /𝑠
𝑗

Table 2. Equations describing chunk activation and

production utility in ACT-R.

 One of the most empirically verified aspects of the

ACT-R cognitive architecture is its declarative module.

Human behavior is as flexible as it is because we know lots

of facts about objects, situations and effective actions. This

vast repository of knowledge allows us to, with seemingly

little effort, use what we know to craft contextually

appropriate and effective actions in diverse circumstances.

We know a lot and we can quickly cull through all that we

know and retrieve and apply the right knowledge given our

circumstances. The heart of ACT-R‟s memory system is a

3

set of equations describing how sub-symbolic calculations

based on the frequency and recency of chunk utilization and

context priming effects underlie these critical properties of

human memory.

 Collectively, the equations in Table 2 precisely explain

how changes in activation and utility over time allow

knowledge and behavior to fit the information structure of

the environment (see [3][5] for detailed descriptions).

 The behavioral semantics of ACT-R are based on well

implemented discrete event simulation system. This discrete

event system realizes the recognize-decide-act cycle

producing cognitive activity in ACT-R by managing

information sharing though buffers and coordinating module

activities. Unfortunately, the technically isolated nature of

ACT-R‟s discrete event simulator isolates cognitive models

from the methods, libraries and tools utilized by the larger

systems engineering community. This isolation leads to

significant interoperability challenges when a modeler

wants to integrate a non-trivial cognitive model into a larger

simulation or synthetic task environment.

3. DEVS UNIFIED PROCESS

 The DEVS Unified Process [6] is an overarching

process employing the DEVS framework in a net-centric

domain that links requirements with the model under study.

It is based on elements such as DEVS formalism, the

emerging DEVS standard for M&S interoperability,

platform independent modeling, transparent simulators in a

net-centric domain and model continuity principles. The

following sub-sections provide a brief overview.

3.1. DEVS Formalism

 Discrete Event System Specification (DEVS) [2] is a

formalism which provides a means of specifying the

components of a system in a discrete event simulation. The

DEVS formalism consists of the model, the simulator and

the experimental frame as shown in Figure 1. The Model

component represents an abstraction of the source system

using the modeling relation. The simulator component

executes the model in a computational environment and

interfaces with the model using the simulation relation or

the DEVS simulation protocol in the present case. The

Experimental Frame facilitates the study of the source

system by integrating design and analysis requirements into

specific frames that support analyses of various situations

the source system is subjected to.

 While historically models have been closely linked to

the platform (such as Java, C, C++) in which the simulator

was written, recent developments in platform independent

modeling and transparent simulators [7] have allowed the

development of both the models and simulators in disparate

platform. Current efforts are focusing on a standardization

process [8-10] wherein the simulation relation can be

standardized for further interoperability

Figure 1. DEVS Framework elements

 In DEVS formalism, one must specify Basic Models

and how these models are connected together. These basic

models are called Atomic Models (Figure 2) and larger

models which are obtained by connecting these atomic

blocks are called Coupled Models (Figure 2). Each of these

atomic models has inports (to receive external events),

outports (to send events), a set of state variables, an internal

transition function (to specify state transitions with

timeouts), an external transition function (to specify state

transitions on receiving external event), a confluent

transition function (to specify in explicit terms whether to

execute internal transition and/or external transition on the

event of receiving external input when making internal

transition) and a time advance function. The models

specification uses or discards the message in the event to

compute, deliver an output message on the outport, and

make a state transition.

Figure 2. Atomic and Coupled models

 A DEVS-coupled model designates how atomic models

are coupled together and how they interact with each other

to form a complex model. The coupled model can be

employed as a component in a larger coupled model and can

construct complex models in a hierarchical way. The

specification provides components and coupling

information. A Java based implementation (DEVSJAVA

[11]) can be used to implement these atomic or coupled

models.

3.2. DEVS/SOA

 The DEVS/SOA framework [12] is analogous to other

DEVS distributed simulation frameworks like DEVS/HLA,

DEVS/RMI and DEVS/CORBA [13-17]. The distinguishing

mark of DEVS/SOA is that it uses SOA as the network

communication platform and XML as the middleware and

4

thus acts as a basis of interoperability using XML [18].

Furthermore, it uses web-services as the underlying

technology to implement the DEVS simulation protocol.

The complete setup requires one or more servers that are

capable of running DEVS Simulation Service, as shown in

Figure 3. The capability to run the simulation service is

provided by the server side design of DEVS Simulation

protocol supported by the latest DEVSJAVA Version 3.1

[11].

 Once a DEVS model package is developed, the next

step is simulation as illustrated in Figure 3. The DEVS/SOA

client (Figure 3) takes the DEVS models package and

through the dedicated servers hosting DEVS simulation

services, it performs the following operations:

1. Using the client application locate DEVS

simulation servers

2. Select the Simulation resources

3. Compose your root coupled model

4. Perform Simulation on SOA

a. Upload the models to specific IP locations

i.e. partitioning

b. Run-time compile at respective sites

c. Simulate the coupled-model

5. Receive the simulation output at clients end

Figure 3. DEVS/SOA Execution flow

3.3. Model and Simulator Interoperability using

DEVSML

 The earlier version of DEVSML stack [7] developed

models in Java and in platform independent DEVS

Modeling language that used XML as a means for

transformation. The model semantics were bound together

by XML. The latest version of the DEVSML, the language,

is based on EBNF grammar and is supported by DEVS

middleware API. The middleware is based on DEVS M&S

Standards compliant (under evaluation) API and interfaces

with a net-centric DEVS simulation platform such as a

service oriented architecture (SOA) that offers platform

transparency. With the maturation of technologies like Xtext

[20] and Xpand [21] we have now extended the concept of

XML-based DEVSML to a much broader scope wherein

Domain Specific Languages (DSL) can continue to be

expressed in all their richness in a platform independent

manner that is devoid of any DEVS and programming

language constructs (Figure 4). The key idea being domain

specialists need not delve in the DEVS world to reap the

benefits of DEVS framework.

 The DEVSML 2.0 stack in Figure 4 adds three

transformations at the top layer:

1. Model-to-Model (M2M)

2. Model-to-DEVSML (M2DEVSML)

3. Model-to-DEVS (M2DEVS)

 The end-user as indicated in Figure 4 will develop

models in their own DSL and the DEVS expert will help

develop the M2M and M2DEVSML transformation to give

a DEVS backend to the DSL models [19]. The

M2DEVSML transformation will give us the DEVS models

in a platform independent manner that is now open for

collaborative development per DEVS Unified Process

(Section 3.4). While M2DEVSML transformation delivers

an intermediate DEVS DSL (the DEVSML DSL), the

M2DEVS transformation directly anchors any DSL to

platform specific DEVS. There are many DEVS DSLs that

implement a subset of rigorous DEVS formalism. One

example of DEVS DSL is XML-based Finite Deterministic

DEVS (XFFDEVS) [21]. DEVSSpecML [22] built on BNF

grammar is another example of DEVS DSL.

 Below the DEVS Modeling Language layer, there is a

DEVS middleware that translates the semantics into

syntactic operations and hand it over to the DEVS/SOA

layer for simulation purposes. This stack also allows certain

DSL at the end user layer who can directly communicate

with DEVS middleware through an API. Recent

developments provide evidence that a hybrid simulation of

DEVS and non-DEVS models can be executed using

DEVS/SOA.

Figure 4. DEVSML stack employing M2M and M2DEVS

transformations for Model and simulator transparency

5

3.4. Complete process

 This section describes the bifurcated Model-Continuity

process [22] and how various elements like automated

DEVS model generation, automated test-model generation

(and net-centric simulation over SOA are put together in the

process, resulting in DEVS Unified Process (DUNIP)

[6][23]. The design of simulation-test framework occurs in

parallel with the simulation-model of the system under

design. The DUNIP process consists of the following

elements:

1. Automated DEVS Model Generation from various

requirement specification formats

2. Collaborative model development using DEVS

Modeling Language (DEVSML)

3. Automated Generation of Test-suite from DEVS

simulation model

4. Net-centric execution of model as well as test-suite

over SOA

 Considerable amount of effort has been spent in

analyzing various forms of requirement specifications, viz,

state-based, Natural Language based, UML-based, Rule-

based, BPMN/BPEL-based and DoDAF-based, and the

automated processes which each one should employ to

deliver DEVS hierarchical models and DEVS state

machines [6][24]. Simulation execution today is more than

just model execution on a single machine. With Grid

applications and collaborative computing the norm in

industry as well as in scientific community, a net-centric

platform using XML as middleware results in an

infrastructure that supports distributed collaboration and

model reuse. The infrastructure provides for a platform-free

specification language DEVS Modeling Language

(DEVSML) [7] and its net-centric execution using Service-

Oriented Architecture called DEVS/SOA [12,26]. Both the

DEVSML and DEVS/SOA provide novel approaches to

integrate, collaborate and remotely execute models on SOA.

This infrastructure supports automated procedures for test-

case generation leading to test models.

 Using XML as the system specifications in rule-based

format, a tool known as Automated Test Case Generator

(ATC-Gen) was developed which facilitated the automated

development of test models [22][25]. DUNIP (Figure 5) can

be summarized as the sequence of the following steps:

1. Develop the requirement specifications in one of

the chosen formats such as BPMN, DoDAF,

Natural Language Processing (NLP) based, UML-

based, DSL or simply DEVS-based for those who

understand the DEVS formalism.

2. Using the DEVS-based automated model

generation process as per the M2M transformation

or M2DEVS transformation as outlined in Section

3.3, generate the DEVS atomic and coupled models

from the requirement specifications

3. The generated models which are Platform

Independent Models (PIMs) in XML/DSL can

participate in collaborative development using

DEVSML middleware.

4. From step 2, either the coupled model can be

simulated using DEVS/SOA or a test-suite can be

generated based on the DEVS models.

5. The simulation can be executed on an isolated

machine or in distributed manner (using SOA

middleware if the focus is net-centric execution).

The simulation can be executed in real-time,

virtual-time, logical-time or wall-clock time [2].

6. The test-suite generated from DEVS models can be

executed in the same manner as laid out in Step 5.

The results from Step 5 and Step 6 can be compared for

verification and validation process using the Experimental

Frames that are designed from the requirements in Step 1.

Figure 5. DEVS Unified Process

6

This section has described the overarching DEVS

Unified Process that will serve as the enabling framework

for implementing a cognitive architecture. The subsequent

sections will focus on the cognitive architecture aspects and

how they are formalized into DEVS.

4. FORMALIZATION OF ACT-R COMPONENTS

 We shall now see how a process-oriented architecture is

componentized and ultimately formalized in the discrete

event specifications. The first step is to identify a clear

separation of concerns between various elements of ACT-R

architecture. Once such separation is made, the next step is

to identify the behavior of interacting components such that

the coupled behavior is identical to the original process-

oriented system. In a process oriented system, the elements

communicate each other by way of function calls and

arguments. As a result, we have to identify such method

calls and exchanged messages towards an „interface‟ in

component-based methodology. After extraction of such

interfaces, the behavior of each of these elements is

described using a state machine or a DEVS atomic to be

precise. Finally, coupled model of ACT-R architecture is

created by specifying couplings per interfaces and

hierarchical construction. The following subsections provide

more in-depth analysis.

4.1. Separation of concerns in ACT-R architecture

 As laid out in Section 2, ACT-R architecture has the

following system level functions:

I. Productions evaluate the encoded conditions

represented in buffer data and execute actions which

impact buffer data

II. Of the set of productions that match context

conditions, a single winner is selected (based on the

Utility equation) and allowed to execute its actions.

III. Buffers are interfaced with corresponding modules and

are the only means by which productions can access

modules.

IV. Declarative memory is queried via retrieval requests.

The Activity equation is used to select a single chunk

from the set meeting the constraints of the request.

V. The productions evaluate their condition every

simulation cycle to learn about changed buffer data.

VI. Each Module interfaces with a corresponding Buffer

that interfaces with productions.

VII. Goal buffer interacts with productions to keep the

current goal into focus as updated by last winning

production

 Consequently, these system level functions are now

assigned to the components so that behavior can be

accounted for. From Table 3, it is clear that the component

Production replicates the base behavior of ACT-R

productions as other components of the architecture and in

addition performs the function of evaluating the condition

whenever any buffer is updated. There is also a

conceptualization of a new component, called Selector that

performs the job of selecting a winning production based on

Utility equation.

Function Component Feature

Existing/Modified/New

I Production Existing

II Selector New

III Buffer Existing

IV Declarative Memory Module Existing

V Production Modified

VI Buffer-module relationship Existing

VIII Goal Buffer Existing

Table 3. Function to component mapping

4.2. Casting in DEVS Formalism

 After understanding the separation of concerns, various

architectural elements of the ACT-R theory were mapped to

the corresponding primitives in the DEVS domain as shown

in Table 4.

Component/

Primitive

Formal Description

Production P = (D, Bp, Z, C, A) where,
-D is usual atomic DEVS

D=(X,S,Y,dint, dext, dcon, l, ta)

-Bp is set of Buffer proxies
-Z is a set of bindings between

buffer-slots and local variables

-C is set of Conditions
-A is set of Actions

Slot SL = (Key, Value)

ChunkType CT = <SL> [set of slots]

Chunk CH = (CT, <SL>)

Buffer B = (D, CH, DoubleprocessingTime)

SlotCompare SLC = (SL, Boolequals)

Condition C = (Pname, Bname, BoolclearBuf, <SLC>)

Action A = (Pname, Bname, CT, BoolclearBuf, <SL>)

Declarative Memory MDM = (D, <CH>)

Selector S = (D)

Module MO = (D)

ModuleSystem MS = (B, MO)

Actr Model M = (C, <CT>, <P>,) where,

 -C is usual DEVS coupled C = (X, Y,

M, EIC, EOC, IC)

Table 4. Formal description of DEVS/ACT-R primitives

Figure 6 shows the DEVS/ACT-R System Entity Structure

(SES) [2] diagram. It shows which entities are formalized as

DEVS components while others are supporting data

structures. The DEVS/ACT-R System at the top is an entity

that is made of Components, Models and DEVS formalism.

The entity Components is made of many such Component,

which can be Chunks, ChunkTypes, Selector, Buffers,

Productions and Module Systems entities. A ChunkType is

7

made of Slots and each Slot is made of key value pair. A

Chunk is made of a Chunk Type. A Buffer is made of

Chunk and can be a Vision, Goal, Imaginal or Retrieval

buffer. A Buffer is also an atomic, like the Selector. A

Module System component can be a coupled and is made of

a Module and a Buffer. A Module can be specialized into a

Vision module, Manual module or a Declarative Memory

module. These interfaces of these modules can very well be

formalized so as to make them visible using a WSDL in a

net-centric deployment. A Production is an atomic

component and is made up of Bindings, Conditions and

Actions. A DEVS/ACT-R System Model is a coupled entity

and is made of ChunkTypes, Productions, and Buffers. And

finally, DEVS is made of Model and Simulator as distinct

entities. Model can be a coupled or atomic where coupled is

made of Couplings and Components. Simulator can be

implemented on a local machine or a net-centric platform

such as DEVS/SOA.

 The component Production is a central piece of the

architecture, and it is worth looking at its design in further

detail. In Figure 7, we see a DSL that formalizes the

information needed to specify a production i.e. a set of

bindings, a set of conditions and a set of actions. This DSL

closely matches the original ACT-R production

specification which can be viewed at [3].

Figure 8 shows the behavior represented in DEVS

state machine. The solid lines show external event

transitions that occur on the advent of event (prefix with ?

and shown in blue). The dotted lines show internal

transitions. The generated output at specific states is shown

in green (prefix with !). The DSL was developed using

Xtext [20] that builds a fully functional Eclipse textual

editor with syntax checking and code completion.

Underlying that editor is an Extended Bachus Naur Form

(EBNF) grammar. Using the code generation tool Xpand

[21], the grammar is then transformed to a platform specific

model (PSM) in Java. The PSM implementation translates

the Bp, Z, C, A in DSL and inherits the DEVS atomic

Production that is specified as per Figure 8. Finally, such

productions are coupled together to have a running DEVS

model (Figure 9). The execution of the model, example and

comparison of the log traces were demonstrated at [27].

Figure 6. System Entity Structure for DEVS/ACT-R

Figure 7. DSL for Production

Figure 8. DEVS Behavior for Production

8

Figure 9. From DSL to DEVS Execution

5. DISCUSSION

 We have shown how a procedural system like ACT-R

can be componentized using DEVS component-based

modeling and simulation framework. In this section we will

contrast the developed DEVS/ACT-R framework with the

original one and evaluate how this new framework provides

additional benefits.

5.1. Contrasting the original ACT-R simulator with

DEVS/ACT-R Simulator

 The original ACT-R architecture is distributed as an

integrated piece of software that runs in Common Lisp. The

end user is required to program in Lisp and consequently,

must overcome two learning curves before becoming

proficient in ACT-R. In addition, there are many aspects

where the newly developed DEVS/ACT-R shows

advantages over the existing ACT-R Version 6.0 software.

Table 5 lists some of the comparisons. While it is easy to

see that the component-based architecture of DEVS/ACT-R

has inherent benefits such as extensibility, scalability,

plugin framework, etc., the major benefit of this effort is the

development of simulator in Discrete Event formalism as

opposed to a programmatic event scheduler that looks at a

queue to execute the next event. By working towards the

identification of communication interfaces of these modules,

we came about a position in which we can send message

explicitly to the intended recipient. This had a major effect

on the simulator efficiency. We know that productions

interface with Buffers which in turn interface with Modules.

Productions are responsive to the updates in the buffers. In

the original ACT-R architecture, all the productions in the

model evaluate their conditions whenever any buffer update

occurs. Clearly, not all the productions need to observe all

the buffers. For example, a production that is just listening

to Visual buffer and is not interested about what happens in

the Retrieval buffer need not evaluate its condition. With

DEVS/ACT-R all such unnecessary processing is avoided

as each production is now explicitly coupled to the desired

buffer. Hence, whenever a buffer update is made as a result

of action by a production or through processing by the

corresponding module, the intended productions are sent the

buffer updates. On receiving these selective updates, the

intended productions evaluate their conditions and the

process repeats over. There is just the needed processing in

discrete event simulator based on DEVS.

 One other major gain from the component based

architecture is separation of concerns in components like

Selector (executes Utility equation) and the Declarative

Memory module (executes Activity equation). As there is no

way for parallelism in the underlying simulator in original

ACT-R, let alone separation of concerns, the performance

takes a hit when the number of productions is huge. The

conditions inside each production have no complex

mathematics but only key-value comparisons which require

very less resources. The bulk of computation is happening

in these two components, which now in DEVS/ACT-R can

be placed on high number crunching machines with may be

parallel architectures. Further, an altogether different

Declarative Memory module can be plugged in as a

replacement or for evaluation purposes.

S.No. Aspect ACT-R DEVS/ACT-R

1 Modular Yes Yes

2. Component-based Yes, but in Common Lisp only. Yes. Platform independent

3. Language
independent

No. Only works with Lisp. Yes. Model is platform independent and can be DSL
semantically anchored in DEVSML or DEVS.

4. Simulator efficiency Very limited. The event scheduling loop is the

only place where optimizations can be made.

Yes. Discrete Event simulator that advances time based on

events explicitly communicating to imminent components.

5 Module Plugin

framework

Yes. Additional modules can be developed in

Lisp.

Yes. Capable of adding/removing modules based on defined

interfaces

6 Communication
between modules

No explicit message passing. Method-call is the
chosen mode of action

Yes. Component updates are communicated precisely to the
intended components by way of explicit coupling

7. Scalability No. The underlying event scheduler is the

bottleneck.

Yes. The simulator has been proven in distributed

environment. Models are separated from simulators.

8. Extensibility No. It is cumbersome to make it as a component

in larger System of System.

Yes. With DEVS structure in the underlying architecture, it

can very well serve as a black-box in larger System of systems

9. Net-centric No. There are no standardized interfaces Yes. All the message passing is in XML

 Table 5. Comparison of ACT-R and DEVS/ACT-R capabilities

9

5.2. Verification and Validation of existing ACT-R

models

In general M&S, verification attempts to establish the

correctness of morphism between the simulator and the

model. Due to a lack of verification support tools, cognitive

modelers, rarely if ever, determine the correctness of the

mapping between their model and the underlying software

systems responsible for simulation.

In general M&S, validity is a property of the

relationships between a model, a system being studied, and

an experimental frame [2]. Replicative validity relates

model to system at the I/O behavior level. Cognitive

modelers assess the replicative validity of their models by

comparing their I/O behavior to human performance data.

They currently lack tools that automate this process.

Predictive validity combines replicative validity and an

ability to correspond to unseen system behavior. Cognitive

modelers sometimes demonstrate a compelling “modeling

relation” using model/data comparisons that demonstrate

predictive validity across multiple tasks. Structural validity

relates model and system at the state transition and coupled

levels—a structurally valid model replicates/predicts system

behavior AND mimics the “state-by-state and component-

by-component” mechanisms underlying the system. While

cognitive modelers would welcome the opportunity to

explore and describe the structural validity of their models,

they currently lack the methods and tools to do so.

As the DEVS/ACT-R framework matures, it will be

possible for cognitive modelers using it to unify parts of

their modeling life-cycle with the life-cycle seen in general

M&S. Cognitive modelers will benefit considerably from

the verification and validation capabilities available in the

DEVS Unified Process after such unification.

Summary

 We have contrasted DEVS/ACT-R with the standard

ACT-R and have delineated major benefits of the

component-based architecture. We also have shown how

such DEVS based component architecture is inherently

subjected to hierarchy of system specification [2] leading to

observations at various levels. Such capability to monitor at

a specific level of resolution is instrumental in the

development of verification and validation frameworks

which we intend to pursue further in the near future. Next

section will make it a component in larger System of

Systems.

6. NET-CENTRIC ACT-R AND SYSTEM OF

SYSTEMS

 Organizations such as AFRL, promote Technology

Readiness Levels (TRLs) as a means of evaluating the

readiness of technologies to be incorporated in a weapon or

Military System [28]. However, we often fail to account for

the critical human element [29]. Therefore, additional

methodologies are needed that would capture this human

element as the integral part of systems engineering and

technology transitions. The level of technology that US

provide to its armed forces is unparalleled. However, the

technology is as good as its usage by the user in the real

world and human operator is a critical piece in this puzzle.

While the technology is ready, the failure to make the

human ready brings a huge gap in what the „system‟ is

supposed to do and what actually happens in real world.

 While the Modeling and Simulation community can

help simulate these systems to a good degree of fidelity, the

absence of human operator model that is cognitively

plausible presents with results that are difficult to map in the

real world. The present work with componentizing ACT-R

towards a systems component is a work in this direction

wherein a cognitively plausible agent can represent a human

operator at the required time scales. To address this critical

component in larger DoD frameworks such as Department

of Defense Architecture Framework (DoDAF)[1] or

Ministry of Defense Architecture Framework (MoDAF,

UK) [30], a Human View is proposed that addresses this

critical need [31]. These architecture frameworks produce

common Systems Engineering (SE) approaches to

development, presentation, and integration of current and

future system of systems. Newer architectures like DoDAF

V2.0 address Net-centric, System of Systems and

System/Services concepts.

 Human View is to enable effective Human System

Integration (HSI) processes within the design of these

complex, large-scale, socio-technical systems. The North

Atlantic Treaty Organization (NATO) Human View

Handbook [32] facilitate design decisions by identifying

relevant elements emphasizing the explicit need of merging

seamlessly and efficiently with sound systems engineering

practice. It establishes a logical and systematic framework

for HSI studies and makes explicit human, crew, and team

socio-behavioral processes as integral to total systems

performance. Although HSI is a fundamental component of

a total systems approach, the successful integration of HSI

into systems engineering and acquisition life cycles

continues to be a challenge [33].

 In our earlier work, we have already shown how

DoDAF-DEVS mapping can help develop an executable

architecture with formal rigor and methodology [34-35]. We

have also shown how any DEVS component can be made

net-centric or any web service description (WSDL) can be

made a DEVS component [36] and interoperate with an

existing DEVS net-centric system as fully deployed

software [37]. Making ACT-R now DEVS enabled allows

us to take the ACT-R theoretical framework to larger system

of system in which a network node can host the entire

DEVS/ACT-R system. Each instance of the proposed

DEVS/ACT-R system becomes a cognitively plausible

agent and can be coupled together towards formation of

10

crew, teams etc. in a hierarchical manner with shared

knowledge structures and environment. The component

based framework allows consolidation of components at

different levels of hierarchy. The next subsection presents

the overall net-centric architecture of DEVS/ACT-R.

6.1. Netcentric ACT-R (NACT-R)

Figure 9 shows the architecture for Net-centric

DEVS/ACT-R. For better usability and acceptance by the

end user, the formal DEVS/ACT-R is structured in a client-

server paradigm. The server side rests on net-centric

infrastructure such as SOA or it may be a virtual machine

(eg. Java Virtual Machine) that runs locally on client‟s

machine for experimental use. On top of it is the DEVS run-

time environment that encapsulates the DEVS middleware

and DEVS/SOA layers in DEVSML Stack (Section 3.3).

Next is the NACT-R middleware layer that interfaces with

with various ACT-R components. The client side of the

NACT-R architecture is the end-user that is provided with a

Workbench that can be used to develop Productions, Agents

and Experimental Frames. The workbench allows accessing

the NACT-R repository which may be local or on network.

It also provides a Registry that makes available the

theoretical components of ACT-R architecture which the

end-user can reference in his models. There is a Visualizer

to view various facets of the simulation model and finally,

the Controller to perform the simulation or dynamically

control the running simulation [35].

Figure 9. Net-centric DEVS/ACT-R

 While the vision of this work is towards the

development of human operator in larger system of systems,

the NACT-R in its present architecture is currently confined

to initial studies and analysis of the entire approach. In our

future work we will augment the architecture with more

components as we move towards the SoS integration.

7. CONCLUSIONS AND FUTURE WORK

 This paper begins with the premise that efforts to

develop large-scale cognitive models and integrate them

into software-intensive distributed synthetic task

environments are pushing cognitive modeling frameworks

to their limits. To give the reader a sense for the current

state-of-the-art in cognitive modeling, the ACT-R cognitive

architecture and simulation framework were described. This

paper then described how ACT-R has been decomposed and

re-implemented in the DEVS formalism in order to extend

its limits. This process of formalizing ACT-R in DEVS

followed the DEVS Unified Process and led to DEVS/ACT-

R. DEVS/ACT-R represents a full circle resulting in the

development of new ACT-R implementation that transforms

models specified in platform independent DSLs to a

platform specific execution framework using DEVS. We

also extended the earlier DEVSML stack with DSL‟s and

suggested M2M, M2DEVSML and M2DEVS

transformations as the preferred way to achieve model

interoperability and larger integration of modeling

framework with an underlying DEVS distributed simulation

net-centric infrastructure. We illustrated this concept by

developing a DSL for ACT-R and executing it on DEVS

platform. In addition, some of the immediate scale and

integration benefits of making ACT-R component-based in

DEVS were discussed.

 Current efforts to make DEVS/ACT-R net-centric will

allow cognitive modelers to evaluate and field their models

through Service Oriented Architectures (SOA) and other

net-centric infrastructures. This paper lays the foundation

and suggests how future work will amplify the benefits of

componentizing ACT-R in DEVS. By unifying ACT-R

modeling practices into the DEVS Unified Process, future

versions of DEVS/ACT-R will facilitate the verification and

validation of ACT-R models within the DEVS hierarchy of

system specification. Refinements and extensions to net-

centric DEVS/ACT-R will enable cognitive scientists to

“black-box” models of cognitive activity into larger system

of systems. Such capabilities will help AFRL addresses the

Human Factor Integration aspect in framework like DoDAF

and MoDAF.

 The work described in this paper illustrates how

methods and processes common in general M&S can be

exploited by other fields—in this case cognitive modeling.

The immediate contribution of this work is DEVS/ACT-R,

an architecture that is allowing AFRL to begin integrating

cognitive models into net-centric infrastructures such as a

Service Oriented Architecture (SOA). The transition of

DEVS/ACT-R to a SOA has the potential to literally

revolutionize how AFRL develops and fields large-scale

cognitive models.

References
[1] Department of Defense. (2007, April 23). DoD Architecture

Framework Version 1.5, Volume I: Definitions and Guidelines.

11

Retrieved September 1, 2009, from Acquisition Community

Connection:
http://www.defenselink.mil/cionii/docs/DoDAF_Volume_I.pdf

[2] Zeigler, BP, Kim, TG and Praehofer, H, "Theory of Modeling

and Simulation" New York, NY, Academic Press, 2000
[3] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S. A.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind.

Psychological Review , 111 (4), 1036-1060.
[4] Wilson, M. (2002). Six views of embodied cognition.

Psychonomic Bulletin & Review , 9 (4), 625-636.

[5] Anderson, J. R. (2007). How can the mind exist in the physical
universe? Oxford: Oxford University Press.

[6] Mittal, S, "DEVS Unied Process for Integrated Development and

Testing of Service Oriented Architectures", Ph. D. Dissertation,
University of Arizona, 2007 accessible at

http://acims.arizona.edu/PUBLICATIONS/PDF/Thesis_Mittal.p

df
[7] Mittal, S, Martin, JLR, Zeigler, BP, "DEVSML: Automating

DEVS Simulation over SOA using Transparent Simulators",

DEVS Syposium, 2007

[8] Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin,

JLR, Sarjoughian, H, Touraille, L, Traore, M, Zeigler, BP,

"DEVS Standardization: Ideas, Trends and Future", chapter in
"Discrete Event Modeling and Simulation: Theory and

Applications", 2010, CRC Press.

[9] Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin,
JLR, Sarjoughian, H, Touraille, L, Traore, M, Zeigler, BP,

"Standardizing DEVS Model Representation", chapter in
"Discrete Event Modeling and Simulation: Theory and

Applications", 2010, CRC Press.

[10] Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin,
JLR, Sarjoughian, H, Touraille, L, Traore, M, Zeigler, BP,

"Standardizing DEVS Simulation Middleware", chapter in

"Discrete Event Modeling and Simulation: Theory and
Applications", 2010, CRC Press

[11] DEVSJAVA:

http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/C
BMSManuscript.zip

[12] Mittal, S, Martin, JLR, Zeigler, BP, "DEVS/SOA: A Cross-

Platform Framework for Net-Centric Modeling and Simulation
in DEVS Unied Process", SIMULATION: Transactions of SCS,

Vol. 85, No. 7, pp. 19-450, 2009

[13] Fujimoto, RM, "Parallel and Distribution Simulation Systems",
Wiley, 1999

[14] Seo, C, Park, S, Kim, B, Cheon, S, Zeigler, BP, "Implementation

of Distributed High-performance DEVS Simulation Framework
in the Grid Computing Environment", Advanced Simulation

Technologies conference (ASTC), Arlington, VA, 2004

[15] Cheon, S, Seo, S, Park, S, Zeigler, BP, "Design and
Implementation of Distributed DEVS Simulation in a Peer to

Peer Networked System", Advanced Simulation Technologies

Conference, Arlington, VA, 2004
[16] Kim, K, Kang, W, "CORBA-Based Multi-threaded Distributed

Simulation of Hierarchical DEVS Models: Transforming Model

Structure into a Non-hierarchical One", International Conference
on Computational Science and Its Applications, Italy 2004

[17] Zhang, M, Zeigler, BP, Hammonds, P, "DEVS/RMI-An Auto-

Adaptive and Recongurable Distributed Simulation Environment

for Engineering Studies", ITEA Journal, July 2005

[18] Mittal, S, Zeigler, BP, Martin, JLR, "Implementation of Formal

Standard for Interoperability in M&S/System of Systems
Integration with DEVS/SOA", International Command and

Control C2 Journal, Special Issue: Modeling and Simulation in

Support of Network-Centric Approaches and Capabilities, Vol.
3, No. 1, 2009

[19] Douglass, S., Mittal, S., “Using Doman-Specific Languages to

Improve the Scale and Integration of Cognitive Models”,
Behavior Representation in Modeling and Simulation, Utah,

March 2011 (submitted)

[20] Xtext Language Development Framework accesible at:
http://www.eclipse.org/Xtext/

[21] Xpand Model Transformation Framework accessible at:

http://www.eclipse.org/modeling/m2t/?project=xpand
[22] Zeigler, BP, Fulton, D, Hammonds P, and Nutaro, J,

"Framework for M&SBased System Development and Testing In

a Net-Centric Environment", ITEA Journal of Test and
Evaluation, Vol. 26, No. 3, pp. 21-34, 2005

[23] DUNIP: A Prototype Demonstration

http://duniptechnologies.com/training/demos/dunip.avi
[24] Martin, JLR, Mittal, S, Zeigler, BP, Manuel, J, "From UML

Statecharts to DEVS State Machines using XML", IEEE/ACM

conference on Multi-paradigm Modeling and Simulation,
Nashville, September 2007

[25] Mak, E, Mittal, S, Hwang, MH, "Automating Link-16 Testing

using DEVS and XML", Journal of Defense Modeling and
Simulation, Vol. 7, No. 1, pp.39-62, 201

[26] Mittal, S, Martin, JLR, Zeigler, BP, "DEVS-Based Web Services

for Net-centric T&E", Summer Computer Simulation

Conference, 2007

[27] Mittal, S, “Net-centric Cognitive Architecture using DEVS

Unified Process”, Persistence and Generative Modeling
Workshop, Scottsdate, AZ, 2010

[28] Graettinger, CP, Garcia, S, Siviy, J, Schenk, RJ, Van Syckle, PJ

“Using the technology readiness levels scale to support
technology management in the DoD’s ATD/STO environments.”

Army CECOM. (2002).
[29] 711 HPW/HPO. (2009, January). Air Force Human Systems

Integration handbook. Retrieved September 1, 2009, from

Wright Patterson Air Force Base:
http://www.wpafb.af.mil/shared/media/document/AFD-090121-

054.pdf

[30] Ministry of Defence HFI DTC. (2008, July 15). The Human
View handbook for MODAF. Retrieved September 1, 2009, from

Human Factors Integration Defence Technology

Centre:http://www.hfidtc.com/MoDAF/HV%20Handbook%20Fi
rst%20Issue.pdf

[31] Handley, HA, Smillie, RJ, Knapp, B, “Architecture frameworks

and the human view”. Retrieved September 1, 2009, from
National Defense Industrial Association:

http://www.ndia.org/Divisions/Divisions/SystemsEngineering/D

ocuments/HSI%2
0Subcommittee/August%202009/HVbrief4NDIA-august2.pdf

[32] NATO RTO HFM-155 Human View Workshop. (n.d.). “The

NATO Human View handbook”. Retrieved September 1, 2009,
from National Defense Industrial Association:

http://www.ndia.org/searchcenter/Pages/Results.aspx?k=human

%20view
[33] Phillips, EL, “The Development and Initial Evaluation of the

Human Readiness Level Framework”, MS thesis, Naval

Postgraduate School, Monterey, CA, 2010.
[34] Mittal, S, "Extending DoDAF to Allow DEVS-Based Modeling

and Simulation", Special issue on DoDAF, Journal of Defense

Modeling and Simulation JDMS, Vol. 3, No. 2, pp. 95-123, 2006
[35] Mittal, S, Mak, E, Nutaro, JJ, "DEVS-Based Dynamic Modeling

& Simulation Reconguration using Enhanced DoDAF Design

Process", special issue on DoDAF, Journal of Defense Modeling

and Simulation, Vol. 3, No. 4, pp. 239-267, 2006

[36] Mittal, S, Martin, JLR, Zeigler, BP, " WSDL-Based DEVS

Agent for Net-Centric Systems Engineering", International
Workshop on Modeling and Applied Simulation, Italy,

September 2008

[37] Mittal, S, "Agile Net-centric System using DEVS Unified
Process", chapter for "Intelligence Based Systems Engineer", Ed.

Andreas Tolk, Lakhmi Jain, Springer-Verlag 2011

