
1

From Domain Specific Languages to DEVS Components:

Application to Cognitive M&S

Saurabh Mittal

L-3 Communications, Air Force Research Laboratory,

Mesa, AZ 85212 USA

Saurabh.Mittal@L-3com.com

Scott A. Douglass

Air Force Research Laboratory,

Mesa, AZ 85212, USA

Scott.Douglass@mesa.afmc.af.mil

Keywords MIC, DSL, ACT-R, M2M, DEVSML, SOA

Abstract

 Air Force Research Lab (AFRL) research efforts to

transition cognitive modeling from the laboratory to

operational environments are finding that available

architectures and tools are difficult to extend, lack support

for interoperability standards, and struggle to scale. This

paper describes a component-based modeling and

simulation framework that exploits the Discrete Event

System Specification (DEVS) formalism to eliminate these

impediments. It extends the earlier DEVS Modeling

Language (DEVSML) architecture and integrates Domain

specific languages (DSLs). The paper discusses the

framework and the transformation processes with a DSL

tailored to the needs of cognitive modeling.

1. INTRODUCTION

 AFRL research efforts employing cognitive modeling

are growing in scale and complexity. Researchers

contributing to these efforts are struggling to meet the

challenges of increasing the scale of their models and

integrating them into software-intensive distributed training

environments. The struggle has two sources: (1) the need to

specify detailed knowledge and process descriptions in our

modeling frameworks; and (2) a dependence on specialized

simulators in our modeling frameworks that isolates our

models from standards, methods, and tools utilized by the

larger systems engineering community.

 An AFRL large-scale cognitive modeling (LSCM
1
)

research initiative is developing solutions to these scale and

interoperability challenges based on high-level languages,

more specifically domain specific languages (DSLs), for

describing cognitive models and simulation frameworks

supporting them based on the Discrete Event System

Specification (DEVS) formalism [1]. This paper discusses a

modeling and simulation framework based on earlier

developed DEVS Modeling Language stack [2]. We

illustrate how platform independent DSLs can be

transformed in this framework into the DEVS formalism.

We describe a DSL specifically designed to support

cognitive modeling and the procedures through which

1
 This research is being funded through AFOSR grant # 10RH05COR

models specified in the DSL can be transformed into DEVS

components that can be executed in advanced modeling and

simulation platforms transparently. Decoupling the model

from the simulation platform has many benefits as it allows

the modeler to construct models in a platform of his choice.

The ability to execute DEVS models in multiple platforms

has already been achieved. This ability provides a solution

to scale, integration and interoperability [2, 3]. Having a

process to transform any DSL to DEVS components then

has obvious advantages.

 The paper starts with the foundation for component-

based modeling and simulation framework. In Section 2, it

provides an overview of DEVS and how Model Integrated

Computing (MIC) can be facilitated by DEVS. In this

section we discuses a DEVS implemented on Service

Oriented Architecture (SOA) execution platform. Section 3

extends the existing DEVS Modeling Language (DEVSML)

stack to incorporate Domain Specific Languages (DSLs)

that are platform independent and are made executable

using the Model-to-Model (M2M), Model-to-DEVSML

(M2DEVSML) and Model-to-DEVS (M2DEVS)

transformations. Section 4 describes a new DSL for

cognitive modeling. Section 5 describes a process that

transforms this new DSL to DEVS using a M2DEVSML

transformation that transforms eventually to DEVS platform

specific execution. Finally, the conclusions and future work

is addressed.

2. FOUNDATIONS OF COMPONENT BASED

MODELING AND SIMULATION FRAMEWORK

2.1. Model Integrated Computing (MIC)

 The LSCM initiative is researching solutions to the

scale and interoperability challenges based on Model

Integrated Computing (MIC), a general modeling and

systems integration paradigm [4]. MIC facilitates LSCM

because it:

(1) allows cognitive modelers to specify models in

DSLs tailored to the needs of cognitive modeling

(2) supports the composition of these DSLs [5]

(3) automates the integration of models specified in

these DSLs into task environments or larger

systems [6]

mailto:Saurabh.Mittal@L-3com.com
mailto:Scott.Douglass@mesa.afmc.af.mil

2

(4) provides automated model-to-model (M2M)

transformation capabilities that produce

executable code artifacts from models specified in

these DSLs.

 As our modeling ambitions grow, the inability to share

significant models, to make them components of larger

system of integrated and extended models, amplifies the

costs of any modeling endeavor. To share and integrate our

models, we must find a way to generally cast them as

components in larger M&S frameworks. We are developing

a cognitive M&S framework in the LSCM initiative that

will allow modelers to define and execute componentized

models.

 From an architectural perspective, the framework

consists of net-centric M&S infrastructure based on the

DEVS formalism [1]. The architecture technically realizes a

DSL for cognitive modeling into the proposed DEVSML

stack using various model transformations. From a user

perspective, the framework consists of a set of DSLs that are

automatically transformed into the DEVSML and executed

in a transparent M&S infrastructure.

2.2. DEVS Formalism

 Discrete Event System Specification (DEVS) [1] is a

formalism which provides a means of specifying the

components of a system in a discrete event simulation. The

DEVS formalism consists of the model, the simulator and

the experimental frame as shown in Figure 1. The Model

component represents an abstraction of the source system

using the modeling relation. The simulator component

executes the model in a computational environment and

interfaces with the model using the simulation relation or

the DEVS simulation protocol in the present case. The

Experimental Frame facilitates the study of the source

system by integrating design and analysis requirements into

specific frames that support analyses of various situations

the source system is subjected to.

Figure 1. DEVS Framework elements

 While historically models have been closely linked to

the platform (such as Java, C, C++) in which the simulator

was written, recent developments in platform independent

modeling and transparent simulators [2, 3] have allowed the

development of both the models and simulators in disparate

platform. Current efforts are focusing on a standardization

process [7-9] wherein the simulation relation can be

standardized for further interoperability.

 In DEVS formalism, one must specify Basic Models

and how these models are connected together. These basic

models are called Atomic Models (Figure 2) and larger

models which are obtained by connecting these atomic

blocks are called Coupled Models (Figure 2). Each of these

atomic models has inports (to receive external events),

outports (to send events), a set of state variables, an internal

transition function (to specify state transitions with

timeouts), an external transition function (to specify state

transitions on receiving external event), a confluent

transition function (to specify in explicit terms whether to

execute internal transition and/or external transition on the

event of receiving external input when making internal

transition) and a time advance function. The models

specification uses or discards the message in the event to

compute, deliver an output message on the outport, and

make a state transition.

Figure 2. Atomic and Coupled models

 A DEVS-coupled model designates how atomic models

are coupled together and how they interact with each other

to form a complex model. The coupled model can be

employed as a component in a larger coupled model and can

construct complex models in a hierarchical way. The

specification provides components and coupling

information. A Java based implementation (DEVSJAVA

[10]) can be used to implement these atomic or coupled

models.

2.3. DEVS/SOA

 The DEVS/SOA framework [11] is analogous to other

DEVS distributed simulation frameworks like DEVS/HLA,

DEVS/RMI and DEVS/CORBA [12-16] and uses web-

services as the underlying technology to implement the

DEVS simulation protocol. The distinguishing mark of

DEVS/SOA is that it uses SOA as the network

communication platform and XML as the middleware and

thus acts as a basis of interoperability using XML [17]. The

complete setup requires one or more servers that are capable

of running DEVS Simulation Service, as shown in Figure 3.

3

The capability to run the simulation service is provided by

the server side design of DEVS Simulation protocol

supported by the latest DEVSJAVA Version 3.1 [10].

 Once a DEVS model package is developed, the next

step is executing the simulation as illustrated in Figure 3.

The DEVS/SOA client (Figure 3) takes the DEVS models

package and through the dedicated servers hosting DEVS

simulation services, it performs the following operations:

1. Using the client application locate DEVS

simulation servers

2. Select the Simulation resources

3. Compose your root coupled model

4. Perform Simulation on SOA

a. Upload the models to specific IP locations

i.e. partitioning

b. Run-time compile at respective sites

c. Simulate the coupled-model

5. Receive the simulation output at clients end

Figure 3. DEVS/SOA Execution flow

The DEVS/SOA has been used to integrate both DEVS

and non-DEVS models in a single transparent simulation

exercise [18].

3. DSL AND MODEL INTEROPERABILITY USING

DEVSML 2.0 STACK

 The earlier version of DEVSML stack [2,3] developed

models in Java and in platform independent DEVS

Modeling language that used XML as a means for

transformation. The model semantics were bound together

by XML. The latest version of the DEVSML, the language,

is based on EBNF grammar and is supported by DEVS

middleware API. The middleware is based on DEVS M&S

Standards compliant (under evaluation) API and interfaces

with a net-centric DEVS simulation platform such as a

service oriented architecture (SOA) that offers platform

transparency. With the maturation of technologies like Xtext

[19] and Xpand [20] we have now extended the concept of

XML-based DEVSML to a much broader scope wherein

Domain Specific Languages (DSL) can continue to be

expressed in all their richness in a platform independent

manner that is devoid of any DEVS and programming

language constructs (Figure 4). The key idea being domain

specialists need not delve in the DEVS world to reap the

benefits of DEVS framework.

 The DEVSML 2.0 stack in Figure 4 adds three

transformations at the top layer:

1. Model-to-Model (M2M)

2. Model-to-DEVSML (M2DEVSML)

3. Model-to-DEVS (M2DEVS)

Figure 4. DEVSML 2.0 stack employing M2M and

M2DEVS transformations for Model and simulator

transparency

 The end-user as indicated in Figure 4 will develop

models in their own DSL and the DEVS expert will help

develop the M2M and M2DEVSML transformation to give

a DEVS backend to the DSL models. While M2DEVSML

transformation delivers an intermediate DEVS DSL (the

DEVSML DSL), the M2DEVS transformation directly

anchors any DSL to platform specific DEVS. There are

many DEVS DSLs that implement a subset of rigorous

DEVS formalism. One example of DEVS DSL is XML-

based Finite Deterministic DEVS (XFFDEVS) [21].

DEVSSpecML [22] built on BNF grammar is another

example of DEVS DSL. DSLs can be created using many

available tools and technologies such as: Generic Modeling

Environment (GME) [23], Xtext, Ruby, Scala and many

others. GME is considered as the centerpiece modeling

technology for MIC.

 To develop a DSL in GME, a meta-modeler specifies

its abstract and concrete syntaxes in GME. The abstract

syntax captures the concepts, constraints and relationships

relevant to a domain using abstractions that exploit domain-

specific knowledge and processes. The concrete syntax

allows a modeler, acting more like an end user than a

programmer, to visually/textually specify models that

people with similar domain expertise can easily

comprehend. To use a DSL, a modeler configures GME so

4

that it supports the use of the DSL and then specifies models

in the DSL‟s concrete syntax. While DSLs created and used

through GME provide a compelling structured visual tool,

their use requires DSL developers and users to learn an

entirely new toolset. Alternative and equally effective DSL

frameworks are therefore being evaluated. Other DSL

writing tools like Xtext, Ruby, etc. focusing directly on the

EBNF grammar provide an alternative foundation to

develop the Abstract Syntax Tree (AST) for M2M

transformations. The rich integration and code generation

capabilities with open source tools like Eclipse make DSL

development tools such as Xtext popular in the software

modeling community.
 The addition of M2M, M2DEVSML and M2DEVS

transformations to the DEVSML stack adds true model and

simulator transparency to a net-centric M&S SOA

infrastructure. The transformations yield models that are

platform independent models (PIMs) that can be developed,

compared and shared in a collaborative process within the

domain. Working at the level of DEVS DSL allows the

models to be shared among the broad DEVS community

that brings additional benefits of model integration and

composability. The extended DEVML stack allows DSLs to

interact with DEVS middleware through an API. This

capability enables the development of simulations that

combine and execute DEVS and non-DEVS models [18].

This hybrid M&S capability facilitates interoperability.

 The next sections will describe a new DSL for the

cognitive science discipline and how the semantics are then

transformed to a DEVS DSL leading to an executable

model.

4. DSL FOR COGNITIVE MODELING

 Many cognitive scientists consider cognitive activity to

be a product of an open system that interacts with the

environment [24]. This perspective has motivated such

cognitive scientists to study cognitive architecture, the

invariant structural and behavioral system properties

underlying cognitive activity that remain constant across

time and situation.

4.1. Overview of ACT-R

 The Adaptive Character of Thought-Rational (ACT-R)

is a theory of human cognition in the form of a cognitive

architecture and a cognitive modeling and simulation

framework [25]. A key characteristic of ACT-R is that it

distinguishes between declarative and procedural

knowledge. Declarative knowledge represents factual

information that can be retrieved and acted upon. Units of

declarative knowledge are known as chunks in ACT-R.

Structurally, a chunk consists of a chunk-type and a list of

key-value pairs. Declarative knowledge chunks are stored in

a long-term associative memory. Procedural knowledge

represents steps of central cognitive processing. Instances of

procedural knowledge are known as productions in ACT-R.

Productions represent associations between context-

constraints and actions. Productions are stored in a flat

procedural memory.

 The base architecture of ACT-R consists of a set of

independent modules that processes a different kind of

declarative knowledge. Table 1 lists the central modules in

ACT-R. Transient declarative knowledge is stored in

module buffers. Only the module maintaining a buffer or the

procedural module can modify the contents of that buffer.

Cognitive activity arises from interactions between a central

production system (CPS) and these modules. Productions,

essentially rule-action pairs, exchange information within

and between buffers during these interactions.

 Overall processing activity in ACT-R consists of a

mixture of parallel and serial processing in and across

modules. Parallel activity can occur within each of the

modules. For example, retrieval requests processed by the

declarative module depend on a parallel search through

long-term memory for chunks matching constraints

expressed in retrieval requests. Parallel processing can also

occur across the modules. For example, the motor module

can manipulate the hands while the vision module identifies

an object in the visual field.

Module Role in Cognition

Audio Localizing and identifying sounds in the environment

Declarative Storing and retrieving information in an associative

memory

Goal Tracking progress towards current goals and
intentions

Imaginal Maintaining internal representations of problems &

situations

Motor Controlling the hands

Procedural Initiating and coordinating the behavior of all other

modules

Speech Producing speech

Vision Identifying objects in the visual field

Table 1. The modules and buffers making up ACT-R‟s

architectural core.

 The CPS underlying ACT-R‟s procedural module

matches productions to context (buffer contents) and uses a

utility calculus to determine which matching production

fires and advances the cognitive process. The resolution of

ACT-R‟s utility calculus is limited to the production level.

In large cognitive models, as the number of productions

increases, this level of resolution leads to computational

demands that impede scalability. The demands associated

with production utility calculations in a flat procedural

memory can be mitigated by representing and processing

procedural knowledge in a hierarchical manner using

extended finite state machines (EFSM). EFSMs can be used

to effectively group productions into descriptions of

cognitive activity at a resolution above the production level.

5

 A DSL supporting the specification of ACT-R

procedural knowledge in EFSMs that can be incorporated

into the DEVSML 2.0 stack has recently been developed

[26]. This DSL, known as the Research Modeling Language

(RML), illustrates how cognitive modeling can benefit from

a component based modeling and simulation framework

based on DEVS. The abstract syntax of RML is influenced

by the ACT-R cognitive architecture [25]. We show in the

next section of this paper that RML can function as a

component in the DEVSML 2.0 stack and yield DEVS

components that can be composed into a larger simulation

that includes both DEVS and non-DEVS components.

4.2. The Syntax of RML

The abstract syntax of RML includes concepts,

constraints and relations that capture the behavior of the

modules listed in Table 1.

4.2.1. Declarative Knowledge

The abstract syntax of RML assumes that declarative

knowledge is represented as predicates capturing

relationships between entities. Transient declarative

knowledge resides in a working memory. Knowledge is

added to working memory by: (1) environment events; (2)

active attention; (3) module processes; and (4) the direct

utilization of procedural knowledge.

Declarative knowledge is maintained in a semantic

network. Nodes in the network represent the classes,

properties, and instances constituting a body of knowledge.

Nodes are connected by edges representing relations.

Retrievals based on ACT-R‟s retrieval equations are

achieved through parallel spreading activation in the

semantic network. The design and performance of RML‟s

declarative memory system is described in [27].

4.2.2. Procedural Knowledge

The abstract syntax of RML assumes that procedural

knowledge is represented in behavior models that explicitly

represent cognitive state, context, alternative courses of

action, and failure. These models are formally represented

as extended finite state machines (EFSMs). EFSMs are a 4-

tuple:

EFSM = <S, s0, LSV, TRA>, where

S : set of states

s0 : start state

LSV : set of locally scoped variables

TRA : set of transitions

 A single start state must be included in the set of states

(S). A number of optional stop states may be included in S.

The LSV and TRA sets can be empty.

In the following descriptions of locally scoped variables

and transitions, type information is included in parentheses.

Definitions and a grammar formally describing these types

can be found in [26].

Locally scoped variables are a 2-tuple:

LSV = <N, V>, where

N : name (Variable_Name)

V : value (Variable_Value)

LSVs maintain representations of context. For example,

aspects of declarative knowledge originating in the

declarative module can be maintained in LSVs over the

course of cognitive activity.

Transitions are a 9-tuple:

TRA = <P, S, D, L, Pr, Cp, F, A, Ps>, where

P : priority (Integer)

S : source (State_Name)

D : destination (State_Name)

L : label (String)

Pr : pre-bindings (Binding)

Cp: context patters (Pattern)

F : functions (Function)

A : assertions (Assertion)

Ps: post-bindings (Binding)

Priority (P): preferences/estimates of utility that resolve

conflict when more than one transition is possible from a

state.

Source (S): the state from which a transition originates. A

destination (D) is the state to which a transition leads.

Label (L): a description of the function/purpose of a

transition. Labels are similar to documentation strings.

Pre-bindings (Pr): “name=value” pairs used to: (1) ensure

that LSVs have a specific value (values are constants); or

(2) retrieve elements from context (values are variables).

Context patterns (Cp): predicate constraints that must be

met for a transition to be allowed. Patterns can be: (1)

used to ensure that particular pieces of declarative

knowledge are in working memory or not (predicate

patterns contain only constants); or (2) used to bind

elements related by predicates in working memory

(predicate patterns contain variables).

Functions (F): execute calculations involving LSVs and

context pattern elements. They are provided in RML

because they significantly increase the representational

power of state machines.

Assertions (A): predicates added to working memory after a

transition has completed.

Post-bindings (Ps): name/value pairs that will add to or

overwrite LSVs maintained by an EFSM.

6

4.3. RML Model of the Fan-Effect

The fan-effect [28] reflects the impact of knowledge

complexity on human memory. As a person memorizes

additional facts involving a concept, the amount of time it

takes them to retrieve any one of these facts increases. A

model of the fan-effect has been developed in RML in order

to demonstrate how a DSL semantically anchored in DEVS

can be used to model detailed cognitive activity. The

exercise of specifying a RML model of the fan-effect

illustrates two points: (1) a DSL with an abstract syntax

employing critical aspects of a cognitive architecture like

ACT-R retains the cognitive fidelity of those aspects; (2) a

DSL permitting the specification of behavior at a level of

organization above the production supports the development

of behavioral sub-assemblies. The first point demonstrates

that new modeling formalisms designed to facilitate scale

and interoperability need not abstract their users from

empirically important details. The second point illustrates

how complexity can be managed through hierarchy.

Figure 5. EFSM representing behavior that locates, attends

to, and retrieves declarative knowledge about an object.

 The RML fan-effect model consists of two

communicating EFSMs:

- attend_and_comprehend: (Figure 5) representing

behavior during a repeated attend/comprehend subtask.

- fan_task: (Figure 7) representing behavior at the task

level.

 Notice how transition labels and state names summarize

and document the represented behavior at a high level of

abstraction effectively concealing the formal details of the

cognitive activity represented by the EFSM from the user.

The formal attributes of a transition can be edited by

selecting it and adding/editing textual aspects of its

underlying 9-tuple (Figure 6).

Figure 6. Transition attributes specifying how attention is

focused onto the Lx/Ly coordinates of a visual location.

Figure 7. EFSM representing behavior that comprehends a

person, comprehends a location, and then identifies a trial as

a target or a foil.

 The EFSM of fan_task is show in Figure 7. The states

comprehending_person and comprehending_location „task‟

the attend_comprehend EFSM in Figure 5. When the

attend_comprehend EFSM transitions to its stop state,

execution control returns to the fan_task EFSM. A

transition in RML is semantically equivalent to an ACT-R

production [26]. The major outcome of this exercise is that

the existing productions now have been regrouped (as

transitions in RML) based on the abstract states defined in

EFSMs. This has a far reaching benefit when scalability is

concerned. Instead of a flat pool of productions that are

evaluated each simulation cycle now only a subset of

productions are evaluated for execution of the system. In

addition, now we have a behavioral unit such as

attend_and_comprehend that can be reused and participate

in hierarchical construction of other EFSMs.

 The transition process in RML EFSMs during

simulation is based on: (1) the accumulation of match

bindings when patterns match context (knowledge in

working memory); (2) the optional augmentation of match

7

bindings through functions; and (3) the instantiation of

assertions with match bindings. As transitions occur during

runtime, a sequential pattern matching process realizes a

type of forward chaining. If a transition time cost of 50ms

and ACT-R‟s time costs for attention shifts, motor

responses, and declarative retrievals are adopted during

simulation, this forward chaining precisely matches

production firing in ACT-R. When the RML model of the

fan-effect is simulated in either the Erlang-based Run time

Environment [26] or the DEVSML 2.0 stack as described

ahead, retrieval successes, failures, latencies, and task

actions precisely matching those of a fan-effect model

described in ACT-R instructional materials are produced.

5. TRANSFORMING RML TO DEVSML

In the previous section we saw how a DSL such as

RML can specify the similar behavior of an ACT-R fan-

effect model. We also mentioned that the RML is

semantically anchored in Erlang that allows execution of an

RML model. While the objective of moving away from

ACT-R production system through a better abstraction

mechanism has been achieved, it lands us in the same

situation wherein isolated simulation platforms fail to be a

component in a larger system of system. In order to

incorporate RML models (in their current state) in an

integrated simulation exercise, we have to also consider the

execution platform interoperability as well, not to mention

the pragmatic, semantic and syntactic interoperability [29].

The approach proposed in this paper takes the RML

meta-model in its entirety and decouples it from its semantic

anchoring with Erlang. Once that decoupling is done, the

meta-model is then semantically anchored in DEVS, which

provides solutions to interoperability, extensibility,

composability and scalability. It can be argued that we are

semantically anchoring RML in just another platform that

provides some additional benefits. We would like to take the

position that DEVS is more than a computational platform.

It is a formalism and a complete framework supported by

dynamical systems theory that has transparent platform

execution with its SOA implementation [11,30]. Figure 2

has already emphasized this point. We will now show how

RML is semantically anchored in DEVS and a

M2DEVSML transformation is performed.

5.1. From RML elements to DEVS components

From structure perspective, any DEVS system is made

up of three elements, the model components (atomic or

coupled), the messages that flow between them, and the

couplings that communicate these messages between

components. Both the atomic and coupled DEVS

components transmit and receive messages. However, the

capacity to interpret the message and use it to express the

behavior is solely the characteristic of DEVS atomic

component. A new message originates exclusively within an

atomic component per its behavior specification and is then

placed at the output interface of the atomic component. The

behavior of an atomic component is a function of

superposition of two behaviors i.e. when an external

message is received and when it is not. In order to specify

the behavior, a state space is specified and the transitions

between these states are defined with respect to an „event‟

abstraction. An Event can occur in only two modes i.e.

when an external message is received or an internal variable

goes through a value change so as to mark an „event‟. Each

designed event is then associated with a state within the

state space and the transition to the next state is performed

when such „event‟ occurs. In DEVS, this transition is

specified in two functions i.e. the external transition

function and the internal transition function. Further, after

every such state transition, whether external or internal, if

the component needs to send an ouput message in that

specific state, an output function is specified that puts the

message on output interface of this atomic component.

Formally speaking the atomic DEVS is defined as an 8 tuple

system:

M =< X; S; Y; δint; δext; δcon; λ; ta >

where,

 X is the set of input values

 S is the set of states

 Y is the set of output values

 δint : S →S is the internal transition function

 δext : Q × Xb → S is the external transition function;

 where Xb is a set of bags over elements in X;

 Q is the total state set

 δcon : S × Xb →S is the confuent transition function,

 subject to δcon(s; Φ) = δint(s)

 λ: S →Yb is the output function

 ta : S → R(0+;inf) is the time advance function

 Describing the richness of DEVS atomic behavior is

outside the scope of this paper. We will consider a subset of

DEVS called XML-Based Finite Deterministic DEVS

(XFDDEVS) [21] that abstracts the DEVS formalism to an

automated transformation process using XML such that true

DEVS semantics is maintained. We can consider FDDEVS

to be another DSL that is semantically anchored in DEVS.

 The RML state machine in Figure 5 is a state machine

with finite number of states. The atomic FDDEVS is

specified as a seven tuple: <X, Y, S, δint, δext, λ, ta>, where X

is set of incoming messages, Y is a set of outgoing

messages, S is the set of states, δint is the internal transition

function, δext is the external transition function, λ is the

output function and ta is the timeout for each state.
 We will now transform the RML description for EFSM

attend_and_comprehend as shown in Figure 5. As we

already have 3 states i.e. locating, attending and

8

remembering, we have an initial starting point for our state

space. However, we have to remember that the notion of

„state‟ in DEVS is associated with occurrence of an „event‟.

Now, looking at each of the transitions in each of the three

states in Figure 5, we find that each transition although

specifies the source src and the destination dst state, has

more going on inside it. For example, the pre_binds,

post_binds, patterns and assertions elements. As per the

RML semantics, the model will expect the pre_bind

variables to match up with the patterns, and if matched, will

perform the post_bindings and assertions and will then

finally move to the dst state. In DEVS semantics, this

operation can be considered as two events, and

consequently, two states. The first state being,

beginOperation, wherein evaluation is being made per input

patterns and the second state being, dst itself. On

completion of first state, assertions (output) is being sent

and the model then moves to dst state. While there is no

problem in the RML semantics, the DEVS formalism

requires the specification of output function which is

associated with a specific state. If we preserve the RML

state set then the point where two events happen together,

ie. Incoming patterns and assertions, breaks the notion of

discrete event in DEVS formalism. The DEVS semantics

very clearly expresses this in the output function. Using the

system homomorphism concepts [1] as shown in Figure 8,

by introducing a Zero time state (Figure 9), we not only

preserve the RML semantics but also transform the state

machine into a DEVS state machine.

Figure 8. Preservation of States as two systems are

compared and M2DEVS transformation is performed

The automated transformation is executed using Xtext,

XPand and XML-based technologies such as JAXB. Xtext

is a language development framework that allows

development of rich DSLs backed by EBNF grammar in a

full blown auto-generated Eclipse editor with interpreters

and compilers. It allows syntax highlighting, code

completion, code validation, quick fixes and complete file

operation capabilities within the Eclipse IDE. Xpand is the

code generation technology built on top of Xtext that allows

creation of code-templates that uses the underlying EBNF in

the designed DSL for its further use and transformation. The

utility of Xpand is like XSLT in the XML domain wherein

XSLT acts as the transformer between two markup

languages. In our example, the EBNF for RML has been

discussed in [26]. Using Xtext and Xpand, the EBNF

elements are extracted and transformed directly to

XFDDEVS as per rules defined in Table 2. An Eclipse

plugin was created that performed the complete process i.e.

RML-to-FDDEVS-to-DEVSJAVA. More details are

reserved for our extended article.

RML Elements FDDEVS Elements

Globals

 states S

Transition If patterns >0, then each tuple in patterns is
an incoming external message and be

addressed in δext. The src state must

transition to beginDst state in zero time.

if assertions>0 then each tuple is an

outgoing message and be addressed in λ in
state beginDst

every beginDst state should internally
transition to dst in 0ms . Every dst must

match the ta=50ms of RML state and once
elapsed should internally transition to

passive.

 src s in S

 dst s in S

 patterns X

 assertions Y

Table 2. Semantic mapping from RML to FDDEVS

 Figure 9 shows the complete DEVS state machine after

this transformation process. The solid lines shows external

event i.e. incoming message depicted with prefix ?. The

dotted lines show internal event transitions. The generated

messages are depicted with a prefix !. The timeout for each

state are in the parenthesis. Table 3 shows the mapping of

states in the RML EFSM (Figure 5) to those in the

FDDEVS State Machine (Figure 9) along with timing in

parenthesis. Table 3 lists the mapping of RML semantics

into XFDDEVS elements.

RML States FDDEVS States

start (0) passive(infinity)

locating(50) beginLocating(0), locating(50)

attending(50) beginAttending(0), attending(50)

remembering(50) beginRemembering(0), remembering(50)

stop(0) passive(infinity)

Table 3. RML states to FDDEVS states

Similarly, the second RML Fan Task EFSM as depicted

in Figure 7 is also transformed to FDDEVS. Finally, the two

atomic models are coupled and realized in DEVSJAVA

simulation viewer [10] as shown in Figure 10. The Fan Task

9

atomic tasks the attend_and_comprehend atomic by sending

„assert_intention‟ message from „out_assert_intention‟

outport to „in_assert_intention‟ inport. This coupling is

specified explicitly unlike the Erlang Runtime Environment

where communications between the EFSMs are handled

through„blackboard‟ architecture. This is another advantage

of DEVS component based architecture wherein

components like blackboard which are not scalable in a

distributed environment can be eliminated in their entirety.

Further, such explicit coupling facilitates standardization of

interfaces for the developed components.

We have shown the execution of M2DEVSML

transformation from one DSL into another DSL that is

semantically anchored in DEVS. We have addressed the

atomic behavior, coupling and structure of the transformed

RML model into DEVS atomic and coupled models. The

remaining piece of the entire transformation exercise is the

message transformation which will be reported in an

extended article.

passive(inf)

beginLocating (0)

?attend_comprehend

locating(50)

 !get_vis_location

? Encoding_complete

!

Attended_and_comprehended

(Id, Lobj, T2) beginAttending(0)

attending(50)

! focus_attention

! focusing_on (lx,ly)

! resource(Visual,busy)

? Vis_location

beginRemembering(0)

remembering(50)

! Exec_retrieval (name=LS, type=Type, C)

! Resouce (Declarative, busy)

remeberingComplete(0)

? retrieval_success

Figure 9. FDDEVS state machine for

attend_and_comprehend

Figure 10. Fan Task Coupled Model

6. CONCLUSIONS AND FUTURE WORK

 AFRL research efforts employing cognitive modeling

are growing in scope. These efforts to transition cognitive

modeling from the laboratory to operations settings are

struggling to meet challenges associated with: (1) increasing

the scale of models; and (2) integrating models into

software-intensive distributed task environments. An AFRL

LSCM initiative is researching solutions to these challenges

based on high-level languages, more specifically the DSLs,

for describing cognitive models at a higher level of

abstraction to facilitate scale and the underlying simulation

frameworks supporting these DSLs. DEVS formalism and

M&S framework allow users to simulate models in

architectures that improve model integration and

interoperability in a net-centric domain using the DEVSML

stack 2.0. This paper described RML, a hybrid

(textual/visual) cognitive and behavior modeling DSL

influenced by ACT-R in which models capturing cognitive

activity above the level of the production can be specified.

RML illustrated how DSLs designed to facilitate scale and

interoperability need not isolate users from empirically

important details.

 We also extended the earlier DEVSML stack with

DSLs and suggested M2M, M2DEVSML and M2DEVS

transformations as the preferred way to achieve model

interoperability and larger integration of modeling

framework with an underlying DEVS distributed simulation

infrastructure. We illustrated this concept by developing a

DSL called RML for ACT-R and executing it on DEVS

platform.

 Current efforts to make net-centric cognitive models

will allow cognitive modelers to evaluate and field their

models through Service Oriented Architectures (SOA) and

other net-centric infrastructures. This paper lays the

foundation and suggests how future work will amplify the

benefits of componentizing other DSLs from disparate

domains. By unifying ACT-R modeling practices into the

DEVS Unified Process [31], future versions of DEVS/ACT-

10

R will facilitate the verification and validation of ACT-R

models. Refinements and extensions to net-centric

DEVS/ACT-R will enable cognitive scientists to “black-

box” models of cognitive activity into larger system of

systems [32].

 The work described in this paper illustrates how

methods and processes common in general M&S can be

exploited by other fields—in this case cognitive modeling.

The immediate contribution of this work is platform

independent modeling and simulation using DSLs and

DEVSML stack 2.0, an architecture that is allowing AFRL

to begin integrating cognitive models into net-centric

infrastructures such as a Service Oriented Architecture

(SOA). The transition of DEVS/ACT-R to a SOA has the

potential to literally revolutionize how AFRL develops and

fields large-scale cognitive models.

References

[1] Zeigler, BP, Kim, TG and Praehofer, H, "Theory of Modeling

and Simulation" New York, NY, Academic Press, 2000

[2] Mittal, S, Martin, JLR, Zeigler, BP, "DEVSML: Automating

DEVS Simulation over SOA using Transparent Simulators",
DEVS Syposium, 2007

[3] Mittal, S, Martin, JLR, Zeigler, BP, "DEVS-Based Web Services

for Net-centric T&E", Summer Computer Simulation
Conference, 2007

[4] Sztipanovits, J., & Karsai, G., “Model-integrated computing.

Computer “, 30 (4), 110-111. 1997
[5] Balasubramanian, K., Schmidt, D. C., Molnár, Z., & Lédeczi, A.

“Component-Based System Integration via (Meta)Model

Composition.” ECBS '07: Proceedings of the 14th Annual IEEE
International Conference and Workshops on the Engineering of

Computer-Based Systems (pp. 93-102). Washington, DC: IEEE

Computer Society, 2008
[6] Balasubramanian, K., Schmidt, D. C., Molnár, Z., & Lédeczi, A.

“System Integration using Model-Driven Engineering”. In P. F.

Tiako, Designing Software-intensive Systems: Methods and
Principles (pp. 474-504). Idea Group Inc., 2008

[7] Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin,

JLR, Sarjoughian, H, Touraille, L, Traore, M, Zeigler, BP,
"DEVS Standardization: Ideas, Trends and Future", chapter in

"Discrete Event Modeling and Simulation: Theory and

Applications", 2010, CRC Press.
[8] Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin,

JLR, Sarjoughian, H, Touraille, L, Traore, M, Zeigler, BP,

"Standardizing DEVS Model Representation", chapter in
"Discrete Event Modeling and Simulation: Theory and

Applications", 2010, CRC Press.
[9] Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin,

JLR, Sarjoughian, H, Touraille, L, Traore, M, Zeigler, BP,

"Standardizing DEVS Simulation Middleware", chapter in
"Discrete Event Modeling and Simulation: Theory and

Applications", 2010, CRC Press

[10] DEVSJAVA:
http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/C

BMSManuscript.zip

[11] Mittal, S, Martin, JLR, Zeigler, BP, "DEVS/SOA: A Cross-
Platform Framework for Net-Centric Modeling and Simulation

in DEVS Unied Process", SIMULATION: Transactions of SCS,

Vol. 85, No. 7, pp. 19-450, 2009
[12] Fujimoto, RM, "Parallel and Distribution Simulation Systems",

Wiley, 1999

[13] Seo, C, Park, S, Kim, B, Cheon, S, Zeigler, BP, "Implementation

of Distributed High-performance DEVS Simulation Framework
in the Grid Computing Environment", Advanced Simulation

Technologies conference (ASTC), Arlington, VA, 2004

[14] Cheon, S, Seo, S, Park, S, Zeigler, BP, "Design and
Implementation of Distributed DEVS Simulation in a Peer to

Peer Networked System", Advanced Simulation Technologies

Conference, Arlington, VA, 2004
[15] Kim, K, Kang, W, "CORBA-Based Multi-threaded Distributed

Simulation of Hierarchical DEVS Models: Transforming Model

Structure into a Non-hierarchical One", International Conference
on Computational Science and Its Applications, Italy 2004

[16] Zhang, M, Zeigler, BP, Hammonds, P, "DEVS/RMI-An Auto-

Adaptive and Recongurable Distributed Simulation Environment
for Engineering Studies", ITEA Journal, July 2005

[17] Mittal, S, Zeigler, BP, Martin, JLR, "Implementation of Formal

Standard for Interoperability in M&S/System of Systems
Integration with DEVS/SOA", International Command and

Control C2 Journal, Special Issue: Modeling and Simulation in

Support of Network-Centric Approaches and Capabilities, Vol.

3, No. 1, 2009

[18] Martín, JLR, Moreno, A, Aranda, J, Cruz, JM, “Interoperability

between DEVS and non-DEVS models using DEVS/SOA”. In
SpringSim'09: Proceedings of the 2009 spring simulation

multiconference: 1-9 (San Diego, CA, USA, 2009)

[19] Xtext Language Development Framework accesible at:
http://www.eclipse.org/Xtext/

[20] Xpand Model Transformation Framework accessible at:
http://www.eclipse.org/modeling/m2t/?project=xpand

[21] Mittal, S, Zeigler, BP, Ho, MH, XFDDEVS: XML-Based Finite

Deterministic DEVS, last accessed Jan 2011 at:
http://www.duniptechnologies.com/research/xfddevs/

[22] Hong. KJ, Kim, TG, "DEVSpecL-DEVS specification language

for modeling, simulation and analysis of discrete event systems,"
Information and Software Technology, Vol. 48, No. 4, pp. 221 -

234, Apr., 2006

[23] GME: Generic Modeling Environment, last accessed Jan 2011
at: http://www.isis.vanderbilt.edu/Projects/gme/

[24] Wilson, M. (2002). Six views of embodied cognition.

Psychonomic Bulletin & Review , 9 (4), 625-636.
[25] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S. A.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind.

Psychological Review , 111 (4), 1036-1060.
[26] Douglass, SA, Mittal, S, “Using Domain Specific Languages to

Improve Scale and Integration of Cognitive Models”, Behavior

Representation in Modeling and Simulation, Utah, USA, March
2011

[27] Douglass, SA & Myers, CW, “Concurrent knowledge activation

calculation in large declarative memories”. In D. D. Salvucci &
G. Gunzelmann (Eds.), Proceedings of the 10th International

Conference of Cognitive Modeling, Philadelphia, Pennsylvania,

USA, 2010
[28] Anderson, J.R. & Reder, L.M, “The fan effect: New results and

new theories”. Journal of Experimental Psychology: General,

128(2), 186-197, 1999
[29] Zeigler, BP, Mittal, S & Hu, X, “Towards a formal standard for

interoperability in M&S/system of systems integration” Proc.

GMU-AFCEA Symposium on Critical Issues in C4I, 2008

[30] Mittal, S, "Agile Net-centric System using DEVS Unified

Process", chapter for "Intelligence Based Systems Engineer", Ed.

Andreas Tolk, Lakhmi Jain, Springer-Verlag 2011
[31] Mittal, S, "DEVS Unied Process for Integrated Development and

Testing of Service Oriented Architectures", Ph. D. Dissertation,

University of Arizona, 2007
[32] Mittal, S, Douglass, SA, “Net-Centric ACT-R Based Cogntive

Architecture with DEVS Unified Process”, DEVS Symposium,

Spring Simulation Multiconference, Boston, April 2011

http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/CBMSManuscript.zip
http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/CBMSManuscript.zip
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.duniptechnologies.com/research/xfddevs/
http://www.isis.vanderbilt.edu/Projects/gme/

