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Abstract 

 Air Force Research Lab (AFRL) research efforts to 

transition cognitive modeling from the laboratory to 

operational environments are finding that available 

architectures and tools are difficult to extend, lack support 

for interoperability standards, and struggle to scale. This 

paper describes a component-based modeling and 

simulation framework that exploits the Discrete Event 

System Specification (DEVS) formalism to eliminate these 

impediments. It extends the earlier DEVS Modeling 

Language (DEVSML) architecture and integrates Domain 

specific languages (DSLs). The paper discusses the 

framework and the transformation processes with a DSL 

tailored to the needs of cognitive modeling.  

 

1. INTRODUCTION 

 AFRL research efforts employing cognitive modeling 

are growing in scale and complexity. Researchers 

contributing to these efforts are struggling to meet the 

challenges of increasing the scale of their models and 

integrating them into software-intensive distributed training 

environments. The struggle has two sources: (1) the need to 

specify detailed knowledge and process descriptions in our 

modeling frameworks; and (2) a dependence on specialized 

simulators in our modeling frameworks that isolates our 

models from standards, methods, and tools utilized by the 

larger systems engineering community. 

 An AFRL large-scale cognitive modeling (LSCM
1
) 

research initiative is developing solutions to these scale and 

interoperability challenges based on high-level languages, 

more specifically domain specific languages (DSLs), for 

describing cognitive models and simulation frameworks 

supporting them based on the Discrete Event System 

Specification (DEVS) formalism [1]. This paper discusses a 

modeling and simulation framework based on earlier 

developed DEVS Modeling Language stack [2]. We 

illustrate how platform independent DSLs can be 

transformed in this framework into the DEVS formalism. 

We describe a DSL specifically designed to support 

cognitive modeling and the procedures through which 
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models specified in the DSL can be transformed into DEVS 

components that can be executed in advanced modeling and 

simulation platforms transparently. Decoupling the model 

from the simulation platform has many benefits as it allows 

the modeler to construct models in a platform of his choice. 

The ability to execute DEVS models in multiple platforms 

has already been achieved. This ability provides a solution 

to scale, integration and interoperability [2, 3]. Having a 

process to transform any DSL to DEVS components then 

has obvious advantages. 

 The paper starts with the foundation for component-

based modeling and simulation framework. In Section 2, it 

provides an overview of DEVS and how Model Integrated 

Computing (MIC) can be facilitated by DEVS. In this 

section we discuses a DEVS implemented on Service 

Oriented Architecture (SOA) execution platform. Section 3 

extends the existing DEVS Modeling Language (DEVSML) 

stack to incorporate Domain Specific Languages (DSLs) 

that are platform independent and are made executable 

using the Model-to-Model (M2M), Model-to-DEVSML 

(M2DEVSML) and Model-to-DEVS (M2DEVS) 

transformations. Section 4 describes a new DSL for 

cognitive modeling. Section 5 describes a process that 

transforms this new DSL to DEVS using a M2DEVSML 

transformation that transforms eventually to DEVS platform 

specific execution. Finally, the conclusions and future work 

is addressed. 

 

2. FOUNDATIONS OF COMPONENT BASED 

MODELING AND SIMULATION FRAMEWORK 

 

2.1. Model Integrated Computing (MIC) 

 The LSCM initiative is researching solutions to the 

scale and interoperability challenges based on Model 

Integrated Computing (MIC), a general modeling and 

systems integration paradigm [4]. MIC facilitates LSCM 

because it:  

(1) allows cognitive modelers to specify models in 

DSLs tailored to the needs of cognitive modeling 

(2) supports the composition of these DSLs [5]  

(3) automates the integration of models specified in 

these DSLs into task environments or larger 

systems [6] 
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(4) provides automated model-to-model (M2M) 

transformation capabilities that produce 

executable code artifacts from models specified in 

these DSLs. 

 As our modeling ambitions grow, the inability to share 

significant models, to make them components of larger 

system of integrated and extended models, amplifies the 

costs of any modeling endeavor. To share and integrate our 

models, we must find a way to generally cast them as 

components in larger M&S frameworks. We are developing 

a cognitive M&S framework in the LSCM initiative that 

will allow modelers to define and execute componentized 

models. 

 From an architectural perspective, the framework 

consists of net-centric M&S infrastructure based on the 

DEVS formalism [1]. The architecture technically realizes a 

DSL for cognitive modeling into the proposed DEVSML 

stack using various model transformations. From a user 

perspective, the framework consists of a set of DSLs that are 

automatically transformed into the DEVSML and executed 

in a transparent M&S infrastructure. 

 

2.2. DEVS Formalism 

 Discrete Event System Specification (DEVS) [1] is a 

formalism which provides a means of specifying the 

components of a system in a discrete event simulation. The 

DEVS formalism consists of the model, the simulator and 

the experimental frame as shown in Figure 1. The Model 

component represents an abstraction of the source system 

using the modeling relation. The simulator component 

executes the model in a computational environment and 

interfaces with the model using the simulation relation or 

the DEVS simulation protocol in the present case. The 

Experimental Frame facilitates the study of the source 

system by integrating design and analysis requirements into 

specific frames that support analyses of various situations 

the source system is subjected to. 

 

 

Figure 1. DEVS Framework elements 

 While historically models have been closely linked to 

the platform (such as Java, C, C++) in which the simulator 

was written, recent developments in platform independent 

modeling and transparent simulators [2, 3] have allowed the 

development of both the models and simulators in disparate 

platform. Current efforts are focusing on a standardization 

process [7-9] wherein the simulation relation can be 

standardized for further interoperability. 

 In DEVS formalism, one must specify Basic Models 

and how these models are connected together. These basic 

models are called Atomic Models (Figure 2) and larger 

models which are obtained by connecting these atomic 

blocks are called Coupled Models (Figure 2). Each of these 

atomic models has inports (to receive external events), 

outports (to send events), a set of state variables, an internal 

transition function (to specify state transitions with 

timeouts), an external transition function (to specify state 

transitions on receiving external event), a confluent 

transition function (to specify in explicit terms whether to 

execute internal transition and/or external transition on the 

event of receiving external input when making internal 

transition)  and a time advance function.  The models 

specification uses or discards the message in the event to 

compute, deliver an output message on the outport, and 

make a state transition.  

 

 

Figure 2. Atomic and Coupled models 

 A DEVS-coupled model designates how atomic models 

are coupled together and how they interact with each other 

to form a complex model. The coupled model can be 

employed as a component in a larger coupled model and can 

construct complex models in a hierarchical way. The 

specification provides components and coupling 

information. A Java based implementation (DEVSJAVA 

[10]) can be used to implement these atomic or coupled 

models.  

 

2.3. DEVS/SOA 

 The DEVS/SOA framework [11] is analogous to other 

DEVS distributed simulation frameworks like DEVS/HLA, 

DEVS/RMI and DEVS/CORBA [12-16] and uses web-

services as the underlying technology to implement the 

DEVS simulation protocol. The distinguishing mark of 

DEVS/SOA is that it uses SOA as the network 

communication platform and XML as the middleware and 

thus acts as a basis of interoperability using XML [17]. The 

complete setup requires one or more servers that are capable 

of running DEVS Simulation Service, as shown in Figure 3. 
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The capability to run the simulation service is provided by 

the server side design of DEVS Simulation protocol 

supported by the latest DEVSJAVA Version 3.1 [10]. 

 Once a DEVS model package is developed, the next 

step is executing the simulation as illustrated in Figure 3. 

The DEVS/SOA client (Figure 3) takes the DEVS models 

package and through the dedicated servers hosting DEVS 

simulation services, it performs the following operations: 

1. Using the client application locate DEVS 

simulation servers 

2. Select the Simulation resources 

3. Compose your root coupled model 

4. Perform Simulation on SOA 

a. Upload the models to specific IP locations 

i.e. partitioning  

b. Run-time compile at respective sites 

c. Simulate the coupled-model 

5. Receive the simulation output at clients end 

 

 

Figure 3. DEVS/SOA Execution flow 

The DEVS/SOA has been used to integrate both DEVS 

and non-DEVS models in a single transparent simulation 

exercise [18]. 

 
3. DSL AND MODEL INTEROPERABILITY USING 

DEVSML 2.0 STACK 

 The earlier version of DEVSML stack [2,3] developed 

models in Java and in platform independent DEVS 

Modeling language that used XML as a means for 

transformation. The model semantics were bound together 

by XML. The latest version of the DEVSML, the language, 

is based on EBNF grammar and is supported by DEVS 

middleware API. The middleware is based on DEVS M&S 

Standards compliant (under evaluation) API and interfaces 

with a net-centric DEVS simulation platform such as a 

service oriented architecture (SOA) that offers platform 

transparency. With the maturation of technologies like Xtext 

[19] and Xpand [20] we have now extended the concept of 

XML-based DEVSML to a much broader scope wherein 

Domain Specific Languages (DSL) can continue to be 

expressed in all their richness in a platform independent 

manner that is devoid of any DEVS and programming 

language constructs (Figure 4). The key idea being domain 

specialists need not delve in the DEVS world to reap the 

benefits of DEVS framework.  

 The DEVSML 2.0 stack in Figure 4 adds three 

transformations at the top layer: 

1. Model-to-Model (M2M) 

2. Model-to-DEVSML (M2DEVSML) 

3. Model-to-DEVS (M2DEVS) 

 

 

Figure 4. DEVSML 2.0 stack employing M2M and 

M2DEVS transformations for Model and simulator 

transparency 

 The end-user as indicated in Figure 4 will develop 

models in their own DSL and the DEVS expert will help 

develop the M2M and M2DEVSML transformation to give 

a DEVS backend to the DSL models. While M2DEVSML 

transformation delivers an intermediate DEVS DSL (the 

DEVSML DSL), the M2DEVS transformation directly 

anchors any DSL to platform specific DEVS. There are 

many DEVS DSLs that implement a subset of rigorous 

DEVS formalism. One example of DEVS DSL is XML-

based Finite Deterministic DEVS (XFFDEVS) [21]. 

DEVSSpecML [22] built on BNF grammar is another 

example of DEVS DSL. DSLs can be created using many 

available tools and technologies such as: Generic Modeling 

Environment (GME) [23], Xtext, Ruby, Scala and many 

others. GME is considered as the centerpiece modeling 

technology for MIC.  

 To develop a DSL in GME, a meta-modeler specifies 

its abstract and concrete syntaxes in GME. The abstract 

syntax captures the concepts, constraints and relationships 

relevant to a domain using abstractions that exploit domain-

specific knowledge and processes. The concrete syntax 

allows a modeler, acting more like an end user than a 

programmer, to visually/textually specify models that 

people with similar domain expertise can easily 

comprehend. To use a DSL, a modeler configures GME so 
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that it supports the use of the DSL and then specifies models 

in the DSL‟s concrete syntax. While DSLs created and used 

through GME provide a compelling structured visual tool, 

their use requires DSL developers and users to learn an 

entirely new toolset. Alternative and equally effective DSL 

frameworks are therefore being evaluated. Other DSL 

writing tools like Xtext, Ruby, etc. focusing directly on the 

EBNF grammar provide an alternative foundation to 

develop the Abstract Syntax Tree (AST) for M2M 

transformations. The rich integration and code generation 

capabilities with open source tools like Eclipse make DSL 

development tools such as Xtext popular in the software 

modeling community.  
 The addition of M2M, M2DEVSML and M2DEVS 

transformations to the DEVSML stack adds true model and 

simulator transparency to a net-centric M&S SOA 

infrastructure. The transformations yield models that are 

platform independent models (PIMs) that can be developed, 

compared and shared in a collaborative process within the 

domain. Working at the level of DEVS DSL allows the 

models to be shared among the broad DEVS community 

that brings additional benefits of model integration and 

composability. The extended DEVML stack allows DSLs to 

interact with DEVS middleware through an API. This 

capability enables the development of simulations that 

combine and execute DEVS and non-DEVS models [18]. 

This hybrid M&S capability facilitates interoperability. 

 The next sections will describe a new DSL for the 

cognitive science discipline and how the semantics are then 

transformed to a DEVS DSL leading to an executable 

model. 

 

4. DSL FOR COGNITIVE MODELING  

 Many cognitive scientists consider cognitive activity to 

be a product of an open system that interacts with the 

environment [24]. This perspective has motivated such 

cognitive scientists to study cognitive architecture, the 

invariant structural and behavioral system properties 

underlying cognitive activity that remain constant across 

time and situation.  

 

4.1. Overview of ACT-R 

 The Adaptive Character of Thought-Rational (ACT-R) 

is a theory of human cognition in the form of a cognitive 

architecture and a cognitive modeling and simulation 

framework [25]. A key characteristic of ACT-R is that it 

distinguishes between declarative and procedural 

knowledge. Declarative knowledge represents factual 

information that can be retrieved and acted upon. Units of 

declarative knowledge are known as chunks in ACT-R. 

Structurally, a chunk consists of a chunk-type and a list of 

key-value pairs. Declarative knowledge chunks are stored in 

a long-term associative memory. Procedural knowledge 

represents steps of central cognitive processing. Instances of 

procedural knowledge are known as productions in ACT-R. 

Productions represent associations between context-

constraints and actions. Productions are stored in a flat 

procedural memory. 

 The base architecture of ACT-R consists of a set of 

independent modules that processes a different kind of 

declarative knowledge. Table 1 lists the central modules in 

ACT-R. Transient declarative knowledge is stored in 

module buffers. Only the module maintaining a buffer or the 

procedural module can modify the contents of that buffer. 

Cognitive activity arises from interactions between a central 

production system (CPS) and these modules. Productions, 

essentially rule-action pairs, exchange information within 

and between buffers during these interactions. 

 Overall processing activity in ACT-R consists of a 

mixture of parallel and serial processing in and across 

modules. Parallel activity can occur within each of the 

modules. For example, retrieval requests processed by the 

declarative module depend on a parallel search through 

long-term memory for chunks matching constraints 

expressed in retrieval requests. Parallel processing can also 

occur across the modules. For example, the motor module 

can manipulate the hands while the vision module identifies 

an object in the visual field. 

 
Module Role in Cognition 

Audio Localizing and identifying sounds in the environment 

Declarative Storing and retrieving information in an associative 

memory 

Goal Tracking progress towards current goals and 
intentions 

Imaginal Maintaining internal representations of problems & 

situations 

Motor Controlling the hands 

Procedural Initiating and coordinating the behavior of all other 

modules 

Speech Producing speech 

Vision Identifying objects in the visual field 

Table 1. The modules and buffers making up ACT-R‟s 

architectural core. 

 The CPS underlying ACT-R‟s procedural module 

matches productions to context (buffer contents) and uses a 

utility calculus to determine which matching production 

fires and advances the cognitive process. The resolution of 

ACT-R‟s utility calculus is limited to the production level. 

In large cognitive models, as the number of productions 

increases, this level of resolution leads to computational 

demands that impede scalability. The demands associated 

with production utility calculations in a flat procedural 

memory can be mitigated by representing and processing 

procedural knowledge in a hierarchical manner using 

extended finite state machines (EFSM). EFSMs can be used 

to effectively group productions into descriptions of 

cognitive activity at a resolution above the production level. 
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 A DSL supporting the specification of ACT-R 

procedural knowledge in EFSMs that can be incorporated 

into the DEVSML 2.0 stack has recently been developed 

[26]. This DSL, known as the Research Modeling Language 

(RML), illustrates how cognitive modeling can benefit from 

a component based modeling and simulation framework 

based on DEVS. The abstract syntax of RML is influenced 

by the ACT-R cognitive architecture [25]. We show in the 

next section of this paper that RML can function as a 

component in the DEVSML 2.0 stack and yield DEVS 

components that can be composed into a larger simulation 

that includes both DEVS and non-DEVS components.  

 
4.2. The Syntax of RML 

The abstract syntax of RML includes concepts, 

constraints and relations that capture the behavior of the 

modules listed in Table 1. 
 

4.2.1. Declarative Knowledge 

The abstract syntax of RML assumes that declarative 

knowledge is represented as predicates capturing 

relationships between entities. Transient declarative 

knowledge resides in a working memory. Knowledge is 

added to working memory by: (1) environment events; (2) 

active attention; (3) module processes; and (4) the direct 

utilization of procedural knowledge. 

Declarative knowledge is maintained in a semantic 

network. Nodes in the network represent the classes, 

properties, and instances constituting a body of knowledge. 

Nodes are connected by edges representing relations. 

Retrievals based on ACT-R‟s retrieval equations are 

achieved through parallel spreading activation in the 

semantic network. The design and performance of RML‟s 

declarative memory system is described in [27]. 
 

4.2.2. Procedural Knowledge 

The abstract syntax of RML assumes that procedural 

knowledge is represented in behavior models that explicitly 

represent cognitive state, context, alternative courses of 

action, and failure. These models are formally represented 

as extended finite state machines (EFSMs). EFSMs are a 4-

tuple: 

 

EFSM = <S, s0, LSV, TRA>, where 

 

S :  set of states 

s0 :  start state 

LSV :  set of locally scoped variables 

TRA :  set of transitions 

 

 A single start state must be included in the set of states 

(S). A number of optional stop states may be included in S. 

The LSV and TRA sets can be empty. 

In the following descriptions of locally scoped variables 

and transitions, type information is included in parentheses.  

Definitions and a grammar formally describing these types 

can be found in [26]. 

 

Locally scoped variables are a 2-tuple: 

LSV = <N, V>, where 

 

N :  name (Variable_Name) 

V :  value (Variable_Value) 

 

LSVs maintain representations of context. For example, 

aspects of declarative knowledge originating in the 

declarative module can be maintained in LSVs over the 

course of cognitive activity. 

 

Transitions are a 9-tuple: 

 

TRA = <P, S, D, L, Pr, Cp, F, A, Ps>, where 

 

P :  priority (Integer) 

S  :  source (State_Name) 

D :  destination (State_Name) 

L  :  label (String) 

Pr :  pre-bindings (Binding) 

Cp:  context patters (Pattern) 

F :  functions (Function) 

A :  assertions (Assertion) 

Ps:  post-bindings (Binding) 

 

Priority (P): preferences/estimates of utility that resolve 

conflict when more than one transition is possible from a 

state. 

Source (S): the state from which a transition originates. A 

destination (D) is the state to which a transition leads. 

Label (L): a description of the function/purpose of a 

transition. Labels are similar to documentation strings. 

Pre-bindings (Pr): “name=value” pairs used to: (1) ensure 

that LSVs have a specific value (values are constants); or 

(2) retrieve elements from context (values are variables). 

Context patterns (Cp): predicate constraints that must be 

met for a transition to be allowed. Patterns can be: (1) 

used to ensure that particular pieces of declarative 

knowledge are in working memory or not (predicate 

patterns contain only constants); or (2) used to bind 

elements related by predicates in working memory 

(predicate patterns contain variables). 

Functions (F): execute calculations involving LSVs and 

context pattern elements. They are provided in RML 

because they significantly increase the representational 

power of state machines. 

Assertions (A): predicates added to working memory after a 

transition has completed. 

Post-bindings (Ps): name/value pairs that will add to or 

overwrite LSVs maintained by an EFSM. 
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4.3. RML Model of the Fan-Effect 

The fan-effect [28] reflects the impact of knowledge 

complexity on human memory. As a person memorizes 

additional facts involving a concept, the amount of time it 

takes them to retrieve any one of these facts increases. A 

model of the fan-effect has been developed in RML in order 

to demonstrate how a DSL semantically anchored in DEVS 

can be used to model detailed cognitive activity. The 

exercise of specifying a RML model of the fan-effect 

illustrates two points: (1) a DSL with an abstract syntax 

employing critical aspects of a cognitive architecture like 

ACT-R retains the cognitive fidelity of those aspects; (2) a 

DSL permitting the specification of behavior at a level of 

organization above the production supports the development 

of behavioral sub-assemblies. The first point demonstrates 

that new modeling formalisms designed to facilitate scale 

and interoperability need not abstract their users from 

empirically important details. The second point illustrates 

how complexity can be managed through hierarchy. 

  

 

Figure 5. EFSM representing behavior that locates, attends 

to, and retrieves declarative knowledge about an object. 

 The RML fan-effect model consists of two 

communicating EFSMs: 

- attend_and_comprehend: (Figure 5) representing 

behavior during a repeated attend/comprehend subtask. 

- fan_task: (Figure 7) representing behavior at the task 

level. 

 Notice how transition labels and state names summarize 

and document the represented behavior at a high level of 

abstraction effectively concealing the formal details of the 

cognitive activity represented by the EFSM from the user. 

The formal attributes of a transition can be edited by 

selecting it and adding/editing textual aspects of its 

underlying 9-tuple (Figure 6). 

   

Figure 6. Transition attributes specifying how attention is 

focused onto the Lx/Ly coordinates of a visual location.  

 

Figure 7. EFSM representing behavior that comprehends a 

person, comprehends a location, and then identifies a trial as 

a target or a foil. 

 The EFSM of fan_task is show in Figure 7. The states 

comprehending_person and comprehending_location „task‟ 

the attend_comprehend EFSM in Figure 5. When the 

attend_comprehend EFSM transitions to its stop state, 

execution control returns to the fan_task EFSM. A 

transition in RML is semantically equivalent to an ACT-R 

production [26]. The major outcome of this exercise is that 

the existing productions now have been regrouped (as 

transitions in RML) based on the abstract states defined in 

EFSMs. This has a far reaching benefit when scalability is 

concerned. Instead of a flat pool of productions that are 

evaluated each simulation cycle now only a subset of 

productions are evaluated for execution of the system. In 

addition, now we have a behavioral unit such as 

attend_and_comprehend that can be reused and participate 

in hierarchical construction of other EFSMs. 

 The transition process in RML EFSMs during 

simulation is based on: (1) the accumulation of match 

bindings when patterns match context (knowledge in 

working memory); (2) the optional augmentation of match 
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bindings through functions; and (3) the instantiation of 

assertions with match bindings. As transitions occur during 

runtime, a sequential pattern matching process realizes a 

type of forward chaining. If a transition time cost of 50ms 

and ACT-R‟s time costs for attention shifts, motor 

responses, and declarative retrievals are adopted during 

simulation, this forward chaining precisely matches 

production firing in ACT-R. When the RML model of the 

fan-effect is simulated in either the Erlang-based Run time 

Environment [26] or the DEVSML 2.0 stack as described 

ahead, retrieval successes, failures, latencies, and task 

actions precisely matching those of a fan-effect model 

described in ACT-R instructional materials are produced. 

 

5. TRANSFORMING RML TO DEVSML 

In the previous section we saw how a DSL such as 

RML can specify the similar behavior of an ACT-R fan-

effect model. We also mentioned that the RML is 

semantically anchored in Erlang that allows execution of an 

RML model. While the objective of moving away from 

ACT-R production system through a better abstraction 

mechanism has been achieved, it lands us in the same 

situation wherein isolated simulation platforms fail to be a 

component in a larger system of system. In order to 

incorporate RML models (in their current state) in an 

integrated simulation exercise, we have to also consider the 

execution platform interoperability as well, not to mention 

the pragmatic, semantic and syntactic interoperability [29].  

The approach proposed in this paper takes the RML 

meta-model in its entirety and decouples it from its semantic 

anchoring with Erlang. Once that decoupling is done, the 

meta-model is then semantically anchored in DEVS, which 

provides solutions to interoperability, extensibility, 

composability and scalability. It can be argued that we are 

semantically anchoring RML in just another platform that 

provides some additional benefits. We would like to take the 

position that DEVS is more than a computational platform. 

It is a formalism and a complete framework supported by 

dynamical systems theory that has transparent platform 

execution with its SOA implementation [11,30]. Figure 2 

has already emphasized this point. We will now show how 

RML is semantically anchored in DEVS and a 

M2DEVSML transformation is performed. 
 
5.1. From RML elements to DEVS components 

From structure perspective, any DEVS system is made 

up of three elements, the model components (atomic or 

coupled), the messages that flow between them, and the 

couplings that communicate these messages between 

components. Both the atomic and coupled DEVS 

components transmit and receive messages. However, the 

capacity to interpret the message and use it to express the 

behavior is solely the characteristic of DEVS atomic 

component. A new message originates exclusively within an 

atomic component per its behavior specification and is then 

placed at the output interface of the atomic component. The 

behavior of an atomic component is a function of 

superposition of two behaviors i.e. when an external 

message is received and when it is not. In order to specify 

the behavior, a state space is specified and the transitions 

between these states are defined with respect to an „event‟ 

abstraction.  An Event can occur in only two modes i.e. 

when an external message is received or an internal variable 

goes through a value change so as to mark an „event‟. Each 

designed event is then associated with a state within the 

state space and the transition to the next state is performed 

when such „event‟ occurs. In DEVS, this transition is 

specified in two functions i.e. the external transition 

function and the internal transition function. Further, after 

every such state transition, whether external or internal, if 

the component needs to send an ouput message in that 

specific state, an output function is specified that puts the 

message on output interface of this atomic component. 

Formally speaking the atomic DEVS is defined as an 8 tuple 

system: 

 

M =< X; S; Y; δint; δext; δcon; λ; ta > 

 

where, 

 X is the set of input values 

 S is the set of states 

 Y is the set of output values 

 δint : S →S is the internal transition function 

 δext : Q × Xb → S is the external transition function; 

   where Xb is a set of bags over elements in X; 

   Q is the total state set 

 δcon : S × Xb →S is the confuent transition function, 

   subject to δcon(s; Φ) = δint(s) 

 λ: S →Yb is the output function 

 ta : S → R(0+;inf) is the time advance function 

  

 Describing the richness of DEVS atomic behavior is 

outside the scope of this paper. We will consider a subset of 

DEVS called XML-Based Finite Deterministic DEVS 

(XFDDEVS) [21] that abstracts the DEVS formalism to an 

automated transformation process using XML such that true 

DEVS semantics is maintained. We can consider FDDEVS 

to be another DSL that is semantically anchored in DEVS.  

 The RML state machine in Figure 5 is a state machine 

with finite number of states. The atomic FDDEVS is 

specified as a seven tuple: <X, Y, S, δint, δext, λ, ta>, where X 

is set of incoming messages, Y is a set of outgoing 

messages, S is the set of states, δint is the internal transition 

function, δext is the external transition function, λ is the 

output function and ta is the timeout for each state.   
 We will now transform the RML description for EFSM 

attend_and_comprehend as shown in Figure 5. As we 

already have 3 states i.e. locating, attending and 
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remembering, we have an initial starting point for our state 

space. However, we have to remember that the notion of 

„state‟ in DEVS is associated with occurrence of an „event‟. 

Now, looking at each of the transitions in each of the three 

states in Figure 5, we find that each transition although 

specifies the source src and the destination dst state, has 

more going on inside it. For example, the pre_binds, 

post_binds, patterns and assertions elements. As per the 

RML semantics, the model will expect the pre_bind 

variables to match up with the patterns, and if matched, will 

perform the post_bindings and assertions and will then 

finally move to the dst state. In DEVS semantics, this 

operation can be considered as two events, and 

consequently, two states. The first state being, 

beginOperation, wherein evaluation is being made per input 

patterns and the second state being, dst itself. On 

completion of first state, assertions (output) is being sent 

and the model then moves to dst state. While there is no 

problem in the RML semantics, the DEVS formalism 

requires the specification of output function which is 

associated with a specific state. If we preserve the RML 

state set then the point where two events happen together, 

ie. Incoming patterns and assertions, breaks the notion of 

discrete event in DEVS formalism. The DEVS semantics 

very clearly expresses this in the output function. Using the 

system homomorphism concepts [1] as shown in Figure 8, 

by introducing a Zero time state (Figure 9), we not only 

preserve the RML semantics but also transform the state 

machine into a DEVS state machine.  

 

 

Figure 8. Preservation of States as two systems are 

compared and M2DEVS transformation is performed 

The automated transformation is executed using Xtext, 

XPand and XML-based technologies such as JAXB. Xtext 

is a language development framework that allows 

development of rich DSLs backed by EBNF grammar in a 

full blown auto-generated Eclipse editor with interpreters 

and compilers. It allows syntax highlighting, code 

completion, code validation, quick fixes and complete file 

operation capabilities within the Eclipse IDE. Xpand is the 

code generation technology built on top of Xtext that allows 

creation of code-templates that uses the underlying EBNF in 

the designed DSL for its further use and transformation. The 

utility of Xpand is like XSLT in the XML domain wherein 

XSLT acts as the transformer between two markup 

languages. In our example, the EBNF for RML has been 

discussed in [26]. Using Xtext and Xpand, the EBNF 

elements are extracted and transformed directly to 

XFDDEVS as per rules defined in Table 2. An Eclipse 

plugin was created that performed the complete process i.e. 

RML-to-FDDEVS-to-DEVSJAVA. More details are 

reserved for our extended article. 

 
RML Elements FDDEVS Elements 

Globals   

 states S 

Transition  If patterns >0, then each tuple in patterns is 
an incoming external message and be 

addressed in δext. The src state must 

transition to beginDst state in zero time. 

 

if assertions>0 then each tuple is an 

outgoing message and be addressed in λ in 
state beginDst 

 

every beginDst state should internally 
transition to dst in 0ms . Every dst must 

match the ta=50ms of RML state and once 
elapsed should internally transition to 

passive.  

 src s in S 

 dst s in S 

 patterns X 

 assertions Y 

Table 2. Semantic mapping from RML to FDDEVS 

 Figure 9 shows the complete DEVS state machine after 

this transformation process. The solid lines shows external 

event i.e. incoming message depicted with prefix ?. The 

dotted lines show internal event transitions. The generated 

messages are depicted with a prefix !. The timeout for each 

state are in the parenthesis.  Table 3 shows the mapping of 

states in the RML EFSM (Figure 5) to those in the 

FDDEVS State Machine (Figure 9) along with timing in 

parenthesis. Table 3 lists the mapping of RML semantics 

into XFDDEVS elements. 

 
RML States FDDEVS States 

start (0) passive(infinity) 

locating(50) beginLocating(0), locating(50) 

attending(50) beginAttending(0), attending(50) 

remembering(50) beginRemembering(0), remembering(50) 

stop(0) passive(infinity) 

Table 3. RML states to FDDEVS states 

Similarly, the second RML Fan Task EFSM as depicted 

in Figure 7 is also transformed to FDDEVS. Finally, the two 

atomic models are coupled and realized in DEVSJAVA 

simulation viewer [10] as shown in Figure 10. The Fan Task 
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atomic tasks the attend_and_comprehend atomic by sending 

„assert_intention‟ message from „out_assert_intention‟ 

outport to „in_assert_intention‟ inport. This coupling is 

specified explicitly unlike the Erlang Runtime Environment 

where communications between the EFSMs are handled 

through„blackboard‟ architecture. This is another advantage 

of DEVS component based architecture wherein 

components like blackboard which are not scalable in a 

distributed environment can be eliminated in their entirety. 

Further, such explicit coupling facilitates standardization of 

interfaces for the developed components.  

We have shown the execution of M2DEVSML 

transformation from one DSL into another DSL that is 

semantically anchored in DEVS. We have addressed the 

atomic behavior, coupling and structure of the transformed 

RML model into DEVS atomic and coupled models. The 

remaining piece of the entire transformation exercise is the 

message transformation which will be reported in an 

extended article. 

passive(inf)

beginLocating (0)

?attend_comprehend

locating(50)

  !get_vis_location

? Encoding_complete

! 

Attended_and_comprehended 

(Id, Lobj, T2) beginAttending(0)

attending(50)

! focus_attention

! focusing_on (lx,ly)

! resource(Visual,busy)

? Vis_location

beginRemembering(0)

remembering(50)

! Exec_retrieval (name=LS, type=Type, C)

! Resouce (Declarative, busy)

remeberingComplete(0)

? retrieval_success

 
Figure 9. FDDEVS state machine for 

attend_and_comprehend 

 

 

Figure 10. Fan Task Coupled Model  

6. CONCLUSIONS AND FUTURE WORK 

 AFRL research efforts employing cognitive modeling 

are growing in scope. These efforts to transition cognitive 

modeling from the laboratory to operations settings are 

struggling to meet challenges associated with: (1) increasing 

the scale of models; and (2) integrating models into 

software-intensive distributed task environments. An AFRL 

LSCM initiative is researching solutions to these challenges 

based on high-level languages, more specifically the DSLs, 

for describing cognitive models at a higher level of 

abstraction to facilitate scale and the underlying simulation 

frameworks supporting these DSLs. DEVS formalism and 

M&S framework allow users to simulate models in 

architectures that improve model integration and 

interoperability in a net-centric domain using the DEVSML 

stack 2.0. This paper described RML, a hybrid 

(textual/visual) cognitive and behavior modeling DSL 

influenced by ACT-R in which models capturing cognitive 

activity above the level of the production can be specified. 

RML illustrated how DSLs designed to facilitate scale and 

interoperability need not isolate users from empirically 

important details. 

 We also extended the earlier DEVSML stack with 

DSLs and suggested M2M, M2DEVSML and M2DEVS 

transformations as the preferred way to achieve model 

interoperability and larger integration of modeling 

framework with an underlying DEVS distributed simulation 

infrastructure. We illustrated this concept by developing a 

DSL called RML for ACT-R and executing it on DEVS 

platform. 

 Current efforts to make net-centric cognitive models 

will allow cognitive modelers to evaluate and field their 

models through Service Oriented Architectures (SOA) and 

other net-centric infrastructures. This paper lays the 

foundation and suggests how future work will amplify the 

benefits of componentizing other DSLs from disparate 

domains. By unifying ACT-R modeling practices into the 

DEVS Unified Process [31], future versions of DEVS/ACT-
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R will facilitate the verification and validation of ACT-R 

models. Refinements and extensions to net-centric 

DEVS/ACT-R will enable cognitive scientists to “black-

box” models of cognitive activity into larger system of 

systems [32]. 

 The work described in this paper illustrates how 

methods and processes common in general M&S can be 

exploited by other fields—in this case cognitive modeling. 

The immediate contribution of this work is platform 

independent modeling and simulation using DSLs and 

DEVSML stack 2.0, an architecture that is allowing AFRL 

to begin integrating cognitive models into net-centric 

infrastructures such as a Service Oriented Architecture 

(SOA). The transition of DEVS/ACT-R to a SOA has the 

potential to literally revolutionize how AFRL develops and 

fields large-scale cognitive models. 
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