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1 Introduction

Since the early 70s, the M&S community has beeindrjo formulate approaches to modeling
as system specification formalisms. As seen in phevious chapters of this book, the
proliferation of DEVS-based M&S engines has broutji@ need to improve and standardize
DEVS tools, facilitating the work of DEVS designeirsdependently of the programming
language implementations or algorithmic code exgioes used. To understand the problem, let
us consider that DEVS categorically separates thddl) the Simulator, and the Experimental
frame. Building on this separation of concerns, DEVS Protocol specifies the abstract
simulation engine that correctly simulates DEVSnatoand coupled models. Interpreted in a
distributed simulation context, the DEVS abstractudator gives rise to a general protocol that
has specific mechanisms for declaring who takes ipathe simulation (the federates). It also
specifies how federates interact in an iterativeleyhat controls how time advances, when
federates exchange messages, and perform intemtal pdating. A significant feature in
comparison to simulation based on the HLA standiarthat if the federates in simulation are
DEVS compliant then the simulation can be provetb@ocorrect in the sense that the DEVS
closure under coupling theorem guarantees a wéhetkresulting structure and behavior.

DEVS modeling and simulation research groups aterested in DEVS interoperability in
order to enhance model composability and reusglufiDEVS models and non-DEVS models
in different languages and platforms. The problennteroperate heterogeneous DEVS models
with DEVS simulators is that DEVS simulators implmthe DEVS modeling formalism in a
growing number of diverse programming environmemtihough the DEVS formalism
specifies the same abstract simulator algorithm doy simulator, different simulators
implement the same abstract simulator using differgrogramming languages and
environments.

In other words, the model and the simulator existtiie same programming language.
Consequently, legacy models as well as modelsdteiavailable in one implementation are
difficult to translate from one language to anotf@ven when both the implementations are
object oriented). Other constraints such as libsaiherent to the programming language (i.e.,
C++ or Java) are a source of complexity that pres/éne desired interoperability. This is

particularly important in large scale M&S, includiM&S of Systems of Systems. In order to

support such interoperability, various standardsehmeen developed.

The new computing methods of recent years (in qadi, Grid computing and Cloud
computing) introduced new ways of sharing computogver and storage in heterogeneous
environments. Using these technologies, resourcesvigtualized as services consumed on
demand (with minimal limitation for resource locat). By exposing the unused resources
available in most organizations, simulation perfante can be improved through replication
processes. This model of computation has beenrsatyesuccessful, but it is still limited for
more advanced simulations (for instance, when wa-lteractivity is needed, for interfacing a
simulation with sensor networks, etc.). Likewisgndation interoperability on the Grid can
require complex ad hoc tailoring, which is a costiyl elaborate process.



Parallel simulation middleware (e.g., GATech Timeary/ [1], Warped [2], SPEEDES and
WarplV [3], etc.), had usually focused on tightlpupled systems. Instead, distributed
simulation middleware must allow partitioning anchning simulations remotely. For instance,
DIS (Distributed Interactive Simulation [4]) allod¢he development of distributed simulation-
based training solutions (by sharing data and cdimgpupower remotely). Other solutions
included the HLA (High Level Architecture [5]), wdh was designed for interoperability of
distributed simulation assets, and TENA (Test amaining Enabling Architecture [6]), which
was built on top of CORBA (and subject to its sgtdas and limitations, see below) to enable
real-time interoperation of assets in geographicdiktributed test ranges. This distributed
simulation middleware focuses on data sharingridiged processes, communication, and time
management (in HLA), and has facilitated the dgwelent of large-scale distributed
simulations. Nevertheless, model reuse using tind kf middleware is still difficult, ad hoc,
and costly. The motivation for the discussion irs tbhapter stems from this need of model
interoperability between the disparate simulatoplementations; we intend to discuss the
means to provide simulators that are transparentddel execution. We claim that a DEVS-
based standard would improve sharing and interbgigyaof M&S assets, both locally and
distributed, including specifications to facilitaieSystem of Systems that interact using a net-
centric platform. At this level, model interoped#piis one of the major concerns.

As discussed earlier in this book, there are nowerous libraries and tools for expressing
DEVS models across the globe, such as DEVSJAVA1[/IDEVS/C++ [7], CD++ [8],
ADEVS [9], DEVS-Suite [10], James [11], etc. (forcamprehensive list, check http://cell-
devs.sce.carleton.ca/devsgroup/?g=node/). Althdbighproliferation of libraries is witness to
the numerous advantages in DEVS M&S, its multiplianot only complicates sharing of
models, it also requires modelers to learn the iBpgerogramming language in which the
simulator is implemented. An important side effettthe latter is that most of the times the
modelers then become locked to this language.

The different designs to be discussed in this @regitow efforts to bridge the gap between the
different implementations by employing standard nsefi.e., XML) in order to share model
information and make a step towards model intergkty and reuse.
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Figure 1: Concept of Standardized Independent-platirm Model Representation

The different designs discussed in this and thievidhg two chapters deal with two different
interoperability objectives:

(1) Standardizing DEVS model representatithre idea is to allow a platform-independent
DEVS model representation to be executed by a DB&®d simulator. In this case, a



DEVS model is executed on a single processor oa parallel/distributed simulation
environment. This allows model reusability withaiie need of performing long-
distance distributed simulation. Typically, modedse stored in repositories and
retrieved as needed, as shown in Figura this figure, the Model boxes correspond to
DEVS specificationsndependent of the application domain. These satibns must
be independent of computer programming languagesn$tance in set theory or some
kind of calculus. From such formal specificatiossftware specifications—such as
XML—can be derived. The boxes called Simulator espnt the protocols that are
needed to execute the specified models. By meanéitf, the modeler may use a
standard representation of a DEVS scenario thas doé require much programming
knowledge, making automatic transformations frone ML representation to a
particular simulator representation. The implemiéons shown in this chapter are
based on XML (i.e., Document Type Definition (DTBhd later on XML Schema,
usually called XML Schema Definition (XSD)).

(2) Standardizing Interoperability Middlewarénhe idea is to allow for interfacing different
simulation environments, providing synchronizationthe same simulation run across
a distributed network regardless of their modetesentation, as shown in Figure 2.
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Figure 2: Concept of Standardized Distributed simuhtion Middleware

The development of this middleware is the area o$tninterest to overcome current
distributed simulation challenges and to meet Ritekpectations, as indicated by a
number of surveys [1B]4]. Developing a standardized DEVS simulation protoco
would allow enabling different DEVS implementatiotts simulate the same DEVS
model hierarchy partitioned between various DEV&dios, while allowing all DEVS
domains to execute their legacy models, perforndiistributed simulation experiment
between different heterogeneous simulation modeld engines. All middleware
designs presented in this chapter offer simulatésources as consumable services. In
this case, simulation entities act as peers @lients and servers at the same time) to
each other to synchronize a simulation session.

Each of these two objectives form two different sétstandards and should be treated
separately. In other words, a simulation tool doetsneed to conform to both sets of standards,
stated above, to be able to reuse other resouaresdifferent working groups.

DEVS-to-DEVS Interoperability is a basic form of interoperability that is enablgy

a DEVS standard. Adoption of the DEVS standard ddatilitate new development to
achieve interoperability at the syntactic, semandad pragmatic levels. This is
accomplished at the two levels stated above: moegglesentation and middleware
synchronization.



DEVS-to-Non-DEVS Interoperability is more complex. We need to establish
mechanisms to implement the core simulator interfac the Abstract Model interface
to interoperate at the syntactic level with DEVS] ather non-DEVS peers. In its
strongest form, such simulation methodology guaesitvell-defined time preservation
and simulation correctness as a sound basis tof@irmteroperability at the higher
levels. This part relies more heavily on the midglee standard set. In this case, the
middleware needs to hide as much as possible aitetatailed implementation,
including the DEVS formalism representation, inerdo allow practical DEVS-to-
Non-DEVS simulation synchronization.

Each of the above objectives faces different chghs. The main challenge of standardizing a
DEVS model representation is in integrating thendtedized representation into local
simulation environments. In other words, the targieulation platform must interpret the
standardized representation in a manner similétstmcal model representation. For example,
some DEVS tools define their models as programnb@mguage structures (e.g., Java/C++
classes). In this case, the problem extends beglandpplied programming language and also
involves the complications of plugging the resuligegramming structure into the overall
hierarchy design of the DEVS tool. Afterwards, thasodels need to be compiled with DEVS
tools legacy source code. In other cases, some DBYIS define their coupled representation
in tool-dependent textual format. The only issueeh&s in converting the standardized
representation into the required textual formatan8ardization independent of domain
knowledge can be formulated in terms of handlinffedknt syntactical specifications and
programming languages while handling alternativaeusitor designs, and simulator features.
Syntactical interoperability can be defined in terof the generality of the DEVS model
specification and its underlying abstract simulalgorithm, both of which are independent of
programming languages. Different design choices sigpport the same model syntax and
abstract simulator semantics. In particular, thgiren that performs a simulation includes
features (e.g., visual component-based notatiosplal of simulation data trajectories, and
configuration of simulation experiments) that must have any side effect with respect to
correctness of the simulator protocol [15]. On dine hand, the execution speed (performance)
of the simulator may be adversely affected and hmn dther hand, users can benefit from
important features such as simulation animatioewing time-based trajectories, and run-time
design of experiments [10].

On the other hand, standardizing a middleware pobtéo execute distributed simulation
between heterogeneous simulation entities faceferéift challenges. In this case, a
programming language or other local implementatissues are not a problem, since the
standardized protocol should hide and overcomeethessies, as in the case of any Grid/Cloud
computing system. However, the main problem isdi@idnine how the different environments
synchronize a simulation session. This includesumber of issues such as the simulation
semantics (e.g., messages versus programming paramaynchronization protocol (i.e., how
information is sent and received), etc. These ssatso shown in Figure, 2re important
because they affect the flexibility of improvingrsilation algorithms, the required amount of
software changes of DEVS tools, and the abilita@EVS tool to evolve independently with
other unrelated features to the standards. In faattent DEVS tools support distributed
simulation using different underlying technologyjttwtheir own defined synchronization
protocol to manage a simulation between differésttiduted partitions.

Interoperability among different simulation enginesgenerally considered domain-neutral.
Execution of models implemented in two or more etéiht programming languages can be
guaranteed to be DEVS-compliant for a unique abssianulation algorithm. The specifics of a
system and the conditions under which it is to Rpeemented with can be modeled and
simulated in terms of system and experimental framdels. The simulation engine is domain-
neutral and the domain-specific modeling constriaets built from generic DEVS modeling



constructs. It is desirable for domain-specific misdto be independent of the simulation
engines that can execute them.
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Figure 3: Centralized and distributed DEVS-based snulators

DEVS implementations have evolved independently tve years, which makes interoperating
them a nontrivial task. The implementation of th&V® formalism can range from one
simulator implemented in a single programming laggiand executed on a single processor to
multiple simulators implemented in multiple programg languages and executing on
distributed processors (

Figure 3). Therefore, in order to manage complexity of datian modeling (and more generally
the entire M&S lifecycle), standardization is catesied a necessity for interoperation among its
different simulators and highly beneficial for ndistributed simulators.

2 Background
2.1 The DEVS Formalism

For convenience of reference, let us briefly revign@ Discrete Event System Specification
(DEVS) formalism [16] as a M&S specification thaina at studying discrete event systems.
The model consists of components connected togdthmrgh external port(s) where events are
exchanged among models via those ports. Of coass@ any discrete-event simulation, the
models being simulated change state only at dessgeints in time, upon the occurrence of an
event. DEVS expresses a system as a number of dednleehavioral (atomic) and structural

(coupled) components. The basic building block &3 models is the atomic DEVS model

whereas coupled models connect a number of atorfsineother coupled models.

The P-DEVS formalism [15] expresses a system asnebar of connected behavioral (atomic)
and structural (coupled) components. A P-DEVS atomodel is formally defined as:

M= <X| Y; S,Sim, 68le 5COn! 7\'! ta>

where

X is the set of input values;

S is the set of states;

Y is the set of output values;

dint: S— S is the internal transition function;

oext: Q X X — S is the external transition function, where
Xis a set of bags over elements in X,
dext(S, €,0) = (S, €);

Seont: S X X — S is the confluent transition function;

A: S— Y"is the output function;



ta: S> R o o

where
Q=/{(s,e) |§] S, 0< e < ta(s) is the total state set
e is the time elapsed since last transitio

At any given time, an atomic model is in some s&td S. It remains in state s for the time
period specified by the state time advance funct&gs), with the assumption of not receiving
external events. When the lifetime of the atomiadeicstate expires, the model outputs value
A(s) U Y, and changes its state as indicated byriteerial transition functiof(s). A P-DEVS
model uses a bag of inputs”jXo exploit parallelism in the system, hence execumultiple
concurrent events simultaneously. Furthermorenbdel also changes its state as defined by
the external transition functidiws, e, )f’). If the atomic model receives one or more externa
events xO X before the expiration of ta(s), it merghe functionality of multiple external
transitions into a single one. A confluent tramsitfunction §..r) is used to conclude the next
state of the model, thereby resolving the collisiarhen receiving external events and internal
transitions simultaneously.

It is worth noting that the main difference betwedeBVS and P-DEVS formalisms is the
addition of theconfluentfunction Qc.n), Which is responsible for determining the nestestof
the model when an external input arrives at theesdme of an internal transition. The
definition of theconfluentfunction is determined by the modeler so thatdbeect behavior
can be modeled depending on the system under Sthéyphysical system model is created by
integrating different DEVS models together throdlygir input and output ports; resulting in a
coupled DEVS modeh coupled DEVS model consists of atomic and/d¢reotcoupled models
connected together. A P-DEVS coupled model is fdynueefined as:

N = <X, Y, D, {Mq | do D}, EIC, EOC, IC>

Both X and Y define the sets of input and outpwres respectively. D is a set of indices for the
components of a coupled model and, for each d  PisM basic P-DEVS model (atomic or
coupled). The external input coupling (EIC) spedfithe connections between external and
component inputs, while the external output cogp(lBOC) describes the connections between
component and external outputs. The connectionwedaet the components themselves are
defined by the internal coupling (IC). Thanks te hroperty known as closure under coupling,
a coupled model can be reduced to a behaviorallivalgnt atomic model, and thus be treated
as a basic component in construction of more carat@d hierarchical models.

2.2 DEVS Simulation Protocol

DEVS treats a model and its simulator as two distielements. The DEVSimulation
protocol describes how a DEVS model should be simulatedttidr in standalone fashion or
in a coupled model. Such a protocol is implemeied processor, which can be a simulator or
a coordinator. As illustrated in Figure 4, the DEpi®Stocol is executed as follows:

1. It starts with the coordinator first distributing €ach of the simulators in the collection
each other’'s addresses and then telling each ofi tioe perform their initialization
function.

2. A cycle is then entered in which the coordinatquests that each simulator provide its
time of next event and determines the minimum ef tbturned values to obtain the
global time of next event.

3. Each of the simulators applies itsmputelnputOutput(inethod to produce an output
that consists of a collection of content (port/édlpairs—for DEVS simulators this is a
composite message computed according to the DEXB8afsm based on the current
state of its model.



4. Then each simulator partitions its output into rages intended for recipient simulators
and sends these messages to these recipient sirsugldor DEVS simulators these
recipients are determined from the output portsthe message and the coupling
information that will have previously been receieam the coordinator.

5. Finally, each simulator executes ispplyDeltFunc method which computes the
combined effect of the received messages and alteaheduling on its state, a side
effect of which is to produce the time of next ay&ld—for DEVS simulators this state
change is computed according to the DEVS formahsiah thetN is updated using the
time advance of its model.

6. The coordinator obtains the next global time oftresent and the cycle repeats.

Coordinator (STl
1. nextTN Model
3. getOut
5. applyDelt 4. returnOut
2. outTN
Simulator
D
y i i
Component Component Component
Model Model Model
tN, tL tN, tL tN, tL
After each simulation step Component Model can be an atomic or coupled model in
tIN=t+ta(),tL=t which case a coordinator is needed instead of a simulator.

Figure 4: Abstract parallel DEVS simulator protocd

It should be noted that although the abstract sitoulis unique, its actual implementations can
be quite different. This is not only because otwafe design, but also because of the abstract
simulator itself. The abstract simulator does mopase any strict ordering for the messages
sent/received when multiple components are schdduleeceive inputs at the same time. For
example, when the coordinatoextTNrequests are sent to two or more simulators, teron
which theoutTN responses are received can be arbitrary. Thiggeoted since the parallel
DEVS formalism is defined to assume no dependeertyden two messages received from one
or more components. Therefore, there cannot bedapgndencies between two simulators that
are used together in distributed fashion.

2.3 EXtensible Markup Language (XML)

XML [17][18] is a specification for storing inforntian or describing that information structure
in textual documents and is increasingly adoptedaastandard for the interchange of
information in diverse fields of science, enginegrigovernment, and business [12]. XML
plays a major role in the DEVS model representatiesigns in this chapter as well, as many of
them define an XML-based common model represemtatid be executed in any DEVS
environment. It also plays a central role in theladleware standard implementation in the way
simulation semantics is exchanged in form of XMLsseges or in the underlying technology of
the distributed simulation middleware. XML is wigledupported by a variety of programming
environments, allowing developers to manipulatX®h_-based document.

XML was standardized by the World Wide Web Consonti(W3C), and it differs from other
markup languages such as HTML in allowing usersigfine their own tags, provided they
adhere to the XML standards. For example, Figugh@®ws a customized XML document,
listing DEVS tools according to their name and &ggpprogramming language. In this example,
we defined the “Tools” element to hold all “Toolleeents. Each “Tool” element holds two
other elements: “name” and “language” elements.



<?xml version="1.0"?>
<Tools>
<Tool>
<name>CD++</name>
<language>C++</language>
</Tool>
<Tool>
<name>DEVSJAVA</name>
<language>Java</language>
</Tool>

</Tools>
Figure 5: XML Document Example 1

The power of XML is its simplicity and flexibilityo be extended and customized as needed.
Thus, it can be used for data storage and traregportby any application. In this case, data is
structured so that it can be extended or reduditied’) as needed. For example, assume that
the XML document shown in Figure 5 is transferretiieen two applications. In this case, for
instance a new “Tool” element can be easily addethé document. On the other hand, this
extensibility comes at a price. For example, thelXdécument shown in Figure 6 describes the
same information shown in Figure 5, but differently this case, element “language” is
renamed to element “lang”, and element “name” isveoted to attribute “type”. This is easily
realized by human readers with simple XML documemigpically, though, XML documents
are handled by software which considers elemenm@iain Figure 5 to be different from
attribute “type” in Figure 6. Therefore, definingférmation in XML is not enough to
interoperate two applications, but it is only tlwstfstep. For that reason, standardizing XML
documents (i.e., structure, data, etc) is necessartain practical interoperability.

<?xml version="1.0"?>
<Tools>
<Tool type="CD++">
<lang>C++</lang>
</Tool>
<Tool type="DEVSJAVA">
<lang>Java</lang>
</Tool>

</Tools>
Figure 6: XML Document Example 2

The Document Type Definition (DTD) and XML Schenraroduced in the following sections,
can be used to validate XML documents (for examiile, expected XML building blocks).
However, the elements and attributes still needéostandardized so that communicating
application can synchronize correctly.

2.3.1 Document Type Definition (DTD)

DTDs define the legal building blocks (i.e., lidt legal elements and attributes) of an XML
document. For example, Figure 7 shows a DTD doctriext reads as follows: the element
“Tool” contains two elements: “name” and “languagedth are of type “(#PCDATA)”, which
means that these elements are only allowed to icoméxt (PCDATA stands for Parsed
Character Data). The DTD provides more types ssdBMPTY to define an empty element, or
an element number of occurrence and so on.

<! ELEMENT Tool
(name, language) >
<! ELEMENT name (#PCDATA) >



<! ELEMENT language (#PCDATA) >

Figure 7: DTD Example

The DTD defines rules for all the XML documentsnedmts and attributes. However, those
DTD rules must be defined in the subject XML docuaise so that tools can validate XML
documents against those rules.

DTDs can be useful, but there are other methods,infstance, XML Schema languages
(discussed next). Some of the problems of using ®[B] are the need for additional parsers
(since it does not follow XML syntax), the lack sfipport for namespaces or data typing
(i.e., requiring data to be integer, string, edr) the limited capacity for defining the number of
nested children elements (for a parent element).

2.3.2 XML Schema

In 2001, the W3C developed a new schema to over¢benBTD shortcomings. This schema is
also named XML (which is confusing since DTDs dsm&XML). Thus, it is often called XML
Schema Definition (XSD) or, after version 1.1, XMBchema Definition Language
(XSDL) [18]. XML Schema defines the legal buildibipcks of an XML document, as in the
case of DTD. XML Schemas support data types. Theyaitten in XML syntax; hence, are
extensible and scalable. For example, Figure 8 show defined XML elements: “name” of
type “string”, and “height” of type “integer”.

<element name="name"
type="string"/>
<element name="height"
type="integer"/>
Figure 8: XML Schema Example

2.4 Distributed simulation Interoperability Middleware

The main objective of distributed simulation mideéege is interfacing different simulation
environments, allowing synchronization for the sasimulation run across a distributed
network, with heterogeneous simulation software moments, as shown in Figure 2. For
example, each simulation environment may diffemfrother entities in its simulation engine,
algorithms, model representation, and formalisrusTlit comes as no surprise that a number of
surveys placed the middleware of distributed sitiieas the area of most interest to overcome
current distributed simulation challenges and t@ifieture expectation [19][13]. For example,
a recent study carried out by Strassburger, Schatm Fujimoto [19] found that future efforts
must include the integration of heterogeneous messi and the joining of computer resources
for complex simulations and training sessions. Ttaedy also identified some research
challenges for distributed simulation middlewaretswas thePlug-and-Play capability. To
support such capability, the middleware should éigterogeneous models effortlessly even
at runtime without prior knowledge, hence with asibess mentality of “Try-before-you-buy”
way of thinking via widely accepted standards ire timdustry. In fact, the underlying
technology is the framework of the middleware; éfiere, it affects the flexibility of any
standards and its ability to meet current and &gxpectations.

The Defense sector is currently one of the largssts of distributed simulation technology,
mainly to provide virtual distributed training enmhment between remote parties, relying on
the High Level Architecture (HLA) middleware to prde a general architecture for simulation
interoperability and reuse [20][21][22]. The RTIftseare layer connects and synchronizes
different HLA simulation entities (called federgtess shown Figure 9.
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Figure 9: HLA Interaction Overview

Despite the results obtained by this standardcthieent adoption of distributed simulation in
the industry is still limited. Further, since itdagption in 1996, HLA has only made limited
inroads in industry because of a number of issuesh sas its complexity and lack of
interoperability in interfacing different Run-Timi@frastructure (RTI) vendors, because the
RTI-to-RTI interface is not standardized. Instead)EVS-based standard has better prospects
for successfully achieving these goals. There akeral technologies that have been used to
create DEVS middleware. In the following sectiong, provide a brief review of each of these
technologies, focusing on the way the consumersraamcate with each other at the software
level. This is important because standard requirgsneventually need to be realized by
software, hence playing a major role in defining tlequired changes for legacy systems
software. A full analysis of distributed simulatiaurrent challenges and future trends is
available in [23].

2.4.1 Common Object Request Broker Architecture (CORBA)

CORBA [24] is an open standard for distributed objeomputing defined by the Object
Management Group (OMG). CORBA object services afendd using the Interface Definition
Language (IDL), which can then be compiled intogpemnming language stubs such as C, C++,
or Java (IDL syntax is similar to other programmiagguages).

Clients in CORBA invoke methods in remote objectsremote procedure call (RPC) style
fashion (using IDL stubs). The method call may metanother CORBA handle (i.e., address)
where the client can invoke methods of the returoigi@gct. CORBA IDL stubs and skeletons
glue operations between the client and server sifles Object Request Broker (ORB) layer
provides a communication mechanism for transferroigent requests to target object
implementations on the server side.

Building distributed simulations using CORBA is aghtforward, since CORBA enables

application objects to be distributed across a agtwTherefore, the issue becomes identifying
distributed object interfaces and defining themDh, hence a C++/Java local operation call
becomes a remote procedure call (hidden by CORBAgrefore, to support distributed

simulation using CORBA all that is required is skting existing C++/Java simulation

interfaces into a CORBA IDL definition.

The use of CORBA in newly started projects hasmgdeen declining, though. Henning [25]
provides a number of reasons for this decline agthe standards complexity, the politics of
accepting new standard designs, and the lack tdinereeded features.

2.4.2 SOAP-based Web-services

WSDL (Web-Services Definition Language) and SOARn{Se Object Access Protocol) are
the main elements that enable SOAP-based Web-ssr(it/'S) interoperability. SOAP-based
Web-services provide interoperability in a similsay as CORBA: WSDL is equivalent to
CORBA's IDL role, where SOAP corresponds to ORBadaiarshalling/serialization function.
Further, Web-service ports are addressed by UnRiesburce Identifiers (URI) where CORBA



objects are addressed by references. Both port®lgjedts contain a collection of procedures
(called services by WS) similar to Java/C++ classEsose procedures glue software
components across the network, providing an RPIe-syype of software interoperability, as

shown in Figure 10.
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Figure 10: SOAP-based Web Service Client/Server Atgtecture [23]

The server exposes a group of services via podsh eervice is actually an RPC whose
semantics are described via that procedure paresnefdient programmers must construct
service stubs with their software at compile tirGéients, at run time, consume a service by
invoking their stub, which, in turn, is convertedd an XML SOAP message (describing the
RPC call). This message is usually wrapped witmrHI TP message, and sent to the server
port using the appropriate port URI. Once the mgessa received at the HTTP server, it is
passed into the SOAP layer (usually called the S@AgIng. SOAP engines are usually Java
programs running inside HTTP servers, cal®erviets The SOAP layer parses the SOAP
message, and converts it into an RPC call appbetthé appropriate procedure of the proper
port. The server returns results for the clienthsnsame way. Thus, the SOAP message role is
to provide a common representation among all attiehe invoked procedure at runtime. For
example, in Figure 11 we can see that, once theedroe boolean stopSimulation(int inOjs
invoked by a client, the SOAP engine converts fb ithe message shown in Figure 11 and
transmits it to the server, which in turn is cortedrinto the appropriate procedure call. The
server subsequently replies in a similar way.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <SOAP-ENV:Envelope xmins:xsd="http://www.w3.0rg/2 001/XMLSchema"
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soa p/envelope/"

4 xmins:xsi="http://lwww.w3.0rg/2001/XMLSchema-in stance">

5 <SOAP-ENV:Body>

6 <nsl: stopSinmulation xm ns: nsl="http://Ws-Port-URI/">

7 <in0 xsi:type="xsd:int">1000</in0>
8
9
1

w

</ nsl: stopSi mul ati on>
</SOAP-ENV:Body>
0 </SOAP-ENV:Envelope>

Figure 11: SOAP Message Request Example [23]

Service providers need to publish their serviceXi& WSDL documents to enable clients to
discover and use them. As seen in Figure 10, one affadoing so is via a broker called
Universal Description, Discovery, and IntegratidsDQI). UDDI is a directory for storing
information about web services and is based onNtbdd Wide Web Consortium (W3C) and
Internet Engineering Task Force (IETF) standards.



Clients programming stubs (Figure 10) are generatadcompiling the WSDL document.
Figure 12 shows a WSDL example for the procedbialean stopSimulation(int in0)Lines

1-7 show the messages used by the Web Servicadatise request and to handle the response.
Lines 9-17 show theort-type definition to define the used operations by thebV&ervice.
Lines 19-35 show the binding part, which definesiessage format and ports protocol details.
The <wsdlsoap:binding>element style (in Line 35) attribute uses the R®@=. The SOAP
input/output encoding style for the operatgiopSimulations defined in lines 25-33.

<wsdl:message nhame="stopSimulationRequest">
<wsdl:part name="in0" type="xsd:int"/>
</wsdl:message>

<wsdl:message hame="stopSimulationResponse">
<wsdl:part name="stopSimulationReturn" type="x sd:boolean"/>
</wsdl:message>
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<wsdl:portType name="CDppPortType">

10 <wsdl:operation name="stopSimulation" parameter Order="in0">
11 <wsdlinput message="impl:stopSimulationReques t"

12 name="stopSimulationRequest"/>

13 <wsdl:output message="impl:stopSimulationRespo nse"

14 name="stopSimulationResponse"/>

15 </wsdl:operation>

16

17 </wsdl:portType>

18

19 <wsdl:binding name="CDppPortTypeSoapBinding"

20 type="impl:CDppPortType">

21 <wsdlsoap:binding style="rpc"

22 transport="http://schemas.xmlsoap.org/so ap/http"/>
23 <wsdl:operation name="stopSimulation">

24 <wsdlsoap:operation soapAction=""/>

25  <wsdlinput name="stopSimulationRequest">

26 <wsdlsoap:body encodingStyle="http://... I"

27 namespace="http://..." use="encod ed"/>
28  </wsdlinput>

29

30  <wsdl:output name="stopSimulationResponse">

31 <wsdlsoap:body encodingStyle="http://... /"

32 namespace="http://..." use="encode d'/>

33  </wsdl:output>
34 </wsdl:operation>
35 </wsdl:binding>
Figure 12: Excerpt of WSDL Document Example

Once the client programming stubs are generatedr@mmers still must write their code in the
body of those stubs, and so tools are usually rexlgenerate templates of the source code. In
practice, this process can be tedious; in partictiiee tools used to generate templates usually
avoid overwriting existing stubs, thus, programmeesed to rewrite and validate them
manually. Also, service composition scalability dack of dynamicity may be a problem at the
client side, because the stub needs to be writtehcampiled for every service at the server
side. Dynamic invocation in Java solves this probler Java web platforms making it the
preferred environment for new developments frora garspective.

RPCs are heterogeneous (because they were invanthitferent programmers) and distributed
simulation connectivity semantics are describetherparameters of those RPCs. RPCs directly
influence the interoperability integration efforsince they are actually the Application
Programming Interface (API) of a simulation compuneFurther, RPCs often reflect the
software internal implementation since they glusributed software together.



2.4.3 REST-based Web-services

The Representational State Transfer (REST) [26¢ stjovides interoperability by imitating the
World Wide Web (WWW) style and principles. REST wnss the question of what makes the
Web architectural style successful; hence, it reveerse engineering of the Web architecture.
REST exposes all services as resources with uniémmnectors (channels) where messages are
transferred between those resources through tho#erm channels. REST is usually
implemented using HTTP, URIs, and usually XML besmmathese are the main pillars of the
Web today. In this case, resources (services) areed and addressed by URIs, resource
connectors are HTTP channels (usually called madh@hd connectivity semantics are usually
described in XML messages. This type of designricge for a plug-and-play interoperability,
as a consumer may search, locate, and consumeieesat runtime. To achieve plug-and-play
interoperability in a wide-range of scales, certaigredients are needed (as in the case of the
Web), as follows:
e universal accepted standards (such as HTTP, URdisX&IL),
« implementations are hidden in black-boxes (calesburces in REST),
e each resource (or service) has uniform connectmsftels (REST uses HTTP
channels/methods),
« each resource (or service) is addressed with wsavenique identifier (i.e., URI in case
of REST), and
* message-oriented type of connectivity semantiasallisas XML).

REST principles perfectly match the HTTP, sincesitthe existing Web protocol. HTTP
exposes all services as URIs that can be accesséelwwell-defined channels (called methods
in HTTP standards): GET (to read a resource), PldTc eate/update a resource), POST (to
append to a resource), and DELETE (to remove auresh Thus, REST clients always
communicate in the same standardized way, as shoWwigure 13. The client must know three
things to invoke a service: (1) the service UR), ff2e HTTP channel, and (3) the message
semantics and format. For example, a Web browsaskes a service from a Web site by
sending a request via GET channel to that WebUdRE In response, the Web site transfers its
representation in form of a message (e.g., HTML)the client, thereby transferring the
representational state to the client, as indicdtgdRepresentational State Transfer (REST)
name.

Synchronization Semantics (e.g. XML)

N

Services AN Client Side
Service-1 URI E\L \\\,‘. |
H - HTTP Client
e =
Service-2 URI % e -
~ " Dynamic Uniform way of consuming services:
' . Consume (URI, Channel, Message (e.g. XML))
Black-box Components AN

(resources/Services)  Uniform Channels (Gates)

Figure 13: RESTful Web-service Client/Server Archiecture

In contrast, SOAP-based WS exposes services as iRR0sts where each port is addressed in
a single URI. RPCs have heterogeneous interfaoelstheey have a split implementation. It is
worth noting that SOAP-based WS use the HTTP POfhrel to transmit the description of
all RPCs as SOAP messages.

RESTful Web Services [27] are gaining increaseenditin with the advent of Web(2[28] and
the concept of mashup (e.g., IBM Mashup Centerrprisg solutions [29]). At this point
RESTful WS is supported by the leading WS toolganjunction with the SOAP-based WS.



Mashup applications deliver new functions and sewion the Web by combining different
information or capabilities from more than one #8rig source.

For example, suppose a Website is used for tripnitg. In this case, based on the trip
destination, this Website may display weather fasgchotel rates, and average meal cost of the
trip destination. Of course, it is impractical fbserver to implement such capabilities for every
possible destination in the world. Thus, this Websibtains the necessary information from
different sources based on the planned trip, giimg impression of implementing these
capabilities. Further, this Web site may searchtlticg information at runtime before being able
to read it. Moreover, the Website can also cache dbarched results, hence enhancing
performance of different users heading to similastihation. Achieving plug-and-play
interoperability (in the style of the World Wide Wefor the Website in this example would not
be feasible, and mashing up the various serviceardically at runtime would be very difficult.
For example, the Website in the example would rtedchow in advance that it has to send a
request to the URI of an information source viadbeesponding HTTP GET channel, so it can
retrieve an HTML document. If one must build a peogming stub for every possible
information source, the application design would \®ry complex, and interoperability
unfeasible.

Instead, the APIs of RESTful applications are egped as URI templates [30] that can be
created at runtime. Variables in URI templates tfemi within braces {}) are assigned at

runtime by clients before a request is sent tos#h@er, enabling clients to name their services
URIs at the server side. For example, usernamenplate <.../users/ {username}> can be
substituted with any string to get the actual URstance (such as <.../users/userl> or
<...lusers/user2>). Further, URIs may include queasiables to define the request scope by
appending them to a URI after a question mark Fgt. instance, a request via GET channel to
URI <http://www. google.com/search?q=DEVS> wouldtioct the Google search engine to
return information only about keyword “DEVS”.

Service providers usually describe their URI tertgplaither textually and/or as a Web
Application Description Language (WADL) [31] documieWADL is an XML description that
describes a RESTful API, hence corresponds to WBDEOAP-based WS. WADL describes
each service as shown in Figure 14. In this exanyihe #1 shows the service URI. Lines 2-11
describe the PUT channel. Lines 3-5 state that XMthe supported format by this message.
Lines 6-10 define the response of requests madeeoRUT channel. In this case, it only lists
the possible generated faults. Lines 12-17 defireother supported channels.

1 <resource path="sim/workspaces/{userworkspace}">
2 <method id="PutWorkspace" name=" PUT">
<request>
<representation mediaType="text/xml"/>
</request>
<response>
<fault mediaType="text/html|" status="400">
<doc>BAD_REQUEST: Error while parsing XML document</doc></fault>
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10 </response>
11 </method>

12 <method id="GetWorkspaceState" name=" GET">
13 ..

14 </method>

15 <method id="DeleteWorkspace" name=" DELETE">
16

17 </method>
18 </resource>
Figure 14: Excerpt of WADL Document Example



3 Designing Interoperability of DEVS components

The goal of a DEVS standard would be to providdanaple and mostly automated way
executing simulations that involremoteand/or heterogeneous DEVS models. This ca
achieved by taking two different approaches to lecussed in the following sectior
simulator-basednteroperability animodel-basednhteroperability.

3.1 Model-based interoperability

In this perspective, aigtinction can be made betweon-line (or dynamic) ancoff-line (or
static) interoperability, which are both centered the models, and bring into play seve
methods related to Model Driven Engineering (MI[32].

On-line (dynamic) modddased interoperabilit

In on-line (dynamic) moddbased interoperability solution, models themsebsesdeployed a
services instead of simulators. Using this modeéledr approach, the operations invol
through the network are no longer simulation med@masg, but model functior such aint, dexs
thetime advance functigretc. This extends the scope of practical DEV&8rogerability. For i
large class of existing model implementations ieésier to comply with this Model Interfa
(compared to complying with the Core Sintor interface).

Using a standard representation of models, difteleshniques can be employed to smooth
process by making the generation of the adaptetlyrmstomated. The following describes t
approach in the case of web services Figure 19, but could be extended to other integra
middleware.

Given a model written for a specific framework (CB-DEVSJava, James, etc.), the fthing
to do is to generate its representation in a plai-independent language (which would all
the description of the model for all the tools).iSTHescription, and more particularly the
types defined in it, can be fed into model transfationtools to generate:

- A web service description, as a WSDL.

- A wrapper that will adapt the model interface te Hervice interface, by forwarding t

operation calls.

‘ Coordinator H Simmlater | |:> Coupled Atomic stub

Simuator | |:> Atoie stub Atomic

| Simulator |

m
N CK Tnternel
. Atonue -
toriic
Alorue wrapper w

Atomic .
. i Atomie
r . wrapper

A l I

Figure 1E: Local simulation of distant and local models




Therefore, each model is assigned its own desonidile and its model wrapper; which are
fully specialized for this particular model. In $hivay, model consumers are provided with
complete knowledge of the nature of the messagescted by the model, increasing both type
safety and understanding of the model semantics.

Once this is done, the client can retrieve the rijgsen of the model, and generate a stub that
will conform to its framework and behave exactly tag original model, by invoking the
wrapper service. The automatic generations merdioalgove can be seen as automatic
transformations in the model driven engineeringnteology. Regarding remote coupled
models, two solutions are possible. The first isde some kind of adapter, as in the simulator-
based approach, which will make the coupled mogpear as an atomic one. The second
possibility is to take into account that coupleddeis do not have any operational semantics.
All they do is describe their ports and their caugs, in a static way. As a consequence, we can
use their XML representation to generate a copthefmodel in the local framework, without
losing any useful information.

In a nutshell, model providers:
1. Write a model in their favorite DEVS framework.
2. Automatically generate the model's XML descriptidnpm which they generate a
WSDL file and a web service encapsulating the model
3. Deploy the web service, providing access to theetlgichg model.

On their side, the model consumers have to:
1. Find the location of the models they need, usimgestiind of model directory or more

classical discovery procedures such as web seanclaesjuaintances.

2. Give the addresses of the models’ web servicesgenaration tool that will download
the WSDL files and generate client stubs adhewortpe¢ modeler framework.

3. Run the simulation. The framework’s simulator deaith local and remote models
without even knowing it.

3.2 Simulator-based interoperability

The main idea of this approach (used in DCD++ aBY/S/SOA, to be presented later), is to
have a collection of simulation services distrilduteser the internet. These services provides
several operations for simulating atomic or cou&/S models in a unified manner, by using
the DEVS simulation protocol and the closure unmterpling property of coupled models. The
overall simulation is coordinated by a main seryvighich acts like an entry point for the user.
This architecture is summarized in Figure 16.
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Figure 16 DEVS components interoperability through simulabrs communicatior

In order to communicate, the DEVS sices expose a standard interface that accepts tiad
simulation protocol messageésitialize, get time of next eventun transitionand so on

From a user perspective, the simulation processisof:
1. Writing a coupled DEVS model, using thfavorite framework.

2. Providing a list of DEVS servers on which they wistdistribute the simulatic

3. Deploying the DEVS models to the servers (eitherdbywnloading them from the
location or activating existing remote mod.

4. Starting the simulation.

It should be noted that the above is one form ohynpossible protocols that can prov
various forms of conservative and optimistic siniola each of which must be proved to
correct as a implementatiafithe DEVS closure under coupling prope[10].

Implicit in the above description are the followirgpnstraints involving methods in t
CoreSimulatorinterface

* The sendMessages(hethod “must” employ thputContentOnSimulatol method as
follows: for any simulator to which it wishes tonska content, it must call tl
recipient’s putContentOnSimulatol method with the recipient and the content
arguments.

* Further, in applying itcomputelnputOutput(inehod, a simulator “must” be able
interpret the contents (satisfying tContentinterfacgit has received from the oth
simulators.

Notice that we cannot enforce se“must” requirements, and cannot prove that the ktian
executes a desired behawiunless we are given further information abdsitbiehavior. On
way to doensure these conditic is whenthe simulators are truly DEVS simulators in thagyt
satisfy the interfaces and constraints given below. Failithgs additional rigor, th
interoperation involving DEVS and n-DEVS is purely at the technical level similar t@itlof
a federation of simulators in HLA. This contrastghwhe situation in which the federation is
fact derived from a DEVS coupled model for whichrreat simulatio of the coupled model |
guaranteed according to the DEVS formal



4 Comparing Existing Designs and Implementations

The two objectives discussed sirfiulator-based interoperability and model-based
interoperability) face different challenges and énalifferent purpose. Thus, they form two
different sets of standards, and they can be ttesdparately. In other words, a simulation tool
does not need to conform to both sets of standardse able to reuse other resources from
different working groups. In recent years, thereehbeen a number of efforts to deal with these
issues, and we will compare and discuss these agpes here from the two objective
viewpoints.

4.1 Standardizing DEVS model representation

Standardizing DEVS model representatiaiiows a model to run on any DEVS simulation
environment. This is powerful in the sense thataaleh can be retrieved from a repository and
run locally on a different tool other than the amggly intended running environment of that
model. This is highly recommended to avoid perfognilistributed simulation between remote
environments for obvious performance reasons.

Different working groups have used XML as a meck@anior interchanging model information.
In order to do so, we need to define an XML vocahylwhich is formally defined by an XML
Schema against which every file written in the Vmdary can be automatically validated. This
arrangement gives an XML vocabulary several impridvantages oveplatform Specific
Models (PSMs)

* Validation against a schema promotes stabilityhefstandard.

e The schema can restrict data types.

* The schema can define key data to insure consistenthe models (including the
validation of important properties in the data eslusuch as uniqueness or duplicity of
use, when needed).

¢« The schema can be extended to include constrgiestgr simulator directives. Files
that are valid under the original schema contiruéd valid under the extended one
(though, of course, the reverse is not guaranteed).

This broader relevance has benefits for DEVS system

e When scenarios are stored in XML format, DEVS tedbgy results are more readily
integrated into broader information technology astructures.

e XML is the data interchange language of Web sesvice

e XML lends itself very well to compression.

e XML-basedeXtensibleéStylesheet Language Transformations (XSiffier a convenient
way to specify translations of XML documents. IfDEVS scenario (with perhaps
corresponding results) is stored in XML, then XSkTeasily applied to the scenario to
produce a Web browser document that displays tkaeltsedata in reports that are
suitable for people to read.

e Encryption standards such as XML Encryption arerging for XML data [12]. This
encryption is important to commercial DEVS applicas where the scenarios contain
confidential data.

Libraries for these purposes—validating files, diefy keys, compressing files, and the like—
are provided by numerous XML tools designed for ipalating and parsing XML data. It
suffices to define our XML vocabulary in the forni @ schema to utilize these tools. This
contrasts to ad hoc formats that require writirghudyging, and maintaining routines equivalent
to these tools.
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Figure 17: DEVS/XML standard definition

Figure 17 shows a DEVS/XML standard definition feamork. The DEVS/XML Schema
includes the grammar for both the structure andatien of DEVS models (i.e., coupled and
atomic models). When it is defined, the systemgtesiis able to create DEVS models in XML
that may be validated against the DEVS/XML Schemtas forms avalid DEVS/XML Model
Next, there are two possibilities. The first on@dgransform the previous scenario into a PSM
for a concrete simulation engine, such as DEVSJABEVS/C++, CD++, XDEVS, etc. The
second one is the development of a DEVS/XML sinmulah a high-level programming
language. Finally, a reverse engineering layer rbegirovided to come back from the PSMs to
the Platform Independent Models (PIMsJhe reverse engineering is the most difficult to
accomplish. In this case DEVS/XML must include eniplex) parser to obtain the
corresponding DEVS/XML Scenario from a set of DEYSM files (atomic and coupled
models), which compose the DEVS Scenario. Thuspine cases, other approaches are needed
to facilitate the reverse engineering.

Table 1 shows different approaches (some not presented) liafned to implement a
DEVS/XML standard, including DEVSML and DML that Wibe described in the next
chapters. All the approaches define a DEVS strectwhereas the behavior is completely
defined in eUDEVS, DEVSML, and DML. The transformoats from PIMs to PSMs are also
defined in all the standards. In addition, two Xlgimulators have been developed: one for FD-
DEVS, and another one for DEVS/SCXML. Finally, tleverse engineering has been partially
applied to DEVS/Schema and DEVSML.

Table 1. Different DEVS/XML designs of standard

Structure | Behavior | PIM—PSM | XML Simulator Reverse Engineering
DEVS/Schem§B3] 4 %% v x V3
FD-DEVS[34] v 1 v v P
DEVS/SCXMIL[35] 4 % v v x
eUDEVS36] v v v x x
DEVSML[37] v v v x V3
DML [38] v v v x x

@ Behavior limited by the corresponding Schema dkidim
@ Behavior limited by the corresponding SCXML Schetefinition
® Implemented for two simulation platforms (DEVSJA&d XDEVS)

The different DEVS implementations have evolvedepehdently over the years, specifying
their own model representation and rules. In pecactinost of the DEVS tools would compile to

a standard representation in their local speciicathence avoiding redesigning the software
implementation to handle the standard representdiiectly. Figure 18 shows a typical sharing
scheme. In this example, the DEVS model repredenté stored in a repository from which it

is retrieved to be executed on the target platfdrine main challenge, as shown in Figure 18, is
at the target platform and pertains to compiling gtandardized representation into a local



representation. This is actually different from wering a home-grown representation into a
standardized representation, since the resultipgesentation may require producing new
source code. As such, the newly produced source ougst be integrated and compiled with
legacy source code before being able to run thelation. This problem extends beyond the
use of a programming language. For example, congean XML representation of an atomic
model into a C++ class does not guarantee its saftdeintegration with a C++ DEVS-based
tool. In fact, many other issues may be involvedhsas, for example, registering the atomic
model, including other appropriate legacy C++ heddes, compiler version, etc. In other
words, one should be familiar with the internal lempentation structure to be able to compile
newly injected source code. Consequently, the ratort that is to be expected when moving
to support the DEVS standardized representationefadd developing a converter from/to the
home-grown representation to/from the standardiepdesentation. This challenges the designs
presented here to provide a value proposition rtiegites it worth the implementation effort to
develop such a converter. This is an essentiakissuovercome in order to reach practical
standards that are widely adopted. One possible matpursue is in working together in
developing the common feature of this converterreteach party can then extend it to resolve
their internal representation specific issues.

Standardized Compile to
Representation Standard
Compile to Home

Representation
DEVS Environment Y |

Repository DEVS Environment X

Standardized
Representation

Is compilation
needed?

Is compilation
needed?

NO

Figure 18: Standardized Model Representation Flow

Table 2 shows the list of designs for standardiZdiVS model representations. Except for
DEVSML, which uses Document Type Definition (DTDYll of the designs use the XML
schema (also called XML Schema Definition (XSD)y the DEVS representation. XML
schemas are more powerful than DTDs and became@Ré¢g8ommendation on May 02, 2001.
DEVS/SCXML and CoSMoS include graphical notationstap of XML model representation.
In this way, standardization in XML is also needed the graphical notations before it is
converted into DEVS XML representation. This intwods another standardization layer, which
will add more complexity to a more broadly adopséghdardization process. DML tackled the
targeted programming languages, allowing XML repnégtion to be more aware of used
programming language. This is an interesting apgroanaking XML conversion to a
programming language easier. However, this requiresmodelers to know all programming
languages that a model may eventually be convéotdt is worth noting that all of the designs
assume that DEVS models are written in a programranguage. However, this is not always
true. For example, CD++ defines coupled modelsatal scripts but atomic models as C++
classes. This type of differences may lead to hpvnspecific converter for a simulation
environment (Figure 18).

To conclude, the biggest challenge that these ded&ce is bringing them closer together to
form a more broadly based new standardized repiasam This is because existing software
needs to be changed to conform to the new starmardepresentation.

Table 2. Summary of Standardizing DEVS model Represtation Designs

Desigr Description
DEVS/XML XML representation for both DEVS atomicchnoupled models
Document Type Definition (DTD) XML representationrfboth DEVS atomic and
DEVSML
coupled mode




It provides XML Schema Definition (XSD) represeidatfor both DEVS atomic an111
coupled models. It is tabular-based methodologgutmmate the DEVS state machine
specification process.

XFD-DEVS (XML Finite
Deterministic DEVS)

DEVS State Machine (XFD-DEVS SM) model is XML repeatation that needs to be
converted to run by simulation. This XFD-DEVS Shcnverted from SCXML, which
is an XML representation of a UML model.

DEVS/SCXML (DEVS
State Chart XML)

DML (DEVS Markup It provides XML for DEVS models while making it m&programming language aware,
Language such as adding snippet code in XI
CoSMoS (Component- It deals with developing models graphically andegeéneration

based System Modeling)

4.2 Standardizing Interoperability Middleware

Interfacing different simulation environmeritsintended to synchronize the same simulation
run across distributed network (i.e., distributeédwation). Distributed simulation can provide
many benefits such as heterogenemuel reuse without the need to standardize model
representation. Other benefits include removingediments to moving people/equipment to
other locations and information hiding—includingg throtection of intellectual property rights.
This type of interfacing is the main objective bétdistributed simulation middleware, which
connects all participants.

The middleware is the area of most interest to awvee current distributed simulation
challenges and to meet future expectation, as anglicby a number of surveys of experts of
different simulation background [19][13]. These v@&ys also identified some research
challenges for a distributed simulation middleware:

1. Plug-and-Playcapability: the middleware should couple heteregers models effortlessly
even at runtime. Thus, standards should be simplederstand, quick to support, and with
low-risk for legacy systems (i.e., changing impletat¢ion is not acceptable). Further, plug-
and-play indicates a high-level of dynamicity, fostance simulations should be able to
join/disjoin a simulation session with a histony.dther words, having to change the source
code and then compile it in order to be able tmeschwith a simulation component is not a
plug-and-play approach.

2. Automatedsemantidnteroperabilitybetween domainis necessary to achieve the plug-and-
play challenge. To automate this process, conrigcemantionust be defined in the form
of messages (i.e., XML) rather than programmingapeaters as in most of RPC-style
systems.

Figure 19 shows the relationship between the miwdalle and the simulation environments. A
simulation engine executes a number of Coordinafbes, coupled model simulator) and
Simulators (i.e., atomic model simulator). Simwatengines synchronize simulation activities
via the middleware. In this case, a simulation eagbacks the simulation information (i.e.,
calledsimulation semanti¢sand passes it to the middleware via the Applicatrogramming
Interface (API). Therefore, the simulation sema&nd APl play a major role in making the
standards flexible enough for dynamicity and futumgrovements, since simulation engines
influence each other only through this informatiditerward, the middleware delivers the
simulation semantics to the destinatandress
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Figure 19: Standardized Middleware Reference Model

Each of the major elements shown in Figure 19, kittmn semantics, API, and addresses, is
important and directly affect the interoperabil#iandards. Further, the underlying technology
framework influences the design of those elemeite presented designs here use three
technologies: CORBA, SOAP-based Web-services, aa8TRul Web-services. We illustrated
all of distributed simulation issues and futurentte in [23].

The following requirements can be compiled for aladféware standard that combines the
qualities of the separate approaches in orderhigee a broad based yet practical standard:

* Respect existing systems without requiring thencttiange software implementation
dramatically. In other words, it needs to avoichdtrdizing software implementation.
This is important to allow different teams to ewlindependently. The standards
should allow a team to extend their tools with othene-standard related features
without breaking the standard support. Thus, stalsdashould not make any
assumptions on how a certain DEVS or none-DEVS empghtation package is
realized.

* It must handle any type of DEVS model representatio this case, a model is placed
in a simulation engine domain that is capable @cexing it. This is important because
legacy models can still be used.

e It must be flexible enough for future improvemeatsl changes. In other words, the
standards should be portable to another techndlaiymay appear in the future.

¢ The standards should support a full simulation gxpent environment. The method
should define the modeler-required steps to coujséributed models, execute the
simulation, and retrieve results. Further, the daads should allow different none-
related sessions (i.e., experiments) to be execitealtaneously.

e It must be not take much effort to support with legk to existing systems.

e It must be extendable to interoperate DEVS-baseld teith none-DEVS tools.

Table 3 summarizes the four current approaches ngpect to the reference model shown in
Figure 19.DEVS/SOAdefines interfaces for simulators and coordinatetere simulation
information is passed in the form of programminggadures. The RPC call is then converted
to a SOAP message by a SOAP engine and wrappedHT@P message. DEVS/SOA variant
2 goes on to provide a DEVS Namespace, derived fiteenXML Namespace, to support
interoperability among DEVS implementations thaiptow different internal representations of
the values within DEVS messages. DEVS/SOA distébutodels (via DEVML script) based
on a DEVS tool, source code, and a machine IP addfEhis may be a problem when
conducting multiple simulation sessions simultarsipuThe Distributed DEVS Simulation
Protocolis also based on SOAP WS, as in the DEVS/SOA d¢dgeever, it defines a single



WS port to wrap an entire DEVS domain, which alldesser RPCs and more implementation
hiding. All of the simulation information is exchged in XML messages that are sent as SOAP
attachments. This also makes it less dependenheiS®AP WS framework. All models are
wrapped in a single coupled model simulated bynthé domain. DEVS models are distributed
among domains according to an XML document. Bi@red Abstract Modek based on
CORBA. It defines interfaces for simulators andrdiators (called proxies) where simulation
information is passed in the form of programminggadures. Th&RESTful Interoperability
Simulation Environment (RISE3 based on RESTful Web-services. It uses HTTPoumif
channels (methods) to communicate all of the sitimrianformation as XML messages. Each
domain is wrapped behind three URIs that can beedaat runtime. It uses a single Time
Management component to synchronize all domainsnwhe conservative-based method is
applied. On the other hand, domains can directishange those XML messages when an
optimistic-based method is used. RISE assumes #re enodel is placed in each domain.
Modelers connect the input/output ports of all mMedey means of an XML configuration
document. RISE does not interfere with internal dims details, including DEVS coordinators
and simulators, hence making it independent oDB¥'S formalism.

Table 3. Summary of Standardizing DEVS Interoperablity Designs

Design Technology API Simulation Addressing Simulation DEVS
Semantics Algorithm Model
Level
SOAP WS RPC-style Procedure | WS Port (URI) | Conservative Coupled
DEV.S/ SOA Parameters | per coordinator
(Variant 1) -
and simulator
DEVS/SOA SOAP WS RPC-style DEVS WS Port (_URI) Conservative Coupled
. (XML) per coordinator
(Variant 2) -
Namespace | and simulator
Distributed DEVS SOAP WS RPC-style XML Single WS Port Conservative Coupled
. ) (URI) wrapper
Simulation er simulation
Protocol per:
environment
CORBA RPC-style Procedure | CORBA Undefined Coupled
Shared Abstract Parameters | object/proxy per
Model Approach coordinator and
simulato
RESTful RESTful Four HTTP | XML three resources | Conservative/ | Independent
Interoperability ws Uniform (URI) per Optimistic
Simulation Channels simulation
Environment (methods) domain
(RISE)

The main objective of standardized DEVS would bertable different DEVS implementations
to interface and coordinate among each other tolabe the same model structure across their
domains. A standardized DEVS imposes some requiresrand assumptions in order to make
the proposed protocol achievable and acceptablediffgrent teams. Because of these
requirements, minimum design changes are expecteddh DEVS implementation, mainly by
hiding the detailed implementation behind a wrapaed focusing only on the exchanged
information that is needed to perform simulation @oordination among distributed models.
Such Coordinators must find the models that theytw@send their messages without worrying
about other details such as constructing messaggdL documents or where which specific
DEVS implementation is simulating the other models.

The DEVS simulation protocol was also discusseshtmw the exchanged messages format and
contents. Further the overall simulation coordimatshowing each DEVS domain role in the
phases of each simulation cycle was described.dtfitian, the head/proxy structure was
introduced to coordinate a coupled model simulativthe distributed environment in order to
reduce the number of exchanged messages acrosetiierk. However, a standard is not



limited to one algorithm, hence more schemes magdued in the future and used easily by
including this information in the exchanged XML dogents.

The presented protocol assumed the usage of weizesitechnology as the communication
framework. However, the protocol takes into accotiat the DEVS simulation messages
should be easily ported to different communicatechitecture in the future, if needed to do so.
This is accomplished by constructing all simulatioessages in XML documents so that any
changes in the protocol messages will be doneasetiXML documents rather than to the web-
services specific communication interfaces. The BBVamespace formulated in DEVS/SOA
is a foundation for such extension.

5 Summary

In this chapter, we have introduced the main idaas concepts about DEVS M&S
standardization. We discussed different desigrisriige the gap between implementations of
DEVS M&S software, most of which are based on stathdXML notations to share
information, and to achieve model reuse.

Two different interoperability objectives must bédeessed: how to represent DEVS models
that can interoperate in a platform-independenthifes and how to standardize the
interoperability of the middleware used for simidatpurposes. These objectives have different
purposes, and they should be treated separatetyfdllowing two chapters will focus on each
of these two objectives in detail.

Different technologies have been proposed to déthl wteroperability middleware: CORBA,

XML, Web Services (SOAP-based and RESTful), thehHIlgevel Architecture and other
technologies. In every case, this middleware mustete a DEVS simulation protocol, and
should be able to parse and interpret the modetseptation.

We have discussed different simulation environmeamid compared their facilities, including
DEVS/Schema, FD-DEVS, DEVS/SCXML, eUDEVS, DEVSMIndaDML. These tools have
evolved independently over the years, and a neethferfacing these tools has emerged. We
also presented a discussion of different repreientadesigns, including DEVS/XML,
DEVSML, XFD-DEVS, DEVS/SCXML, DML, and CoSMoS.

Finally, we discussed the different aspects (indgdunderlying technology, API style,

synchronization algorithms, etc.) for various DE¥®vironments, including DEVS/SOA (and
its different variants), the Distributed DEVS Simtibn Protocol, the Shared Abstract Model
approach, and RISE (the RESTful Interoperabilitpy@ation Environment).
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