Implementation of Formal Standard for Interoperability in M&S/Syste ms of
Systems Integration with DEVS/SOA

Saurabh Mittal

Dunip Technologies
New Delhi, India
saurabh.mittal@duniptechnologies.com

Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation,
University of Arizona,
Tucson, AZ, USA
zeigler@ece.arizona.edu

Jose L. Risco-Martin

Departamento de Arquitectura de Computadores y Automatica
Facultad de Informética
Universidad Complutense de Madrid
Madrid, Spain
jlrisco@gmail.com

Abstract
Modeling and Simulation (M&S) is finding increasing application in development anithgtesf
command and control systems comprised of information-intensive compongmnhssyschieving
interoperability is one of the chief System of systems (SoS) emginebjectives in the development of
command and control (C2) capabilities for joint and coalition warfare. In pligser, we apply an SoS
perspective on the integration of M&S with such systems. We ereptmtly developed interoperability
concepts based on linguistic categories along with the Discrete Evet@nSgpecification (DEVS)
formalism to implement a standard for interoperability. We will show Hwvdeveloped standard is
implemented in DEVS/SOA net-centric modeling and simulation frameladrkges XML-based Service
Oriented Architecture (SOA). We will discuss the simulatorfates and the design issues in their
implementation in DEVS/SOA. We will illustrate the application oW®SEOA in a multi-agent test
instrumentation system that is deployable as a SOA.

1. Introduction

Modeling and Simulation (M&S) is finding increasing application in impdrespects of command and
control systems comprised of information intensive component systeresaagpect of such application is
the incorporation of M&S functionality into such systems which is alsolgective of the Extensible
Modeling and Simulation Framework (XMYF Another aspect is the use of M&S to support the
development and testing such systems as instances of System ofsS§&d&h The SoS concept relates
to the attempt to integrate disparate systems to achieve ficsgeal, typically not co-incident with the

goals of the pre-existing component systems. Consequently, the definimgrcon&oS engineering is
interoperability, or lack thereof, among the constituent syster@][1Achieving such interoperability is
among the chief SoS engineering objectives in the development of commacwh#notl (C2) capabilities
for joint and coalition warfare [3]. Sage [1] analogized the construof SoS to the federation of socio-
political systems and drew a parallel between such processekeafati¢ration that is supported by the
High Level Architecture (HLA, an IEEE standard fostered by the RoDenable interoperation of
simulation components [4]). In this light, the present author disdusserole that M&S can play in
helping to address the interoperability problems in SoS engineering [&.prEsent paper builds upon
this work by considering not only the parallel between SoS engineering anbdutkst simulation, but
also how M&S can be more integrally included within SoS engineering apy®aclhe focus of this
paper is to present fundamental concepts to help tackle the integrlibifaS and C2 SoS through the
use of concepts and standards for interoperability based on the ®iEstatt Systems Specification
(DEVS) formalism. Our ultimate motivation is to apply M&S copiseand technologies to support
collaborative decision making in C2 SoS as well as the testingvahghgon of such systems.

DEVS environments such as DEVSJAVA, DEVS-C++, and others [28kmbedded in object-oriented
implementations; they support the goal of representing executable meot#eaures in an object-
oriented representational language. As a mathematical form&iEwS is platform independent, and its
implementations adhere to the DEVS protocol so that DEVS modélg teasslate from one form (e.q.,
C++) to another (e.g., Java) [16]. Moreover, DEVS environment$y aacDEVSJAVA, execute on
commercial, off-the-shelf desktops or workstations and employ stabe-@frt libraries to produce
graphical output.. DEVS environments are typically open architecthiashave been extended to
execute on various middleware such as the DoD’s HLA standard, CO®BAP, and others and can be
readily interfaced to other engineering and simulation and modeling [®[30,31,32]. Furthermore,
DEVS operation over web middleware (SOAP) enables it to utitizenet-centric environment of the
Global Information Grid/Service Oriented Architecture (GIG/SOA¥ a result of recent advances,
DEVS can support model continuity through a simulation-based developmemséing tife cycle [29].
This means that the mapping of high-level requirement specificatiotos lower-level DEVS
formalizations enables such specifications to be thoroughly testedtualvéiimulation environments
before being easily and consistently transitioned to operate i amdeonment for further testing and
fielding.

This article is an extension of a recent article by authors wtereStandard for DEVS M&S
interoperability was proposed [54]. The present work is a realizafithe concepts in [54].

2. Interoperability in Distributed Simulation

As illustrated in Figure 1, HLA is a network middleware layettsupports message exchanges among
simulation components, called federates, in a neutral format laodoeovides a range of services to
support dynamic and efficient execution of simulations. However, exgerizith HLA has been
disappointing and forced proponents to acknowledge the difference between ehalbdirageneous
simulations to exchange data, so-calkeghnicalinteroperability, and substantiveénteroperability — the
desired outcome of exchanging meaningful data so that coherent interacting ederates takes place
[5]. Tolk introduced the Levels of Conceptual Interoperability Mod«lIM) which identified seven
levels of interoperability among participating systems [6]. Theseldealso can be viewed as a
refinement of the operational interoperability type which is one oktdedfined by Dimario [7]. The
operational type concerns linkages between systems in their interactions withaookher, the
environment, and with users. The additional levels provide more efavota the catch-all category of
substantive interoperability and, as illustrated in Figure 1, &simg from HLA standard as such.

pragmatic - pragmatic

comantic -— o, 5
o semantic
i HLA
syntactic)
! Middleware syntactic

Figure 1. HLA Technical Interoperability

3. Levels of Conceptual Interoperability Model

Although Levels of Information Systems Interoperability [8] modelsuser successfully to determine
the degree of interoperability between information technology systhesdo not provide a systematic
formulation of the underlying properties of information exchange. To renmgslgituation, the LCIM
outlined in Table 1, was developed to become a bridge between conceptuaichnical design for
implementation, integration, or federation [9, 10].

The last column lists key conditions that are required to reach amopetability level from the one
below. Of course, the conditions accumulate as the level insteéAsenote that the conditions given in
the LCIM for pragmatic interoperability require that the use ¢ dee mutually understood, where the
term “use” is interpreted as the context of its applicatiorefArmulation of LCIM was presented in [11]
where more definitive concepts for pragmatic interoperabilityuthioly the concepts of pragmatic frames
and pragmatic equivalence. Moreover, the definition of the semantt rfequires the use of a single
reference semantic model as a hub for information exchange amongppatsicin collaboration.
However such a hub and spokes approach, while desirable, is not alaaysdefe[12] evaluated a
common information exchange model, C2IEDM, as an interoperabilityiagadmtology for command
and control. The conclusion is that even if there is room for impremtsnthe model supports almost all
basic needs for such a semantic bridge. However, [13] claim rth&s$ icurrent form, the model is
unbalanced in its levels of detail and too large to be practictielstratification to be introduced below,
we review a more streamlined and extended account of informationngpeclevels.

Level of
Conceptual Characteristic Key Condition
Interoperability

Requires that conceptual models be
documented based on engineering methods
enabling their interpretation and evaluation by
other engineers.

The assumptions and constraints
Conceptual underlying the meaningful abstraction of
reality are aligned

Participants are able to comprehend
changes in system state and assumptio
Dynamic and constraints that each is making ove
time, and are able to take advantage of
those changes.

1%Qequires common understanding of system
dynamics

Participants are aware of the methods ancli?equwes that the use of the data — or the

Pragmatic ; - context of their application — is understood hy
procedures that each is employing L
the participating systems.
Semantic The meaning of the data is shared Requires a common information exchange
reference model
Syntactic Introduces_a common structure to Requires that a common data format is used
exchange information,
Technical Da“'?‘ can be exchanged between Requires that a communication protocol exists
participants
Stand alone No interoperability

Table 1 Levels of Conceptual Interoperability

4. Linguistic Levels
The definitions given in [11] agree in general, but differ substantiaith those used in the LCIM. They
are summarized:

Pragmatics Data use in relation to data structure and context of application

Semantics Low level semantics focuses on definitions and attributes ofistehigh level

semantics focuses on the combined meaning of multiple terms @Beeg@rContext). Note in
contrast to the LCIM requirement for semantic interoperabilitis tlefinition focuses on the
underlying requirement for achieving shared meanings rather than how diseneent is

achieved.

Syntaxfocuses on a structure and adherence to the rules that govern ubatrestre.g., XML

(Rules and Structure)

The authors of LCIM associate the lower layers with the probt#resnulation interoperation while the
upper layers relate to the problems of reuse and composition of middels]. They conclude
“simulation systems are based on models and their assumptions atdicmndf two simulation
systems are combined, these assumptions and constraints must bd aligoedingly to ensure
meaningful results.”[10]. This suggests that levels of interopeatilat have been identified in the area
of M&S can serve as guidelines to discussion of information exchangeeénafieTherefore, we consider
an earlier developed conceptual layered architecture for M&S [16]] Worrelate the above linguistic
definitions with the layers outlined below and shown in Figure 2.

Collaboration Layer
Semantic Web, Composition, Orchestration, Workflows

Decision Layer
Exploration, Evaluation, Selection, Optimization

Design and Search Layer
SES, DoDAF, Integrated System Development and Testing

Modeling Layer

Ontology, formalisms, variable-structure, life-cycle continuity, Abstraction

Execution Layer
Abstract simulators, Real-time execution, animation, visualization

Network Layer
Workstation, Distributed Grids, Service Oriented Architectures

Figure 2. Architecture for Modeling and Simulation

NetworkLayer contains the actual computers (including workstations and high perforssieens) and
the connecting networks (both LAN and WAN, their hardware and softwhed)do the work of
supporting all aspects of the M&S lifecycle.

ExecutionLayer is the software that executes the models in simulation timeraredll time to generate
their behavior. Included in this layer are the protocols that providéabis for distributed simulation
(such as those that are standardized in the HLA. Also incladedlatabase management systems,
software systems to support control of simulation executions, viatiatizand animation of the generated
behaviors.

Modeling Layer supports the development of models in formalisms that are independany given
simulation layer implementation. HLA just mentioned also providesctbjgented templates for model
description aimed at supporting confederations of globally dispersed mddelsver, beyond this, the
formalisms for model behavior, whether continuous, discrete or thsergent in nature) as well as
structure change, are also included in this layer. Model constructtbespecially, the key processes of

model abstraction and continuity over the lifecycle are also includedal¥% add ontologies to this layer
where they are understood as models of the world for a particuleegtnialization intended to support
information exchange.

Design and Search Layesupports the design of systems, such as in the Department ofs®efen
Architecture Framework (DoDAF) version 1.5 [55] where the desighaised on specifying desired
behaviors through models and implementing these behaviors through interconnectaysteoh
components. It also includes investigation of large families ofative models, whether in the form of
spaces set up by parameters or more powerful means of specitgmgative model structures such as
provided by the SES methodology [11]. Artificial intelligence and simdlatatural intelligence
(evolutionary programming) may be brought in to help deal with combinatepldstons occasioned by
powerful model synthesizing capabilities.

Decision Layerapplies the capability to search and simulate large modeltsiis layer below to make
decisions in solving real-world problems. Included are course-of-actaomiply, selection of design
alternatives and other choices where the outcomes may be supporteddpt espiorations, “what-if*
investigations, and optimizations of the models constructed in the modmyimigusing the simulation
layer below it.

Collaboration Layerenables people or intelligent agents with partial knowledge aboutearsyshether
based on discipline, location, task, or responsibility specializatdorjng to bear individual perspectives
and contributions to achieve an overall goal.

Using the definitions for linguistic levels above, we correlatehdevels with the layers just discussed.
As illustrated in Figure 3, at the syntactic level we asseciatwork and execution layers. The semantic
level corresponds with the modeling layer — where we have included ontolggviorks as well as
dynamic system formalisms as models. Finally, the pragmatt ilecludes use of the information such
as identified in the upper layers of the M&S architecture. Thisacsurs for example, in design and
search, making decisions and collaborating to achieve common goals. Isdekdnental activities,
along with real-world physical actions that they lead to, provide this Barsenumerating the kinds of
pragmatic frames that might be of interest in particular agpbies — the context of use.

The resulting stratification leads us to propose Table 2 for defieifiective interoperation of
collaborating systems or services at the identified linguistiel$ (first and second columns).

Collaboration Layer

Decision Layer

Design and Search Layer ‘ Pragmatic Level ‘

Modeling Layer ‘ Semantic Level ‘

Execution Layer ‘ Syntactic Level ‘

Network Layer

Figure 3 Associating Linguistic Levels with Layers of Modeling and Simaiat

Linguistic A collaboration of systems |Examples
or services interoperates at

Level this level if:

Pragmatic — how The receiver reacts to the |An order from a commander is obeyed by the
information in message in a manner that thigroops in the field as the commander intendged.
messages is used sender intends A necessary condition is that the informatio

arrives in a timely manner and thtst meaning
has been preserved (semantic interoperahjility)

Semantic — shared The receiver assigns the sanpen order from a commander to multi-national
understanding of meaning as the sender did tdparticipants in «coalition operation is
meaning of messageg the message. understood in a common manner despite
translation into different languages. Similarl
geographic data must be translated correctly to
UTM grid coordinates for ground forces and to
LatLong for air and naval forces.

Syntactic — common | The consumer is able to A common network protocol (e.g. IPv4) is

rules governing receive and parse the sendef&snployed ensuring that all nodes on the
composition and message network can send and receive data bit arrays
transmission of adhering to a prescribed format.

messages

Table 2. Linguistic levels of Interoperability

The theory of modeling and simulation presented in [16] provides a concemo@work and an
associated computational approach to methodological problems in M&Srahiework provides a set of
entities and relations among the entities that, in effect, pres®ntology of the M&S domain. The
computational approach is based on the mathematical theory of sysimer&s with object orientation
and other computational paradigms. It is intended to provide a sound meaasipolate the framework
elements and to derive logical relationships among them that arelyisgiplied to real world problems
in simulation modeling. The framework entities are formulateceims of the system specifications
provided by systems theory, and the framework relations are formutateminms of the morphisms
(preservation relations) among system specifications. Conversay,albstractions provided by
mathematical systems theory require interpretation, as provided bathework, to be applicable to real
world problems.

In its computational realization, the framework is based on théDt6rmalism and implemented in
various object oriented environments. Using Unified Modeling Language (UWilLgan represent the
framework as a set of classes and relations as illustraféidures 4 and 5. The Framework for M&S as
described in [16] establishes entity classes that are: sourtmmsymodel, ontology, simulator, and
experimental/pragmatic frames. These classes are relatethebymodeling and the simulation
relationships. Each entity is formally characterized as &msyat an appropriate level of specification of
a generic dynamic system. The source system is the realual\@rtvironment that we are interested in
modeling. It is viewed as a source of observable data, in the fortimefindexed trajectories of
variables. The data that has been gathered from observing or othexp&renenting with a system is
called the system behavior database. This data is viewed oreattiuiough experimental frames of
interest to the model development and user. These data must ibesufh scope to enable reliable
comparison as well accepted by both the model developer and the test agéhe basis for comparison.
Data sources for this purpose might be measurement taken in priorimexper mathematical

representation of the measured data, or expert knowledge of the deherior by accepted subject
matter experts. An experimental frame is a specificatiornefconditions under which the system is
observed or experimented with. An experimental frame is the apeahfiormulation of the objectives
that motivate a M&S project. A frame is realized as aesyghat interacts with the system of interest to
obtain the data of interest under specified conditions. When an reepéai frame is realized as a
system to interact with the model or system under test the isptioiis become components of the
driving system. Pragmatic frames were recently introduced in [d1peneralize the concept of
experimental frame to represent the objectives involved in creatimdogigs. System specification
morphisms are implemented as relationships among entity classesxdmple, the validity of a model
with respect to a source system is characterized through a sror@ti the behavioral level and
implemented as a relationship between pairs of model and sourcam systéances. Various
implementations support different subsets of the classes andnsl#MG]. In particular, this article
will review the implementation of DEVS within a Service @tied Architecture (SOA) environment
called DEVS/SOA [17,33,34].

................................

classes

construction
mechanisms

M&S
Framewaork
classes

relationships

constraints ‘ ‘
3 interpretation
| create classes to as
+ satisfy use cases software code
} 1 (e.g. Java)

instances of classes
constitute an
implemented M&S
environment

Figure 4: M&S Framework formulated within UML

Source
Systems
Ontologies
Experimental
&
Pragmatic
Frames

EF ———— model
applicability Pragmatic
Frame

——> ontology

applicability

validity goyrce
madel system

EF
ontology ———— model

abstraction synthesizes

model v model

EF

simulator——— model
correctness

Figure 5: M&S Framework Classes and Relations in a UML representation

In a System of systems, systems and/or subsystems often intgthcteach other because of
interoperability and over all integration of the SoS. These interectare achieved by efficient
communication among the systems using either peer-to-peer communicatithroagh central
coordinator in a given SoS. Since the systems within SoS areiopaltstindependent, interactions
among systems are generally asynchronous in nature. A simple yet solutstn to handle such
asynchronous interactions (specifically, receiving messages)lisaw ain event at the receiving end to
capture the messages from single or multiple systems. Suchmsygtractions can be represented
effectively as discrete-event models. In discrete-event modeadirants are generated at random time
intervals as opposed to some pre-determined time interval seen conimdisicrete-time systems. More
specifically, the state change of a discrete-event system happignspon arrival (or generation) of an
event, not necessarily at equally spaced time intervals. Tenhisa discrete-event model is a feasible
approach in simulating the SoS framework and its interaction. Saliscatte-event simulation engines
[35-38] are available that can be used in simulating interactiométeaiogeneous mixture of independent
systems. The advantage of DEVS is its effective matherhakpaesentation and its support to
distributed simulation using middleware such as DoD’s HLA [39].

Coupled Model Coupled Model

Atomic
Model

Atomic
Model

Atomic
Model

Figure 6: DEVS Hierarchical Model representation for systems and subrsgst

DEVS [16] is a formalism, which provides a means of specifying the componerassgbtem in a
discrete event simulation. In DEVS formalism, one must sp&zgic Modelsand how these models are
connected together. These basic models are cattmdic Modelsand larger models which are obtained
by connecting these atomic blocks in meaningful fashion are dabegledModels(shown Figure 6).
Each of these atomic models liagorts (to receive external eventgutports(to send events), set stiate
variables internal transition external transition and time advance functiondVathematically it is

M =<X,SYVYd,.d,,/ t>

represented as 7-tuple system: int 7 Zext ? where X is an input setSis the set of

statesy is the set of outputsc,yilnt is the internal transition function# is the external transition function,

! is the output function, an& is the time advance function. The model's description (implemenjati
uses (or discards) the message in the event to do the computationiaed del output message on the
outport and makes a state transition. A Java-based implementat®@BEMS8 formalism, DEVSJAVA
[40], can be used to implement these atomic or coupled models. In additivtg-BEA [40] will be
helpful in distributed simulation for simulating multiple heterogenegagems in the System of systems
framework.

DEVS formalism categorically separates the Model, the Simuéatd the Experimental frame (Figure 7).
However, one of the major problems in this kind of mutually exclusivgdyem is that the formalism
implementation is itself limited by the underlying programming langubgether words, the model and
the simulator exist in the same programming language. Consequently, fegdels as well as models
that are available in one implementation are hard to transtatedne language to another even though
both the implementations are object oriented. Other constraintgbligdges inherent in C++ and Java are
another source of bottleneck that prevents such interoperability.

Experimental Frame

Simulation

Modeling Relation

Relation

Figure 7: Framework Entities and Relationships
Brief Overview of Capabilities Provided by DEVS

The prime motivation comes from an editorial by Carstairs [41] deatands a M&S framework at
higher levels of system specifications where System of sysiet@sact together using net-centric
platform. At this level, model interoperability is one of the majoncerns. The motivation for this work
stems from this need of model interoperability between the digpanaulator implementations and
provides a means to make the simulator transparent to model exe@Ed8, which is known to be
component-based system, based on formal systems theoretical fiknmethe preferred means. Table 3
outlines how it could provide solutions to the challenges in net-centsigrdand evaluation. The net-
centric DEVS framework requires enhancement to the basic DE@&bdities, which are provided in
later sections.

Desired M&S Capability for Test | Solutions Provided by DEVS Technology
and Evaluation (T&E)

Support of DoDAF need for executahl®EVS Unified Process [33,42] provides methodology and SOA
architectures using M&S such adnfrastructure for integrated development and testing, extending
mission based testing for GIG/SOA | DoDAF views [21].

Interoperability and cross-platformSimulation architecture is layered to accomplish the technaglogy
M&S using GIG/SOA migration or run different technological scenarios [43]. Provide
net-centric composition and integration of DEVS ‘validated’

models using Simulation Web Services [26]

Automated test generation andeparate a model from the act of simulation itself, which can be
deployment in distributed simulation | executed on single or multiple distributed platforms [16]. With

its bifurcated test and development process, automated test
generation is integral to this methodology [45].

Test artifact continuity and traceabilityProvide rapid means of deployment using model-continuity
through phases of system developmenprinciples and concepts like “simulation becomes the reality”
[29].

Real time observation and control pProvide dynamic variable-structure component modeling to
test environment enable control and reconfiguration of simulation on the fly [47-
49]. Provide dynamic simulation tuning, interoperability testing
and benchmarking.

Table 3: Solutions provided by DEVS technology to support of M&S for T&E

Furthermore, this work describes distributed simulation using the emfices technology. After the
development of World Wide Web, many efforts in the distributed sinonldteld have been made for
modeling, executing simulation and creating model libraries that casd®mmbled and executed over
WWW. By means of XML and web services technology these efforts érateged upon a new phase.
The proposed DEVS Modeling Language (DEVSML) [26] is built on eXtendibdekup Language
(XML) [50] as the preferred means to provide such transparentaioniimplementation. A prototype
simulation framework called DEVS/SOA has been implemented usitgseerices technology. It is
currently in use by various research groups across the world towaylddal net-centric simulation
platform [51]. The central point resides in executing the simulater \web service. The development of
this kind of frameworks will help to solve large-scale problems andagtees interoperability among
different networked systems and specifically DEVS-validated modi&ls. paper focuses on the overall
approach, and the symmetrical SOA-Based architecture that dboMdEVS execution as a Simulation
SOA.

6. DEVS Standard

The conceptual interoperability model described above provides a generéihgulesupporting system
interoperability. Following the layered approach of this conceptual modet,we review the work of
DEVS standardization that aims to support M&S interoperability baseitie DEVS M&S framework.
This work of standardization correspond to the two levels shown in Figtlie 8emantic level that deals
with standardization of model interface; and the syntactic level deals with standardization of
simulation protocol.

The DEVS formalism [16], based on Mathematical Systems theayides a computational framework
and tool set to support Systems concepts in application to SoS.raVerévide a brief review. More
detail is available in [16].

DEVS makes a sharp distinction between the model and the devicanthdates it. Both model and
simulator are defined as mathematical systems as defined by W\androthers (see [16] for details),
and the relation between them is standardized by the concept of ¢tbsitraulator. Information flow in
the DEVS formalism, as implemented on an object-oriented subssateediated by the concept of
DEVS message, a container for port-value pairs. In a messatgiease component A to component B, a
port-value pair is a pair in which the port is an output port of Ad the value is an instance of the base
class of a DEVS implementation, or any of its sub-classesufiling is a four-tuple of the fornsénding
component A, output port of A, receiving component B, input por}. &fiiss sets up a path where by a
value placed on an output port of A by A’s output function is transmittedetanput port of B, to be
consumed by the latter. In systems or simulations implemented irSB#aVironments the concepts of
ports, messages, and coupling are explicit in the code. Howeverydmms/simulations that were
implemented without systems theory guidance, in legacy or non-DEVS eneints)ithese concepts are
abstract and need to be identified concretely with the constructeatiy the underlying environment.
For SoS engineering, where legacy components are the norm, it isstastthg with the clear concepts
and methodology offered by systems theory and DEVS, getting a grip on ttopémebility problems,
and then translating backwards to the non-DEVS concepts as necessary.

Within a working group of the Simulation Interoperability Standards Orgémizea standard has been
under development to support interoperability of DEVS models implementddférent platforms as
well as with legacy simulations. Figure 8 illustrates an agchital approach proposed to accommodate
the various combinations and permutations of possible application, bothtlyukown, as well as those
that will emerge in the future. The basic idea is to definesete of interfaces; the DEVS model Interface
and the DEVS Simulator Interface, as well as a DEVS Stioual&@rotocol that operates between the two.
The interfaces protocols are based on those in GenDEVS, an inmpdtioe at the heart of the
DEVJAVA M&S environment [www.acims.arizona.edu]. DEVS/C++ aD&VSJAVA are platform
specific implementations while DEVSML[26] and XFD-DEVS [27] apatform independent
implementations in XML which can transform to any platform spetifijglementations.

Single DI.EVS . Ctt
processor Simulation
Distributed [~ . Protocol g Java
Simulator | ____ Q « ~O: ________
~2) Lo
/,'// DEVS™, DEVS \ \\ | XFD-DEVS
Real-Time |-~ " simulator, Model %,
simulator |/ |nterface ™. Interface, | peysmL
Virtual-Time [%
Simulator Non 3
DEVS Other

Representation

Figure 8: Conceptual Architecture of Standard

As a direct consequence of the model-simulator separation thebe caultiple ways in which the same
model can be simulated — all adhering to the abstract simulataificgton. Corresponding to different
simulation modes, the standard has virtual-time and real-tim@aons. In virtual-time simulation, the
simulator interprets time as logical time so the simulatiam sidp from one event time to the next
without traversing the intervening time interval. However, in tiead simulation, time is interpreted as
wall clock readings, so the real-time simulator will wait foe interval to its next scheduled event to
expire before handling the event. In addition to the model type/simulatiaie mombinations, the
standard allows for the use of different forms of distribution of modeiponents, e.g., single processor
vs. multi-processor, and within the latter, conservative vs. opiintisie advance for virtual-time as well
as centralized vs. non-centralized time control in real-timewa. The standard is also agnostic with
respect to different implementation platforms, such as WindowsUus, different programming
languages, such as Java vs. C++, and different networking and midslesaraeworks such as .Net vs.
Apache. From the above introduction, we can see that the standartiawdl multiple simulation
scenarios. For example, considering the combinations of simulation madddistribution mode, we
have: simulating a model in virtual-time and simulating a modelahtm®me both in distributed and non-
distributed fashion.

|ODevs basicDevs

O
-~ atomicDevs

OBasicDevs .- e _
(optional)

coupledDevs

Coupled / Atomiclnterface

ODevslnterfa ce

Figure 9 DEVS Model Interfaces

Among the interfaces (Figure 9)Devsdefines interface for the functions that handle message exchange
based on input and output ports. Any model, whether DEVS or non-DEVS, qdenient these
functions so it can interoperate with other implementers of thisfaite, in the sense of receiving input
and sending output. ThbeasicDevslInterface defines the basic functions a DEVS model needs to
implement such adeltext() deltint(), out(), ta() and so on. ThbasicDevsnterface is the interface that is
exposed to the atomic simulators. An additional interfatemicDevs provides a convenient set of

primitives for defining the basic functions in an atomic model. Howesiace the basic functions can be
defined without using such primitives, taeomicDevsnterface is optional. ThE¥BasicDevsnterface
extends thdODevs interface andbasicDevsinterface. It provides a common basis for implementing
atomic models and coupled models. Combiri@@asicDevswith atomicDevs we getAtomiclnterface
which defines the function signatures an atomic model need to impler@érdourse, ifatomicDevsis
omitted, thenAtomiclnterfacereduces tdOBasicDevs Similarly, CoupledDevsnterface defines the
function signatures that are used in DEVS coupled models. It alssém®ds that support adding
components and couplings to the model; methods for retrieving a component banthifioe accessing
all components; and to access the internal coupling specificatiotended only by simulators).
CombininglOBasicDevswith CoupledDevswe get the Coupled interface which defines the functions
coupled models need to implement.

QcoreSimuIator
Q Q(Ioordinator
Atomi

Simulator

CoupledSimulat

CoupledCoordinator

Figure 10 DEVS Simulator Interfaces

The basic simulator interface is tGereSimulatorthat provides a common interface for DEVS and non-
DEVS simulation (Figure 10). Further, ti@oreSimulatorinterface isthe basic interface from which
simulation services could be designed for a truly net-centricojmeable simulation framework [23].
Under theCoreSimulatorinterface, two classes of simulators have been defiwmpledSimulatoand
CoupledCoordinatointerfaces where the latter also inherits fréoordintor. These apply to both virtual
(logical); and real-time simulation. (Real time simulatot®ripret time as real wall clock time and have
their own thread and system clock. Virtual or logical time simuatan advance from one event time to
the next). TheCoreSimulatorinterface includes methods that are invoked by the DEVS simulation
protocol:

interface coreSimulatorinterface{

void setSimulators (Collection<CoreSimulatorinterface>);

void initialize();

Double nextTN();

void computelnputOutput(Double t);

void applyDeltFunc(Double t);

void putContentOnSimulator (CoreSimulatorinterface sim, Contentinterface c)

void sendMessages();

6.1 DEVS Simulation Protocol

DEVS treats a model and its simulator as two distinct elesn&he simulation protocol describes how a
DEVS model should be simulated whether in standalone fashion or in @danptlel. Such a protocol is
implemented by a processor which can be a simulator or a coordinator.

As illustrated in Figure 11, the DEVS protocol is executed davioig:

1. It starts with the coordinator telling each of the simulatothéncollection the others’ addresses and
then to perform initialization function.

2. A cycle is then entered in which the coordinator requests that Eackat®r provide its time of next
event and takes the minimum of the returned values to obtain the giobalftnext event

3. Each of the simulators applies @smputelnputOutp(t method to produce an output that consists
of a collection of contents (port/value) pairs — for DEVS simudatbis is a composite message
computed according to the DEVS formalism based on its model’s cstetat

4. Then each simulator partitions its output into messages intendedcfprent simulators and sends
these messages to these recipient simulators — for DEVS sinsulhese recipients are determined
from the output ports in the message and the coupling information thataviél previously been
received from the coordinator.

5. Finally, each simulator executes ApplyDeltFuncmethod which computes the combined effect of
the received messages and internal scheduling on its state edffsadef which is produce of time of
next event,tN — for DEVS simulators this state change is computed accordinget®EVS
formalism and théN is updated using its model’'s time advance.

6. The coordinator obtains the next global time of next event and the epeats

simulators.tellAll("nitialize*)
Coordinator simulators. AskAll(“nextTN™)

-
-

*~.. simulators.tellAll(" computeInputOutpu

-

“sim\ulators.tellAll("sendMessages")
simulﬁfoxs.‘tellAll('Apply[) eltFunc™)

~,
~

T
]
1
i
1
i
1
1
i
]
1
1
i
i hes

1 ~

1 Sa
] AN

‘,//l"bllt(‘(blltt' ntO»nSimulath A
DEVS DEVS ~——p | Non-DEVS
Simulator < Simulator Simulator

= w

Figure 11.Federation of DEVS with Non-DEVS Simulators

It should be noted that the above is one form of many possible protocatarthaovide various forms of
conservative and optimistic simulation, each of which must be proveddorteet as a realization of the
DEVS closure under coupling property [16]. One such implementation esisidicaosim/Java [44]

wherein the DEVS simulation protocol adheres to @areSimulatorinterface but has different
implementation when compared to GenDEVS.

Implicit in the above description are the following constraints involvingethods in the
CoreSimulatorinterface

The sendMessagésmethod “must” employ th@utContentOnSimulat¢r method as follows: for
any simulator to which it wishes to send a content, it musttellecipient’s
putContentOnSimulat@r method with the recipient and the content as arguments.

Further, in applying itcomputelnputOutp(t method, a simulator “must” be able to interpret the
contents (satisfying the Contentinterface) it has received fierother simulators.

Notice that we cannot enforce the “must” requirements just givehcannot prove that the simulation
executes a desired behavior, unless we are given further infornastion its behavior. One way to do
this is where the simulators are truly DEVS simulators in tiney satisfy the interfaces and constraints
given below. Failing this additional rigor, the interoperation involving DEEVif non-DEVS is purely at
the technical level similar to that of a federation of simutaieHLA. This contrasts with the situation in
which the federation is in fact derived from a DEVS coupled modelvfich correct simulation of the
coupled model is guaranteed according to the DEVS formalism.

An implementation of the standard within the Service Oriented Aactbite (SOA) has been completed
that provides DEVS modeling and simulation services over the World Weate[17, 23]. As shown in
the Figure 12, at the top of the layered architecture is the apptidayer that contains models in
DEVSJAVA or DEVSML, a way of representing DEVS models in th@eaded Markup Language
(XML). This DEVSML is built on JAVAML [18], which is XML mplementation of JAVA. The current
development effort of DEVSML takes its power from the underlying J&M{Ahat is needed to specify
the ‘behavior’ logic of atomic and coupled models. The DEVSML modescesss-transformable to
Java. The second layer is the DEVSML layer itself thavipges seamless integration, composition and
dynamic scenario construction resulting in portable models in DEV3ML dre complete in every
respect. These DEVSML models can be ported to any remote locaitigntlis SOA infrastructure and
can be executed at any remote location in a distributed or non-distrilboénner. Another major
advantage of such capability is total simulator ‘transparency’ sirhelation engine is totally transparent
to model execution over the SOA infrastructure. The DEVSML modadrifion files in XML contains
meta-data information about its compliance with various simulatiodd$iudr versions to provide true
interoperability between various simulator engine implementations. HEtsisbeen achieved for at least
two independent simulation engines as they have an underlying DEVS protociblei® #0. This has
been made possible with the implementation of a single atomic s¢Bdhend a single coupled schema
[25] that validates the DEVSML descriptions generated frometh&s implementations. Such run-time
interoperability provides great advantage when models from differentit@yess are used to compose
large coupled models using the DEVSML integration capabilities.iiBeétdesign can be seen in [17,23].

A A
Atomic
DEVSML

CLIENT

SERVER

DEVS Modeling Language (DEVML)
(Representation in XML validated by Standardized DTDs)

JAVA Modeling C++ Modeling

Language Language
JAVAML CPlusML)*
XML-Based XML-Based

Middleware (SOAP, RMI etc)
Net-centric infrastructure

DEVS Simulator 1
(Java based)

g Simulatar?2 =
= =im =

DEV e
DEVE Simulatar DEVS
(C

++ Based)

imuiator n

Figure 12: Layered Architecture of DEVSML towards transparent simulatoiet-centric domain

The complete setup requires one or more servers that are capabiaing DEVS Simulation Service, as
shown in Figure 12 by the dotted line. The capability to run the simulatiotice is provided by the
server side design of DEVS Simulation protocol supported by the DEV/S3hd Microsim/Java. Of
course, many issues of policy management and security consideratishdentaken care of in the
generation of DEVS models from WSDLs specifications [22]. Furtbeznthe multi-platform simulation
capability provided by DEVS/SOA framework consists of realizing ibisted simulation among
different DEVS platforms or simulator engines such as DEVSJAM&rosim/Java, DEVS-C++, etc.
and executing the native simulation service. This kind of interopeyabithhere multi-platform
simulations can be executed with our DEVSML integration facilities been made possible with the
hierarchical design of simulator interfaces as described im&et

Web-based simulation requires the convergence of simulation methodology WM\ Ychnology
(mainly Web Service technology). The fundamental concept of web sengid®e integrate software
application as services. Web services allow the applicatiormmmanicate with other applications using
open standards. We are offering DEVS-based simulators as a wide,sand they must have these
standard technologies: communication protocol (Simple Object Accestoc®lt SOAP), service
description (Web Service Description Language, WSDL), and setgcevery (Universal Description
Discovery and Integration, UDDI). Figure13 shows the framework of iygoged distributed simulation
using SOA.

The Simulation Service framework is two layered framework asctial in Figure 13. The top-layer is
the user coordination layeM&inServicg that oversees the lower layer (SimulationService). The lower
layer is the true simulation service layer that executes théSDdimulation protocol as a Service. The
lower layer is transparent to the modeler and only the top-lepebisded to the user.

The top-level lainServicdayer) has four main services:

Upload DEVS model

Compile DEVS model

Simulate DEVS model (centralized)
Simulate DEVS model (distributed)

MODEL

>

Server 2

COORDINATOR

SIMULATION
Server 1 SERVICE

<:> COORDINATOR [« SIMULATORS

| SIMULATION
SERVICE

Server n
SIMULATORS

COORDINATOR

/I'

SIMULATION
— Upload and compile 1 SERVICE

— Simulators creation and message passing
SIMULATORS

Figure 13: DEVS/SOA distributed architecture

The second lowerSimulationServicelayer provides the DEVS Simulation protocol and is designed as
per the DEVS Standard described earlier:

Initialize simulator i
Run transition in simulator i

Run lambda function in simulator i
Inject message to simulator i

Get time of next event from simulator i
Get time advance from simulator i

Get console log from all the simulators
Finalize simulation service

The explicit transition functions, namely, the internal transifiorction, the external transition function,
and the confluent transition function, are abstracted to a singldéitrarfanction that is made available
as a Service. The transition function that needs to be executed depetidssimulator implementation
and is decided at the run-time. For example, if the simulatplements the Parallel DEVS (P-DEVS)
formalism, it will choose among internal transition, exterreatgition or confluent transitién

The client is provided a list of servers hosting DEVS Serviceséfiects some servers to distribute the
simulation of his model. Then, the model is uploaded and compiled ineaiervers. The main server
selected creates a coordinator that creates simulators semher where the coordinator resides and/or
over the other servers selected.

Summarizing from a user’s perspective, the simulation procédsmesthrough three steps (Figure 14):

1. Write a DEVS model (currently DEVSJAVA is only supported).

2. Provide a list of DEVS servers (through UDDI, for example). &imge are testing the
application, these services have not been published using UDDI by nowt Sefeimber of
servers from the list available.

3. Run the simulation (upload, compile and simulate) and wait for thises

Figure 14: Execution of DEVS SOA-Based M&S

rrr #
This is the bottom layer of the two-layerarchitecture and its functionalities are used byMaSevice
layer. Its operations are transparent to the user. Once thdamands a simulation via théainService
class, the coordinator (at the coordinator server or main seeggryes as many simulation services as IP

2 The difference between P-DEVS and classic DEVS is the handling of confluent function. The DEVS/SOA
framework could have been built using other simulation formalisms. In fact, our simulation services could store any
kind of simulator -as long as the service updates the simulation cycle according to the simulator engine selected. The
service is independent in the sense of transition functions.

addresses provided by the user. After that, the DEVS modeltiisgread and the coordinator sends every
part to its corresponding service. When the simulation starth, ssamwilation service creates a DEVS
simulator for its models and executes the corresponding output anddrafsictions (see Figure 14).

It is possible for one simulation service to store more than iondator for different components of the
same DEVS model, or to store more than one simulator for diffe@nponents of different DEVS
models. This issue is solved as follows. After the main coordir@ditains a simulation service at a
certain IP address, a new simulator is created there, igdrity the component name plus the IP address
of the user's machine and containing the DEVS component itself.xaonpde, if the coordinator must
send a DEVS component namBdbcessorto a server located at 192.168.a5d coming from a user
located at 192.168.1.2, then a simulation service is required from 192.188dl& new simulator is
created there, identified B3rocessor@192.168.1&hd containing the model hamtbcessor

Another issue is how to store the simulators created, becalissemaces do not have memory. To this
end, we are using the server's memory by means of static var@bisibutes. Hence, the simulation
services include a static table, which associsitesilator namesvith simulator instancesThere is other
information stored by the Simulation services in the server memaeti, & the IP address where the
services reside and a reporter, which logs all the informatiole wWig simulation is running.

The services provided by the Simulation service are enumerated bedietail:

newSimulator This service receives a DEVS component and a identifier.dteasea new DEVS
simulator identified by the name described above and containing the BdiSnent received.
initialize: This service receives the name of the simulator required anditfenttime. It takes
the corresponding simulator from its table (using the name receinddhitializes it.
receivelnput: This service receives four arguments: (1) the name of the sonuéjuired, (2)
the name of the port where the message is coming from, (3) tsageeand (4) the name of the
port where the message is going to. The simulation service takegmulator from its table and
executes the same function caltedeivelnputwhich stores the message received at the input of
the model.

lambda: It receives the name of the simulator required and the curremtTinis service takes the
simulator required and executes the output function (also daltgdatia)of the DEVS model
deltfnc: This service receives the name of the simulator required andittescsimulation time.
The service takes the simulator and executes an internal or éxbercanfluent transition
function. The abstractedkltfnis provides in Figure 15. This allows both the classical DEMS a
P-DEVS models work seamlessly with DEVS/SOA simulation fraork.

getOutput: This service takes the required Simulator and returns the outped $toits DEVS
model.

getTN: It receives the name of the simulator for which the timdefext event is returned.

exit: It receives the name of the simulator to be removed from e ta

getConsoleThis service receives the IP address of the user's machinegtand the content of
the log file related to this address.

getlp: It returns the IP address of the simulation service.

Having described the services available in the DEVS/SOA actinigs following is the design of
DEVS/SOA coordinator and simulator that utilize these DEVS sesviThis simulator is called as
DEVSV/SOA simulator and it acts as an adapter for any DEWfalation engine that executes the
DEVS simulation protocol. Currently, we have implemented the DE®A/Simulator in two DEVS
implementations viz. DEVSJAVA and Microsim/Java. More detaiisa complete example can be
seen in [23] that use these two independent implementations of alsgtmatator interface. Efforts
are underway for a DEVS.net implementation using C# language.

function deltfcn(double t) {
Message x = input;
if(x==null) {
System.out.printin(
"ERROR RECEIVED NULL INPUT " + model.toString());
return;
}

/lif you receive an empty message and not imminent
if (x.iISEmpty() && t!=tN) {
return;
}

/lif incoming message is not empty and imminent
/lupdate the elapsed time, sigma
/lexecute the deltcon transition function
else if((!x.isEmpty()) && t==tN) {
double e =t-tL;
model.deltcon(e,x);

}
//if just imminent and no message
/lexecute deltint transition function

else if(t==tN) {
model.deltint();

}
/lif not imminent and just a message incoming
Ilexecute deltext transition function

else if(Ix.isEmpty()) {
double e =t - tL;
model.deltext(e,x);

}

/lupdate tL (time of last event) and tN (time of next event)
/lupdate sigma (time advance)
/Ireset incoming message collection

tL=t

tN = tL + model.ta();

input = new Message();

Figure 15: Abstractdeltfunin Simulation service

DEVSV/SOA Coordinator

Equivalent to the Simulation service storing the simulators tatac svay, the coordinator also stores the
simulators of the DEVS model in a static hash table, usingdhee nomenclature as was stated above
(DEVS component name plus client IP address identifying the simulatogjefore, such table contains
pairs {simulator name, simulator service}, associating each atorutreated with the simulation service
where it resides. The task of the coordinator is to execute aaltyPEVS loop over the distributed
simulators. Figure 16 shows the algorithm executed bgithalatefunction. In such Tableterationsis

the number of cycles of the simulatidris the current timelL is the last time eventlN is the next time
event,simulationServicess the table of simulation services created by the coordinatowhede the
simulators are located. Then, for a number of cycles, the outpuidinnstcalled through each of the
simulation services. It should be noted that the first argumeatrdddafunction is a key, which is the
simulator identifier, since different simulators could be lataethe same simulation service, this key
must be provided. After the output function is executed, the outputs ebthponents are ready to be
propagated. To this end, th@opagateOutputfunction is called, which propagates the messages
generated from the outports to its corresponding inports. Next, thetitarfsinction is applied and
finally the time is updated.

From the instant in which the coordinator is created, it starasyamoment the DEVS model (currently
DEVSJAVA), the last timed event, the next time event and ttagltiPess of the user's machine.

function simulate(long iterations)
t=1tN;
for (i=0; i<iterations; i++)
foreach ({key,simService} in simulationServices)
simService.lambda(key, t);
propagateOutput();
for each ({key,simService} in simulationServices)
simService.deltfcn(key, t);
tL=t
tN = min(simulationServices.getTN());
t=1tN;

Figure 16: DEVS simulation

It should be noted that the Coordinator is not a service. It issa, aldhich is used by thdainService
service. Again, it must be stressed that it derives from tB¥IStandard simulator interface, which
allows a DEVS coordinator to control and coordinate a DEVS simuléhar.DEVS Standard interface
has been extended for obvious reasons and extended functionalities. The fungiiensented in the
Coordinator are enumerated below:

getTopComponentNameghis function receives the name of the DEVS root-coupled model and
returns a list containing the top-component names of the DEVS model.

Constructor: The constructor receives the client IP address, the name of8¥& hodel, and
the list of IP addresses where the model is going to be simuldeste, it creates as many
simulators as top-level components, created by the simulationeseto@ated at the IP addresses
given in the list.

initialize: This function receives the initial time of simulation. It ializes the simulators.
propagateOutputiAs it was stated above, this function takes the output from rtindagors and
sends them to its corresponding inputs.

lamda: It receives the current time, and executes the output functiorcinadahe simulators
stored.

deltfcn: This function receives the current time and executes the intrredternal transition
functions in the simulators stored.

ta: It is the time advance function and receives the current tintekds the minimum next time
event from the simulators stored.

exit: This function calls the exit function of all the simulation sessistored and clean the table
of simulators.

simulate: This function receives the number of cycles of the simulation, anduisethe
simulation as was described before.

$% el
This Section provides the client application to execute DEVS modebov8OA framework using
Simulation as a Service. From many-sided modes of DEVS modeigiend33,34], the next step is the
simulation of these models. The DEVSV/SOA client takes the ®EMdels package and through the
dedicated servers hosting simulation services, it performs tlogvinlj operations:

Upload the models to specific IP locations
Run-time compile at respective sites
Simulate the coupled-model

Receive the simulation output at client’s end

NS s

The DEVSV/SOA client as shown in Figure 17 operates in the fallpwéquential manner:

1. The user selects the DEVS package folder at his machine

2. The top-level coupled model is selected as shown in Figure 17.

3. Various available servers are selected (Figure 17). Any numbeaitdlzle servers can be
selected (one at least).

4. Clicking the button labelled “Assign Servers to Model Components” threseseets where is
going to simulate each of the coupled models, including the top-level.@en¢he main server
where the coordinator will be created (Figure 18)

5. The user then uploads the model by clicking the Upload button. The modplritiened and
distributed among the servers chosen in the previous point

6. The user then compiles the models at the server’s end by clickir@@ptipile button

Figure 17: GUI snapshot of DEVSV/SOA client hosting Figure 18: Server Assignment to
distributed simulation Models

&% '()!

In terms of net-ready capability testing, what is required isdmemunication of live web services with
those of test-models designed specifically for them. The approadrewvorking on has the following
steps:

Specify the scenario

Develop the DEVS model

Develop the test-model from DEVS models

Run the model and test-model over SOA

Execute as a real-time simulation

Replace the model with actual web-service as intended in scenari
Execute the test-models with real-world web services

Compare the results of steps 5 and 7.

NN E

Of course, many issues of policy management and security consideratishde taken care of when
test-models are communicating with live Web-Services. Howes@nsidering the fact that for any
defense related mission-thread reliability testing the testd:miodeuld have the necessary security
provisions, the 8-step process listed above can be executed. This awddkalso involve generation of
DEVS models from Web Service Description Language or WSDLs spdmhs. A small portion of
Business Process Modeling Notation (BPMN) to DEVS transformatidascribed in [33].

One other section that requires some description is the muftiptasimulation capability as provided
by DEVSV/SOA framework. It consists of realizing distributed dation among different DEVS
platforms or simulator engines such as DEVSJAVA, DEVS-C+¢, let order to accomplish that, the
simulation services will be developed that are focused on spedififonphs, however, managed by a
coordinator. In this manner, the whole model will be naturally tmaréd according to their respective
implementation platform and executing the native simulation servids.Kind of interoperability where

multi-platform simulations can be executed with our DEVSML inteégnafacilities. DEVSML will be
used to describe the whole hybrid model. At this level, the problemstemdimessage passing, which
has been solved in this work by means of an adapter pattern in the detign‘mlessage” class [23].
Figure 19 shows a first approximation. The platform specific simutnerates messages or events, but
the simulation services will transform these platform-specaifessages (PSMsg) to our current platform-
independent-message (PIMsg) architecture developed in DEVS/SOAe Heacsee that the described
DEVS/SOA framework can be extended towards net-ready capabibtynge The DEVS/SOA
framework also needs to be extended towards multi-platform simulegipabilities that allow test-
models be written in any DEVS implementation (e.g. Java and G+inderact with other as services.

However, a major drawback of our current architecture is thatstiemust send the whole DEVS model
implemented under all the platforms to use, which is not a good soldtiext, we propose a
maodification on the Coordinator creation process that in some manlogrs &b the user to store each
part of the model written in its corresponding platform.

COORDINATOR
(Whaiting)
Output

Propagation

0.- nextTN 0.- nextTN

SIMULATION
SERVICE
DEVS-C++

Ve
3.- PIMsg

SIMULATION L
serialized

SERVICE
DEVSJAVA

External
Transition

4.- PSMsg’

Internal
Transition

1.- nextTN

2.- PSMsg

SIMULATOR
DEVS-C++

SIMULATOR
DEVSJAVA

Figure 19: Cross-platform execution.

& * 1

Figure 20 depicts an example of a multi-platform DEVS model. Btaic or coupled component may
be implemented using different simulation engines, cgllatforms In Figure 20, SUBMODEL A is
implemented using DEVSJAVA [28], SUBMODEL B by means of aDEMS+K) [52], and
SUBMODEL C using xDEVS (Java) [38].

Let us suppose that the whole model is implemented using DEVSJAVAur current DEVS/SOA

architecture, the application sends the whole model (root-coupled mudiedied) to the servers by
means of theipload service, where all the files get compiled and finally xeaites the model sending
serialized messages among simulation services. This situatioot valid for the multi-platform model
depicted in

Figure20 as the scenario cannot be compiled as a whole.

ROOT COUPLED MODEL

SUBMODEL A
—l

(DEVSJAVA)
SUBMODEL C
(XDEVS)
_ SUBMODEL B

(aDEVS)

Figure 20: Multi-platform DEVS model

In our proposed approach, we define the root coordinator by meanPlafferm Independent Model
(PIM), for example, DEVSML. We may use the structure descriptionE&fEML to compose the root
coupled model, and send it to the main server, which will distriloge sub-models among its
corresponding servers. Figure 21 shows how a multi-platform DEVS madebmexecuted using our
proposed architecture. We define the root-coupled model using DEVSMLof(tthye Figure 21). The

coupled model is treated as an atomic model due to the inherentecaieit of DEVS/SOA

digraph2Atomicadapter [23]. Consequently, it is immaterial if the sub-modatiasic or coupled.

DEVSML MODEL

~/uevss

SOADEVS
(MULTI-PLATFORM)

ROOT COUPLED MODEL

COORDINATOR
192.168.1.3

SUBMODEL A

(DEVSJAVA) /_m

SUBMODEL C SIM. SERVICE SIM. SERVICE SIM. SERVICE
(DEVS) (DEVSJAVA) (aDEVS) (xDEVS)
192.168.1.7 192.168.1.5 192.168.1.9
| suBMODEL B

(aDEVS)

A A

SIMULATOR SIMULATOR SIMULATOR

(DEVSJAVA) (aDEVS) (xDEVS)

SubModelA SubModelB SubModelC
AN

Figure 21: Multi-platform DEVSV/SOA proposed architecture

The DEVSML document in the Figure 21 states that the main serla@rated at 192.168.1.3. This server
receives the DEVSML document and all the source code, distrintiensdels to respective servers and
creates the coordinator. For example, the main server SanmdodelA.javao the server located at
192.168.1.7, where the DEVS/SOA java implemented server compil&kdtsame happens with the
correspondingSubModelB.cpmnd SubModelC.javaAfter compiling all sub-models, the main server
creates one simulation service for each sub-model. Figure @it 6ide) shows how coordinator,
simulation services, and simulators are created. The mairr seeates a DEVSJAVA-based simulation
service located at 192.168.1.7, which also creates a DEVSJAV&Hsswlator to storSubModelA
The same occurs with sub-models B and C, but at IP addresses 1B8.468.192.168.1.9 respectively.

The rest of the behavior of the application is the same that icwtgnt architecture. Messages are
passed by means of an adapter pattern, which as Figure 19 deigthe translated into different
platforms.

T A

The proposed DEVS standard and its DEVS/SOA implementation suppeeralsemodes of
interoperability. These are outlined in the following paragraphs.

N

DEVS-to-DEVS Interoperability is the basic form of interoperapiinabled by the DEVS standard as
discussed above. Adoption of the DEVS standard facilitates new develbfmrachieve interoperability
at the syntactic, semantic and pragmatic levels mentioned abowse détail on these concepts in
application to testing of SOA systems can be found in [5, 20, 21, 22].

¥$ 0 - L
9.2.1 !

As mentioned before, legacy simulations that can be refactoregkenirant theCoreSimulatorinterface
can be interoperate at the syntactic level with DEVS and otheDEMS peers. In its strongest form,
such simulation methodology guarantees well-defined time preservationnauldt®n correctness as a
sound basis to aim for interoperability at the higher levels.

+$$ % 1 /

For a variety of reasons, although DEVS compliance is desiraloi@n ibe expected that legacy systems
will continue to prevail and new non-compliant systems developed. ddmian of the SOA standard
however, will facilitate the interoperation of DEVS and non-DEM@ponents that are compliant with
the SOA standard. This form is realized in an Agent-implemenrgsdIfstrumentation Infrastructure that
deploys DEVS models to act as agents that are attached to ofisetvices [5,22]. Such attachment can
be performed in automated fashion using tools such as Axis Toolkie#tecthe client stub given a
service's Web Service Description Language (WSDL) [22,53]inASgure 22, these agents can observe
the web service requests originating from the client and servponsss (or failure thereof) to
accumulate a variety of performance measurements. The agertiseaerve as virtual users to interact
with other users to direct the course of test scenarios andtcpigformance metrics to support
scalability studies. Further, while collecting data, DEVS ageain communicate with each other to
coordinate and share information using the DEVS-to-DEVS configuratiodigeissed. Case studies are
available in reference [22].

Figure 22. DEVS/SOA interoperability

2 Y . 33-034033-0/

1-1

A DEVS distributed federation is a DEVS coupled model whose comporeside on different network
nodes and whose coupling is implemented through middleware connectivitgctehistic of the
environment, e.g., SOAP for GIG/SOA. The federation modelgxaeuted by DEVS simulator nodes
that provide the time and data exchange coordination as specifidte iDEVS abstract simulator
protocol.

As discussed earlier, in the general concept of experimentas f{&F), the generator sends inputs to the
SoS under test (SUT), the transducer collects SUT outputs and destdtiptical summaries, and the
acceptor monitors SUT observables making decisions about continuatiomioateon of the experiment

[18]. Since the SoS is composed of system components, the EFimitist among SoS components, as
illustrated in Figure 23ach component may be coupled to an EF consisting of some subset of generator

acceptor, and transducer components. As mentioned, in addition an olsmrgkys the EF to the
component using an interface provided by the integration infrastructuresféveo the DEVS model that
consists of the observer and EF dsst agent

Net-centric Service Oriented Architecture (SOA) provides aeatly relevant technologically feasible
realization of the concept. As discussed earlier, the DEVA/&fastructure enables DEVS models, and
test agents in particular, to be deployed to the network nodes of intsseilustrated in Figure 23, in
this incarnation, the network inputs sent by EF generators are SsBages sent to other EFs as
destinations; transducers record the arrival of messages and thdrdata in their fields, while acceptors
decide on whether the gathered data indicates continuation or termigati@rder [18,33].

Since EFs are implemented as DEVS models, distributed EFsnptemented as DEVS models, or
agents as we have called them, residing on network nodes. Such aidedelfustrated in Figure 24,
consists of DEVS simulators executing on web servers on the nodes erghanagisages and obeying
time relationships under the rules contained within their hosted Dad&Is. Complete analysis of the
design problem and its mapping to the three linguistic levels ikabiaat [5].

Figure 23: Deploying Experimental Frame Agents and Observers

Test Architecture <:] Mission Thread
DEVS Simulator

SOA

Service Discovery: UDDI

Sevice Description: WSDL
Packaging:XML

DEVS
Observer
Agent

Service

Messaging:SOAP Under
Communicatioq: HTTP Test

I
—

Net-centric

Environment _‘

(e.g., GIG/SOA)

DEVS Test
Federation

Live
Test

Player

SOAP-

XML

DEVS
Simulator
Node

Figure 24: DEVS Test Federation in GIG/SOA Environment

% !

Achieving interoperability is one of the chief SoS engineering objedtivibe development of command
and control (C2) capabilities for joint and coalition warfare. thgortance of M&S in SoS design and
evaluation cannot be underestimated. M&S can be used strategicaligvide early feasibility studies
and aid the design process. As components comprising SoS are designedyaed ath@ir integration
and communication is the most critical part that must be addrdsgethe employed SoS M&S
framework. The integration infrastructure must support interopesakilit syntactic, semantic and
pragmatic levels to enable such integration.

Currently there are several other approaches to distributed snubaid to integration of M&S with
advanced C2 systems. These approaches build on the internet or ottemtnetmiddleware to provide
component connectivity and simulation services [1,20]. The latter map aiclude HLA
implementations; however, the extent of adoption of HLA in this contegméins to be seen. The DEVS
standard provides a formal systems-based abstraction that can sugpert leivel interoperability,
whether alone or on top of HLA. The DEVS/SOA implementation provad&OA implementation
independent of HLA and is a viable approach to M&S integration with C2irsti® weaker gateway
form, and in the strong direct compliance form. Further, DEVSheas applied to frameworks like
DoDAF, UML and other systems engineering frameworks like SystetityEStructure (SES). Figure 25
illustrates how M&S is increasingly incorporated in C2 SoS as saidrsmart components as well as a
methodology to deal with the interoperability probldmdeed, DEVS components including decision
making agents, sensor simulators, and environmental representatidimingatme power of M&S to the
development of C2 SoS as well as serving as support for command aral rtontial operation. The
underlying SOA standard that facilitates this interoperation carxjpected to be widely adopted (for
example, it has been adopted by the DoD’s Global Information Grictiwvdtia

Figure 25: M&S as source of smart components in C4l systems

References

[1] Pullen, M., Wilson, L.T.C.K, Hieb, M., Tolk, A., “Extensible Modeling and Simulation Framework (XMSF)
C4l Testbed,” available fromttp://www.movesinstitute.org/xmsf/xmsf.html

[2] Sage, A., “From Engineering a System to Engineering an Integrated System Family, From Systems
Engineering to System of Systems Engineering”, 2007 IEEE International Conference on System of Systems
Engineering (SoSE). April 16th -18th, 2007, San Antonio, Texas

[3] Jacobs, R.W. “Model-Driven Development of Command and Control Capabilities For Joint and Coalition
Warfare,” Command and Control Research and Technology Symposium, June 2004.

[4] Dahmann, J.S., F. Kuhl, and R. Weatherly, Standards for Simulation: As Simple As Possible But Not
Simpler The High Level Architecture For Simulation. Simulation, 1998. 71(6): p. 378

[5] Mittal, S., Zeigler, B.P., Martin, J.L.R., Sahin, F., Jamshidi, M., “Modeling and Simulation for Systems of
Systems Engineering”, to appear in Systems of Systems -- Innovations for the 21st Century (to be published
by Wiley)

[6]
[7]

(8]

9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]
[35]

Tolk, A., and Muguira, J.A. “The Levels of Conceptual Interoperability Model (LCIM)”, Proceedings Fall
Simulation Interoperability Workshop, 2003

DiMario M.J., “System of Systems Interoperability Types and Characteristics in Joint Command and
Control”, Proceedings of the 2006 IEEE/SMC International Conference on System of Systems Engineering,
Los Angeles, CA, USA - April 2006

Levels of Information Systems Interoperability (LISI),
http://www.sei.cmu.edu/isis/guide/introduction/lisi.htm

Turnitsa C., and A. Tolk, “Evaluation of the C2IEDM as an Interoperability-Enabling Ontology,”
Proceedings of Fall Simulation Interoperability Workshop, 2005.

Muguira, J., Tolk., A “Applying a Methodology to identify Structural Variances in Interoperations,” JDMS:
The Journal of Defense Modeling and Simulation, Vol 3, No 2, 2006

Zeigler, B.P., and Hammonds, P., “Modeling & Simulation-Based Data Engineering: Introducing
Pragmatics into Ontologies for Net-Centric Information Exchange”, 2007, New York, NY: Academic Press.
Turnitsa C., and Tolk, A., “Evaluation of the C2IEDM as an Interoperability-Enabling Ontology,”
Proceedings of Fall Simulation Interoperability Workshop, 2005.

Lasschuyt , E., Henken, M., Treurniet, W., and Visser, M., “How to Make an Effective Information
Exchange Data Model,” RTO-IST-042/9,2004

Hoffmann, M., “Challenges of Model Interoperation in Military Simulations”. SIMULATION, Vol. 80, pp.
659-667, 2004

Chaum, E., Hieb, M.R., and Tolk, A. “M&S and the Global Information Grid,” Proceedings
Interservice/Industry Training, Simulation and Education Conference (I/ITSEC), 2005.

Zeigler, B. P., Kim, T.G., and Praehofer, H., “Theory of Modeling and Simulation” New York, NY,
Academic Press, 2000.

Mittal, S., Risco-Matrtin, J.L., Zeigler, B.P. “DEVS-Based Web Services for Net-centric T&E”, Summer
Computer Simulation Conference, 2007

Badros, G. “JavaML: a Markup Language for Java Source Code”, Proceedings'ofritezr@ational World
Wide Web Conference on Computer Networks: the international journal of computer and
telecommunication networking, pages 159-177

Zeigler, B. P., Mittal, S., “Enhancing DoDAF with DEVS-Based System Life-cycle Process”, IEEE
International Conference on Systems, Man and Cybernetics, Hawaii, October 2005

Reichenthal, S.W., SRML - Simulation Reference Markup Language W3C Note 18 December 2002
http://www.w3.0org/TR/SRML/

Mittal, S., “Extending DoDAF to allow DEVS-Based Modeling and Simulation”, Special issue on DoDAF,
Journal of Defense Modeling and Simulation (JDMS), Vol 3. No. 2

Mittal, S. Martin, J.L.R., “Design and Analysis of Service Oriented Architectures using DEVS/SOA-Based
Modeling and Simulation”, whitepaperwatvw.duniptechnologies.com

Mittal, S., Martin, J.L.R., Zeigler, B.P., "DEVS/SOA: A Cross-platform Framework for Net-centric
Modeling and Simulation in DEVS Unified Process”, SIMULATION: Transactions of SCS, to appear
DEVS Atomic Scheméhttp://www.duniptechnologies.com/binding/devsAtomic.xsd

DEVS Coupled Schemattp://www.duniptechnologies.com/binding/devsCoupled.xsd

Mittal, S., Martin, J.L.R., Zeigler, B.P.DEVSML: Automating DEVS Execution over SOA Towards
Transparent SimulatotsSpecial Session on DEVS Collaborative Execution and Systems Modeling over
SOA, DEVS Integrative M&S Symposium DEVS' 07, Spring Simulation Multi-Conference, March 2007
Mittal, S., Zeigler, B.P., Hwang, M.H., XML-Based Finite Deterministic DEVS (XFD-DEVS);
http://www.saurabh-mittal.com/fddevs/

ACIMS software sitehttp://www.acims.arizona.edu/SOFTWARE/software.shtml

Hu, X., and Zeigler, B.P.Model Continuity in the Design of Dynamic Distributed Real-Time System”s
IEEE Transactions on Systems, Man And Cybernetics— Part A, Volume 35, Issue 6, pp. 867-878,
November 2005

Cho, Y., Zeigler, B.P., Sarjoughian, H., “Design and Implementation of Distributed Real-Time
DEVS/CORBA”, IEEE Sys. Man. Cyber. Conf., Tucson, Oct. 2001.

Wainer, G., Giambiasi, N., “Timed Cell-DEVS: modeling and simulation of cell-spaces”. Invited paper for
the book Discrete Event Modeling & Simulation: Enabling Future Technologies, Springer-Verlag 2001
Zhang, M., Zeigler, B.P., Hammonds, P., “DEVS/RMI-An Auto-Adaptive and Reconfigurable Distributed
Simulation Environment for Engineering Studies”, ITEA Journal, July 2005

Mittal, S., “DEVS Unified Process for Integrated Development and Testing of Service Oriented
Architectures”, Ph. D. Dissertation, University of Arizona

DUNIP: A Prototype Demonstratidiitp://www.acims.arizona.edu/dunip/dunip.avi

MatLab Simulink http://www.mathworks.com/products/simulink/

[36] OMNET++,http://www.omnetpp.org/

[37] NS-2,http://www.isi.edu/nsnam/ns/

[38] XDEVS web pagehttp://itis.cesfelipesegundo.com/~jlrisco/xdevs.html

[39] HLA, https://www.dmso.mil/public/transition/hla/

[40] Sarjoughian, H.S., Zeigler, B.P., "DEVS and HLA: Complimentary Paradigms for M&S?" Transactions of
the SCS, (17), 4, pp. 187-197, 2000

[41] Carstairs, D.J., “Wanted: A New Test Approach for Military Net-Centric Operatiésest Editorial,

ITEA Journal, Volume 26, Number 3, October 2005

[42] Mittal, S., Zeigler, B.P.,DEVSUnified Process for Integrated Development and Testing of System of
System3, Critical Issues in C4l, AFCEA-George Mason University Symposium, May 2008

[43] Sarjoughian, H., Zeigler, B.P., and Hall, S., “A Layered Modeling and Simulation Architecture for Agent-
Based System DevelopménProceedings of the IEEE 89 (2); 201-213, 2001

[44] Microsim/Java: An Implementation of DEVS formalism in Javatgt://www.duniptechnologies.com

[45] Zeigler, B.P., Fulton, D., Hammonds, P., Nutaro, J., “Framework for M&S Based System Development and
Testing in Net-centric Environment”, ITEA Journal, Vol. 26, No. 3, October 2005

[46] Mittal, S., Zeigler, B.P., “Dynamic Simulation Control with Queue Visualization”, Summer Computer
Simulation Conference, SCSC’05, Philadelphia, July 2005

[47] Mittal, S., Zeigler, B.P., Hammonds, P., Veena, M., “Network Simulation Environment for Evaluation and
Benchmarking HLA/RTI Experiments”, JITC Report, Fort Huachuca, December 2004.

[48] Hu, X., Zeigler, B.P., Mittal, S., “Dynamic Configuration in DEVS Component-based Modeling and
Simulation”, SIMULATION: Transactions of the Society of Modeling and Simulation International,
November 2003

[49] Mittal, S., Zeigler, B.P.,, “Modeling/Simulation Architecture for Autonomous Computing”, Autonomic
Computing Workshop: The Next Era of Computing, Tucson, January 2003.

[50] XML: http://www.w3.org/XML/

[51] Martin, J.L.R., Mittal, S., et.al, “Optimization of Dynamic Data Types in Embedded Systems using
DEVS/SOA-based Modeling and Simulation”, 3rd International ICST Conference on Scalable Information
Systems, Italy, June 2008

[52] aDEVS: an open source C++ DEVS Simulation engine. Available at:
http://www.ornl.gov/~1gn/adevs/index.html

[53] Mittal, S., Martin,J.L.R., Zeigler, B.P., “WSDL-Based DEVS Agent for Net-Centric Systems Engineering”,
International Workshop on Modeling and Applied Simulation, Italy, September 2008

[54] Zeigler, B.P., Mittal, S., Hu, X., “Towards a Formal Standard for Interoperability in M&S/Systems of
Systems Engineering”, Critical Issues in C4l, AFCEA-George Mason University Symposium, May 2008

[55] Department of Defense Architecture Framework (DoDAF) version 1.5 downloadable from:
http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_Il.pdf

* 5"
Saurabh Mittal is the CEO at DUNIP Technologies, India. Previously he worked as Research Assistant Professor
at the Department of Electrical and Computer Engineering at the University of Arizona where he received his Ph. D
in 2007. His areas of interest include Web-based M&S using SOA, interoperability, executable architectures,
distributed simulation, and System of Systems engineering using DoDAF. He can be reached at
saurabh.mittal@duniptechnologies.com

Bernard P. Zeigler is Professor of Electrical and Computer Engineering at the University of Arizona, Tucson and
Director of the Arizona Center for Integrative Modeling and Simulation. He is developing DEVS-methodology
approaches for testing mission thread end-to-end interoperability and combat effectiveness of Defense Department
acquisitions and transitions to the Global Information Grid with its Service Oriented Architecture (GIG/SOA). He
can be reached atigler@ece.arizona.edu

José L. Risco-Martinis an Assistant Professor in Complutense University of Madrid, Spain. He received his PhD
from Complutense University of Madrid in 2004. His research interests are computational theory of modeling and
simulation, with emphasis on DEVS, Dynamic memory management of embedded systems, and net-centric
computing. He can be reachedlasco@dacya.ucm.es

