
Page 1 of 27

Implementation of Formal Standard for Interoperability in M&S/Systems of

Systems Integration with DEVS/SOA

Saurabh Mittal

Dunip Technologies

New Delhi, India

saurabh.mittal@duniptechnologies.com

Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation,

University of Arizona,

Tucson, AZ, USA

zeigler@ece.arizona.edu

Jose L. Risco-Martin

Departamento de Arquitectura de Computadores y Automática

Facultad de Informática

Universidad Complutense de Madrid

Madrid, Spain

jlrisco@gmail.com

Abstract
Modeling and Simulation (M&S) is finding increasing application in development and testing of

command and control systems comprised of information-intensive component systems. Achieving

interoperability is one of the chief System of systems (SoS) engineering objectives in the development of

command and control (C2) capabilities for joint and coalition warfare. In this paper, we apply an SoS

perspective on the integration of M&S with such systems. We employ recently developed interoperability

concepts based on linguistic categories along with the Discrete Event System Specification (DEVS)

formalism to implement a standard for interoperability. We will show how the developed standard is

implemented in DEVS/SOA net-centric modeling and simulation framework that uses XML-based Service

Oriented Architecture (SOA). We will discuss the simulator interfaces and the design issues in their

implementation in DEVS/SOA. We will illustrate the application of DEVS/SOA in a multi-agent test

instrumentation system that is deployable as a SOA.

1. Introduction
Modeling and Simulation (M&S) is finding increasing application in important aspects of command and

control systems comprised of information intensive component systems. One aspect of such application is

the incorporation of M&S functionality into such systems which is also an objective of the Extensible

Modeling and Simulation Framework (XMSF
1
). Another aspect is the use of M&S to support the

development and testing such systems as instances of System of Systems (SoS). The SoS concept relates

to the attempt to integrate disparate systems to achieve a specific goal, typically not co-incident with the

1
 XMSF: A set of Web-based technologies and distributed testbed [1]

Page 2 of 27

goals of the pre-existing component systems. Consequently, the defining concern in SoS engineering is

interoperability, or lack thereof, among the constituent system [1, 2]. Achieving such interoperability is

among the chief SoS engineering objectives in the development of command and control (C2) capabilities

for joint and coalition warfare [3]. Sage [1] analogized the construction of SoS to the federation of socio-

political systems and drew a parallel between such processes and the federation that is supported by the

High Level Architecture (HLA, an IEEE standard fostered by the DoD to enable interoperation of

simulation components [4]). In this light, the present author discussed the role that M&S can play in

helping to address the interoperability problems in SoS engineering [5]. The present paper builds upon

this work by considering not only the parallel between SoS engineering and distributed simulation, but

also how M&S can be more integrally included within SoS engineering approaches. The focus of this

paper is to present fundamental concepts to help tackle the integration of M&S and C2 SoS through the

use of concepts and standards for interoperability based on the Discrete Event Systems Specification

(DEVS) formalism. Our ultimate motivation is to apply M&S concepts and technologies to support

collaborative decision making in C2 SoS as well as the testing and evaluation of such systems.

DEVS environments such as DEVSJAVA, DEVS-C++, and others [28] are embedded in object-oriented

implementations; they support the goal of representing executable model architectures in an object-

oriented representational language. As a mathematical formalism, DEVS is platform independent, and its

implementations adhere to the DEVS protocol so that DEVS models easily translate from one form (e.g.,

C++) to another (e.g., Java) [16]. Moreover, DEVS environments, such as DEVSJAVA, execute on

commercial, off-the-shelf desktops or workstations and employ state-of-the-art libraries to produce

graphical output.. DEVS environments are typically open architectures that have been extended to

execute on various middleware such as the DoD’s HLA standard, CORBA, SOAP, and others and can be

readily interfaced to other engineering and simulation and modeling tools [29,30,31,32]. Furthermore,

DEVS operation over web middleware (SOAP) enables it to utilize the net-centric environment of the

Global Information Grid/Service Oriented Architecture (GIG/SOA). As a result of recent advances,

DEVS can support model continuity through a simulation-based development and testing life cycle [29].

This means that the mapping of high-level requirement specifications into lower-level DEVS

formalizations enables such specifications to be thoroughly tested in virtual simulation environments

before being easily and consistently transitioned to operate in a real environment for further testing and

fielding.

This article is an extension of a recent article by authors where the Standard for DEVS M&S

interoperability was proposed [54]. The present work is a realization of the concepts in [54].

2. Interoperability in Distributed Simulation
As illustrated in Figure 1, HLA is a network middleware layer that supports message exchanges among

simulation components, called federates, in a neutral format and also provides a range of services to

support dynamic and efficient execution of simulations. However, experience with HLA has been

disappointing and forced proponents to acknowledge the difference between enabling heterogeneous

simulations to exchange data, so-called technical interoperability, and substantive interoperability – the

desired outcome of exchanging meaningful data so that coherent interaction among federates takes place

[5]. Tolk introduced the Levels of Conceptual Interoperability Model (LCIM) which identified seven

levels of interoperability among participating systems [6]. These levels also can be viewed as a

refinement of the operational interoperability type which is one of three defined by Dimario [7]. The

operational type concerns linkages between systems in their interactions with one another, the

environment, and with users. The additional levels provide more elaboration to the catch-all category of

substantive interoperability and, as illustrated in Figure 1, are missing from HLA standard as such.

Page 3 of 27

Figure 1. HLA Technical Interoperability

3. Levels of Conceptual Interoperability Model
Although Levels of Information Systems Interoperability [8] models are used successfully to determine

the degree of interoperability between information technology systems, they do not provide a systematic

formulation of the underlying properties of information exchange. To remedy this situation, the LCIM

outlined in Table 1, was developed to become a bridge between conceptual and technical design for

implementation, integration, or federation [9, 10].

The last column lists key conditions that are required to reach an interoperability level from the one

below. Of course, the conditions accumulate as the level increases. We note that the conditions given in

the LCIM for pragmatic interoperability require that the use of data be mutually understood, where the

term “use” is interpreted as the context of its application. A reformulation of LCIM was presented in [11]

where more definitive concepts for pragmatic interoperability including the concepts of pragmatic frames

and pragmatic equivalence. Moreover, the definition of the semantic level requires the use of a single

reference semantic model as a hub for information exchange among participants in collaboration.

However such a hub and spokes approach, while desirable, is not always feasible. [12] evaluated a

common information exchange model, C2IEDM, as an interoperability-enabling ontology for command

and control. The conclusion is that even if there is room for improvements, the model supports almost all

basic needs for such a semantic bridge. However, [13] claim that in its current form, the model is

unbalanced in its levels of detail and too large to be practical. In the stratification to be introduced below,

we review a more streamlined and extended account of information exchange levels.

Level of

Conceptual

Interoperability

Characteristic Key Condition

Conceptual

The assumptions and constraints

underlying the meaningful abstraction of

reality are aligned

Requires that conceptual models be

documented based on engineering methods

enabling their interpretation and evaluation by

other engineers.

Dynamic

Participants are able to comprehend

changes in system state and assumptions

and constraints that each is making over

time, and are able to take advantage of

those changes.

Requires common understanding of system

dynamics

Pragmatic
Participants are aware of the methods and

procedures that each is employing

Requires that the use of the data – or the

context of their application – is understood by

the participating systems.

Semantic The meaning of the data is shared
Requires a common information exchange

reference model

Syntactic
Introduces a common structure to

exchange information,
Requires that a common data format is used

Technical
Data can be exchanged between

participants
Requires that a communication protocol exists

Stand alone No interoperability

Table 1: Levels of Conceptual Interoperability

Page 4 of 27

4. Linguistic Levels
The definitions given in [11] agree in general, but differ substantially, with those used in the LCIM. They

are summarized:

• Pragmatics: Data use in relation to data structure and context of application

• Semantics: Low level semantics focuses on definitions and attributes of terms; high level

semantics focuses on the combined meaning of multiple terms (Generalized Context). Note in

contrast to the LCIM requirement for semantic interoperability, this definition focuses on the

underlying requirement for achieving shared meanings rather than how this requirement is

achieved.

• Syntax focuses on a structure and adherence to the rules that govern that structure, e.g., XML

(Rules and Structure)

The authors of LCIM associate the lower layers with the problems of simulation interoperation while the

upper layers relate to the problems of reuse and composition of models [14,15]. They conclude

“simulation systems are based on models and their assumptions and constraints. If two simulation

systems are combined, these assumptions and constraints must be aligned accordingly to ensure

meaningful results.”[10]. This suggests that levels of interoperability that have been identified in the area

of M&S can serve as guidelines to discussion of information exchange in general. Therefore, we consider

an earlier developed conceptual layered architecture for M&S [16]. We’ll correlate the above linguistic

definitions with the layers outlined below and shown in Figure 2.

Figure 2. Architecture for Modeling and Simulation

Network Layer contains the actual computers (including workstations and high performance systems) and

the connecting networks (both LAN and WAN, their hardware and software) that do the work of

supporting all aspects of the M&S lifecycle.

Execution Layer is the software that executes the models in simulation time and/or real time to generate

their behavior. Included in this layer are the protocols that provide the basis for distributed simulation

(such as those that are standardized in the HLA. Also included are database management systems,

software systems to support control of simulation executions, visualization and animation of the generated

behaviors.

Modeling Layer supports the development of models in formalisms that are independent of any given

simulation layer implementation. HLA just mentioned also provides object-oriented templates for model

description aimed at supporting confederations of globally dispersed models. However, beyond this, the

formalisms for model behavior, whether continuous, discrete or discrete event in nature) as well as

structure change, are also included in this layer. Model construction and especially, the key processes of

Page 5 of 27

model abstraction and continuity over the lifecycle are also included. We also add ontologies to this layer

where they are understood as models of the world for a particular conceptualization intended to support

information exchange.

Design and Search Layer supports the design of systems, such as in the Department of Defense

Architecture Framework (DoDAF) version 1.5 [55] where the design is based on specifying desired

behaviors through models and implementing these behaviors through interconnection of system

components. It also includes investigation of large families of alternative models, whether in the form of

spaces set up by parameters or more powerful means of specifying alternative model structures such as

provided by the SES methodology [11]. Artificial intelligence and simulated natural intelligence

(evolutionary programming) may be brought in to help deal with combinatorial explosions occasioned by

powerful model synthesizing capabilities.

Decision Layer applies the capability to search and simulate large model sets at the layer below to make

decisions in solving real-world problems. Included are course-of-action planning, selection of design

alternatives and other choices where the outcomes may be supported by concept explorations, “what-if“

investigations, and optimizations of the models constructed in the modeling layer using the simulation

layer below it.

Collaboration Layer enables people or intelligent agents with partial knowledge about a system, whether

based on discipline, location, task, or responsibility specialization, to bring to bear individual perspectives

and contributions to achieve an overall goal.

Using the definitions for linguistic levels above, we correlate such levels with the layers just discussed.

As illustrated in Figure 3, at the syntactic level we associate network and execution layers. The semantic

level corresponds with the modeling layer – where we have included ontology frameworks as well as

dynamic system formalisms as models. Finally, the pragmatic level includes use of the information such

as identified in the upper layers of the M&S architecture. This use occurs for example, in design and

search, making decisions and collaborating to achieve common goals. Indeed, such mental activities,

along with real-world physical actions that they lead to, provide the basis for enumerating the kinds of

pragmatic frames that might be of interest in particular applications – the context of use.

The resulting stratification leads us to propose Table 2 for defining effective interoperation of

collaborating systems or services at the identified linguistic levels (first and second columns).

Figure 3 Associating Linguistic Levels with Layers of Modeling and Simulation

Page 6 of 27

Linguistic

Level

A collaboration of systems

or services interoperates at

this level if:

Examples

Pragmatic – how

information in

messages is used

The receiver reacts to the

message in a manner that the

sender intends

An order from a commander is obeyed by the

troops in the field as the commander intended.

A necessary condition is that the information

arrives in a timely manner and that its meaning

has been preserved (semantic interoperability)

Semantic – shared

understanding of

meaning of messages

The receiver assigns the same

meaning as the sender did to

the message.

An order from a commander to multi-national

participants in a coalition operation is

understood in a common manner despite

translation into different languages. Similarly

geographic data must be translated correctly to

UTM grid coordinates for ground forces and to

LatLong for air and naval forces.

Syntactic – common

rules governing

composition and

transmission of

messages

The consumer is able to

receive and parse the sender’s

message

A common network protocol (e.g. IPv4) is

employed ensuring that all nodes on the

network can send and receive data bit arrays

adhering to a prescribed format.

Table 2. Linguistic levels of Interoperability

5. Review of M&S foundational framework
The theory of modeling and simulation presented in [16] provides a conceptual framework and an

associated computational approach to methodological problems in M&S. The framework provides a set of

entities and relations among the entities that, in effect, present a ontology of the M&S domain. The

computational approach is based on the mathematical theory of systems and works with object orientation

and other computational paradigms. It is intended to provide a sound means to manipulate the framework

elements and to derive logical relationships among them that are usefully applied to real world problems

in simulation modeling. The framework entities are formulated in terms of the system specifications

provided by systems theory, and the framework relations are formulated in terms of the morphisms

(preservation relations) among system specifications. Conversely, the abstractions provided by

mathematical systems theory require interpretation, as provided by the framework, to be applicable to real

world problems.

In its computational realization, the framework is based on the DEVS formalism and implemented in

various object oriented environments. Using Unified Modeling Language (UML) we can represent the

framework as a set of classes and relations as illustrated in Figures 4 and 5. The Framework for M&S as

described in [16] establishes entity classes that are: source system, model, ontology, simulator, and

experimental/pragmatic frames. These classes are related by the modeling and the simulation

relationships. Each entity is formally characterized as a system at an appropriate level of specification of

a generic dynamic system. The source system is the real or virtual environment that we are interested in

modeling. It is viewed as a source of observable data, in the form of time-indexed trajectories of

variables. The data that has been gathered from observing or otherwise experimenting with a system is

called the system behavior database. This data is viewed or acquired through experimental frames of

interest to the model development and user. These data must be sufficient in scope to enable reliable

comparison as well accepted by both the model developer and the test agency as the basis for comparison.

Data sources for this purpose might be measurement taken in prior experiments, mathematical

Page 7 of 27

representation of the measured data, or expert knowledge of the system behavior by accepted subject

matter experts. An experimental frame is a specification of the conditions under which the system is

observed or experimented with. An experimental frame is the operational formulation of the objectives

that motivate a M&S project. A frame is realized as a system that interacts with the system of interest to

obtain the data of interest under specified conditions. When an experimental frame is realized as a

system to interact with the model or system under test the specifications become components of the

driving system. Pragmatic frames were recently introduced in [11] to generalize the concept of

experimental frame to represent the objectives involved in creating ontologies. System specification

morphisms are implemented as relationships among entity classes. For example, the validity of a model

with respect to a source system is characterized through a morphism at the behavioral level and

implemented as a relationship between pairs of model and source system instances. Various

implementations support different subsets of the classes and relations [OMG]. In particular, this article

will review the implementation of DEVS within a Service Oriented Architecture (SOA) environment

called DEVS/SOA [17,33,34].

Figure 4: M&S Framework formulated within UML

Figure 5: M&S Framework Classes and Relations in a UML representation

Page 8 of 27

In a System of systems, systems and/or subsystems often interact with each other because of

interoperability and over all integration of the SoS. These interactions are achieved by efficient

communication among the systems using either peer-to-peer communication or through central

coordinator in a given SoS. Since the systems within SoS are operationally independent, interactions

among systems are generally asynchronous in nature. A simple yet robust solution to handle such

asynchronous interactions (specifically, receiving messages) is to throw an event at the receiving end to

capture the messages from single or multiple systems. Such system interactions can be represented

effectively as discrete-event models. In discrete-event modeling, events are generated at random time

intervals as opposed to some pre-determined time interval seen commonly in discrete-time systems. More

specifically, the state change of a discrete-event system happens only upon arrival (or generation) of an

event, not necessarily at equally spaced time intervals. To this end, a discrete-event model is a feasible

approach in simulating the SoS framework and its interaction. Several discrete-event simulation engines

[35-38] are available that can be used in simulating interaction in a heterogeneous mixture of independent

systems. The advantage of DEVS is its effective mathematical representation and its support to

distributed simulation using middleware such as DoD’s HLA [39].

Figure 6: DEVS Hierarchical Model representation for systems and sub-systems

5.1 DEVS Modeling and Simulation
DEVS [16] is a formalism, which provides a means of specifying the components of a system in a

discrete event simulation. In DEVS formalism, one must specify Basic Models and how these models are

connected together. These basic models are called Atomic Models and larger models which are obtained

by connecting these atomic blocks in meaningful fashion are called Coupled Models (shown Figure 6).

Each of these atomic models has inports (to receive external events), outports (to send events), set of state

variables, internal transition, external transition, and time advance functions. Mathematically it is

represented as 7-tuple system: int, , , , , ,ext aM X S Y tδ δ λ=< >
 where X is an input set, S is the set of

states, Y is the set of outputs, intδ
 is the internal transition function, extδ

 is the external transition function,

λ is the output function, and at is the time advance function. The model’s description (implementation)

uses (or discards) the message in the event to do the computation and delivers an output message on the

outport and makes a state transition. A Java-based implementation of DEVS formalism, DEVSJAVA

[40], can be used to implement these atomic or coupled models. In addition, DEVS-HLA [40] will be

helpful in distributed simulation for simulating multiple heterogeneous systems in the System of systems

framework.

DEVS formalism categorically separates the Model, the Simulator and the Experimental frame (Figure 7).

However, one of the major problems in this kind of mutually exclusively system is that the formalism

implementation is itself limited by the underlying programming language. In other words, the model and

the simulator exist in the same programming language. Consequently, legacy models as well as models

that are available in one implementation are hard to translate from one language to another even though

both the implementations are object oriented. Other constraints like libraries inherent in C++ and Java are

another source of bottleneck that prevents such interoperability.

Page 9 of 27

Source

System

Simulator

Model

Experimental Frame

Simulation

Relation
Modeling

Relation

Figure 7: Framework Entities and Relationships

Brief Overview of Capabilities Provided by DEVS

The prime motivation comes from an editorial by Carstairs [41] that demands a M&S framework at

higher levels of system specifications where System of systems interact together using net-centric

platform. At this level, model interoperability is one of the major concerns. The motivation for this work

stems from this need of model interoperability between the disparate simulator implementations and

provides a means to make the simulator transparent to model execution. DEVS, which is known to be

component-based system, based on formal systems theoretical framework is the preferred means. Table 3

outlines how it could provide solutions to the challenges in net-centric design and evaluation. The net-

centric DEVS framework requires enhancement to the basic DEVS capabilities, which are provided in

later sections.

Desired M&S Capability for Test

and Evaluation (T&E)

Solutions Provided by DEVS Technology

Support of DoDAF need for executable

architectures using M&S such as

mission based testing for GIG/SOA

DEVS Unified Process [33,42] provides methodology and SOA

infrastructure for integrated development and testing, extending

DoDAF views [21].

Interoperability and cross-platform

M&S using GIG/SOA

Simulation architecture is layered to accomplish the technology

migration or run different technological scenarios [43]. Provide

net-centric composition and integration of DEVS ‘validated’

models using Simulation Web Services [26]

Automated test generation and

deployment in distributed simulation

Separate a model from the act of simulation itself, which can be

executed on single or multiple distributed platforms [16]. With

its bifurcated test and development process, automated test

generation is integral to this methodology [45].

Test artifact continuity and traceability

through phases of system development

Provide rapid means of deployment using model-continuity

principles and concepts like “simulation becomes the reality”

[29].

Real time observation and control of

test environment

Provide dynamic variable-structure component modeling to

enable control and reconfiguration of simulation on the fly [47-

49]. Provide dynamic simulation tuning, interoperability testing

and benchmarking.

Table 3: Solutions provided by DEVS technology to support of M&S for T&E

Page 10 of 27

Furthermore, this work describes distributed simulation using the web service technology. After the

development of World Wide Web, many efforts in the distributed simulation field have been made for

modeling, executing simulation and creating model libraries that can be assembled and executed over

WWW. By means of XML and web services technology these efforts have entered upon a new phase.

The proposed DEVS Modeling Language (DEVSML) [26] is built on eXtensible Markup Language

(XML) [50] as the preferred means to provide such transparent simulator implementation. A prototype

simulation framework called DEVS/SOA has been implemented using web services technology. It is

currently in use by various research groups across the world towards a global net-centric simulation

platform [51]. The central point resides in executing the simulator as a web service. The development of

this kind of frameworks will help to solve large-scale problems and guarantees interoperability among

different networked systems and specifically DEVS-validated models. This paper focuses on the overall

approach, and the symmetrical SOA-Based architecture that allows for DEVS execution as a Simulation

SOA.

6. DEVS Standard
The conceptual interoperability model described above provides a general guideline for supporting system

interoperability. Following the layered approach of this conceptual model, next we review the work of

DEVS standardization that aims to support M&S interoperability based on the DEVS M&S framework.

This work of standardization correspond to the two levels shown in Figure 3: the semantic level that deals

with standardization of model interface; and the syntactic level that deals with standardization of

simulation protocol.

The DEVS formalism [16], based on Mathematical Systems theory, provides a computational framework

and tool set to support Systems concepts in application to SoS. We first provide a brief review. More

detail is available in [16].

DEVS makes a sharp distinction between the model and the device that simulates it. Both model and

simulator are defined as mathematical systems as defined by Wymore and others (see [16] for details),

and the relation between them is standardized by the concept of “abstract” simulator. Information flow in

the DEVS formalism, as implemented on an object-oriented substrate, is mediated by the concept of

DEVS message, a container for port-value pairs. In a message sent from component A to component B, a

port-value pair is a pair in which the port is an output port of A, and the value is an instance of the base

class of a DEVS implementation, or any of its sub-classes. A coupling is a four-tuple of the form (sending

component A, output port of A, receiving component B, input port of B). This sets up a path where by a

value placed on an output port of A by A’s output function is transmitted to the input port of B, to be

consumed by the latter. In systems or simulations implemented in DEVS environments the concepts of

ports, messages, and coupling are explicit in the code. However, for systems/simulations that were

implemented without systems theory guidance, in legacy or non-DEVS environments, these concepts are

abstract and need to be identified concretely with the constructs offered by the underlying environment.

For SoS engineering, where legacy components are the norm, it is worth starting with the clear concepts

and methodology offered by systems theory and DEVS, getting a grip on the interoperability problems,

and then translating backwards to the non-DEVS concepts as necessary.

Within a working group of the Simulation Interoperability Standards Organization, a standard has been

under development to support interoperability of DEVS models implemented in different platforms as

well as with legacy simulations. Figure 8 illustrates an architectural approach proposed to accommodate

the various combinations and permutations of possible application, both currently known, as well as those

that will emerge in the future. The basic idea is to define two sets of interfaces; the DEVS model Interface

and the DEVS Simulator Interface, as well as a DEVS Simulation Protocol that operates between the two.

The interfaces protocols are based on those in GenDEVS, an implementation at the heart of the

DEVJAVA M&S environment [www.acims.arizona.edu]. DEVS/C++ and DEVSJAVA are platform

specific implementations while DEVSML[26] and XFD-DEVS [27] are platform independent

implementations in XML which can transform to any platform specific implementations.

Page 11 of 27

Figure 8: Conceptual Architecture of Standard

 As a direct consequence of the model-simulator separation there can be multiple ways in which the same

model can be simulated – all adhering to the abstract simulator specification. Corresponding to different

simulation modes, the standard has virtual-time and real-time simulators. In virtual-time simulation, the

simulator interprets time as logical time so the simulation can skip from one event time to the next

without traversing the intervening time interval. However, in real-time simulation, time is interpreted as

wall clock readings, so the real-time simulator will wait for the interval to its next scheduled event to

expire before handling the event. In addition to the model type/simulation mode combinations, the

standard allows for the use of different forms of distribution of model components, e.g., single processor

vs. multi-processor, and within the latter, conservative vs. optimistic time advance for virtual-time as well

as centralized vs. non-centralized time control in real-time execution. The standard is also agnostic with

respect to different implementation platforms, such as Windows vs. Unix, different programming

languages, such as Java vs. C++, and different networking and middleware frameworks such as .Net vs.

Apache. From the above introduction, we can see that the standard will have multiple simulation

scenarios. For example, considering the combinations of simulation mode and distribution mode, we

have: simulating a model in virtual-time and simulating a model in real-time both in distributed and non-

distributed fashion.

Figure 9 DEVS Model Interfaces

Among the interfaces (Figure 9), IODevs defines interface for the functions that handle message exchange

based on input and output ports. Any model, whether DEVS or non-DEVS, can implement these

functions so it can interoperate with other implementers of this interface, in the sense of receiving input

and sending output. The basicDevs Interface defines the basic functions a DEVS model needs to

implement such as deltext(), deltint(), out(), ta() and so on. The basicDevs interface is the interface that is

exposed to the atomic simulators. An additional interface, atomicDevs, provides a convenient set of

Page 12 of 27

primitives for defining the basic functions in an atomic model. However, since the basic functions can be

defined without using such primitives, the atomicDevs interface is optional. The IOBasicDevs interface

extends the IODevs interface and basicDevs interface. It provides a common basis for implementing

atomic models and coupled models. Combining IOBasicDevs with atomicDevs, we get AtomicInterface

which defines the function signatures an atomic model need to implement. Of course, if atomicDevs is

omitted, then AtomicInterface reduces to IOBasicDevs. Similarly, CoupledDevs interface defines the

function signatures that are used in DEVS coupled models. It also has methods that support adding

components and couplings to the model; methods for retrieving a component by name and for accessing

all components; and to access the internal coupling specifications (intended only by simulators).

Combining IOBasicDevs with CoupledDevs, we get the Coupled interface which defines the functions

coupled models need to implement.

Figure 10 DEVS Simulator Interfaces

 The basic simulator interface is the CoreSimulator that provides a common interface for DEVS and non-

DEVS simulation (Figure 10). Further, the CoreSimulator interface is the basic interface from which

simulation services could be designed for a truly net-centric interoperable simulation framework [23].

Under the CoreSimulator interface, two classes of simulators have been defined CoupledSimulator and

CoupledCoordinator interfaces where the latter also inherits from Coordintor. These apply to both virtual

(logical); and real-time simulation. (Real time simulators interpret time as real wall clock time and have

their own thread and system clock. Virtual or logical time simulators can advance from one event time to

the next). The CoreSimulator interface includes methods that are invoked by the DEVS simulation

protocol:

interface coreSimulatorInterface{

void setSimulators (Collection<CoreSimulatorInterface>);

void initialize();

Double nextTN();

void computeInputOutput(Double t);

void applyDeltFunc(Double t);

void putContentOnSimulator (CoreSimulatorInterface sim, ContentInterface c);

void sendMessages();

6.1 DEVS Simulation Protocol
DEVS treats a model and its simulator as two distinct elements. The simulation protocol describes how a

DEVS model should be simulated whether in standalone fashion or in a coupled model. Such a protocol is

implemented by a processor which can be a simulator or a coordinator.

As illustrated in Figure 11, the DEVS protocol is executed as following:

Page 13 of 27

1. It starts with the coordinator telling each of the simulators in the collection the others’ addresses and

then to perform initialization function.

2. A cycle is then entered in which the coordinator requests that each simulator provide its time of next

event and takes the minimum of the returned values to obtain the global time of next event

3. Each of the simulators applies its computeInputOutput() method to produce an output that consists

of a collection of contents (port/value) pairs – for DEVS simulators this is a composite message

computed according to the DEVS formalism based on its model’s current state.

4. Then each simulator partitions its output into messages intended for recipient simulators and sends

these messages to these recipient simulators – for DEVS simulators these recipients are determined

from the output ports in the message and the coupling information that will have previously been

received from the coordinator.

5. Finally, each simulator executes its ApplyDeltFunc method which computes the combined effect of

the received messages and internal scheduling on its state, a side effect of which is produce of time of

next event, tN – for DEVS simulators this state change is computed according to the DEVS

formalism and the tN is updated using its model’s time advance.

6. The coordinator obtains the next global time of next event and the cycle repeats

Figure 11. Federation of DEVS with Non-DEVS Simulators

It should be noted that the above is one form of many possible protocols that can provide various forms of

conservative and optimistic simulation, each of which must be proved to be correct as a realization of the

DEVS closure under coupling property [16]. One such implementation exists as Microsim/Java [44]

wherein the DEVS simulation protocol adheres to the CoreSimulator interface but has different

implementation when compared to GenDEVS.

Implicit in the above description are the following constraints involving methods in the

CoreSimulatorInterface:

• The sendMessages() method “must” employ the putContentOnSimulator() method as follows: for

any simulator to which it wishes to send a content, it must call the recipient’s

putContentOnSimulator() method with the recipient and the content as arguments.

• Further, in applying its computeInputOutput() method, a simulator “must” be able to interpret the

contents (satisfying the ContentInterface) it has received from the other simulators.

Page 14 of 27

Notice that we cannot enforce the “must” requirements just given, and cannot prove that the simulation

executes a desired behavior, unless we are given further information about its behavior. One way to do

this is where the simulators are truly DEVS simulators in that they satisfy the interfaces and constraints

given below. Failing this additional rigor, the interoperation involving DEVS and non-DEVS is purely at

the technical level similar to that of a federation of simulators in HLA. This contrasts with the situation in

which the federation is in fact derived from a DEVS coupled model for which correct simulation of the

coupled model is guaranteed according to the DEVS formalism.

7. DEVS/SOA
An implementation of the standard within the Service Oriented Architecture (SOA) has been completed

that provides DEVS modeling and simulation services over the World Wide Web [17, 23]. As shown in

the Figure 12, at the top of the layered architecture is the application layer that contains models in

DEVSJAVA or DEVSML, a way of representing DEVS models in the eXtended Markup Language

(XML). This DEVSML is built on JAVAML [18], which is XML implementation of JAVA. The current

development effort of DEVSML takes its power from the underlying JAVAML that is needed to specify

the ‘behavior’ logic of atomic and coupled models. The DEVSML models are cross-transformable to

Java. The second layer is the DEVSML layer itself that provides seamless integration, composition and

dynamic scenario construction resulting in portable models in DEVSML that are complete in every

respect. These DEVSML models can be ported to any remote location using the SOA infrastructure and

can be executed at any remote location in a distributed or non-distributed manner. Another major

advantage of such capability is total simulator ‘transparency’. The simulation engine is totally transparent

to model execution over the SOA infrastructure. The DEVSML model description files in XML contains

meta-data information about its compliance with various simulation ‘builds’ or versions to provide true

interoperability between various simulator engine implementations. This has been achieved for at least

two independent simulation engines as they have an underlying DEVS protocol to adhere to. This has

been made possible with the implementation of a single atomic schema [24] and a single coupled schema

[25] that validates the DEVSML descriptions generated from these two implementations. Such run-time

interoperability provides great advantage when models from different repositories are used to compose

large coupled models using the DEVSML integration capabilities. Detailed design can be seen in [17,23].

Figure 12: Layered Architecture of DEVSML towards transparent simulators in Net-centric domain

Page 15 of 27

The complete setup requires one or more servers that are capable of running DEVS Simulation Service, as

shown in Figure 12 by the dotted line. The capability to run the simulation service is provided by the

server side design of DEVS Simulation protocol supported by the DEVSJAVA and Microsim/Java. Of

course, many issues of policy management and security considerations must be taken care of in the

generation of DEVS models from WSDLs specifications [22]. Furthermore, the multi-platform simulation

capability provided by DEVS/SOA framework consists of realizing distributed simulation among

different DEVS platforms or simulator engines such as DEVSJAVA, Microsim/Java, DEVS-C++, etc.

and executing the native simulation service. This kind of interoperability where multi-platform

simulations can be executed with our DEVSML integration facilities has been made possible with the

hierarchical design of simulator interfaces as described in Section 6.

Web-based simulation requires the convergence of simulation methodology and WWW technology

(mainly Web Service technology). The fundamental concept of web services is to integrate software

application as services. Web services allow the applications to communicate with other applications using

open standards. We are offering DEVS-based simulators as a web service, and they must have these

standard technologies: communication protocol (Simple Object Access Protocol, SOAP), service

description (Web Service Description Language, WSDL), and service discovery (Universal Description

Discovery and Integration, UDDI). Figure13 shows the framework of the proposed distributed simulation

using SOA.

The Simulation Service framework is two layered framework as depicted in Figure 13. The top-layer is

the user coordination layer (MainService) that oversees the lower layer (SimulationService). The lower

layer is the true simulation service layer that executes the DEVS simulation protocol as a Service. The

lower layer is transparent to the modeler and only the top-level is provided to the user.

The top-level (MainService layer) has four main services:

• Upload DEVS model

• Compile DEVS model

• Simulate DEVS model (centralized)

• Simulate DEVS model (distributed)

Figure 13: DEVS/SOA distributed architecture

The second lower (SimulationService) layer provides the DEVS Simulation protocol and is designed as

per the DEVS Standard described earlier:

• Initialize simulator i

• Run transition in simulator i

Page 16 of 27

• Run lambda function in simulator i

• Inject message to simulator i

• Get time of next event from simulator i

• Get time advance from simulator i

• Get console log from all the simulators

• Finalize simulation service

The explicit transition functions, namely, the internal transition function, the external transition function,

and the confluent transition function, are abstracted to a single transition function that is made available

as a Service. The transition function that needs to be executed depends on the simulator implementation

and is decided at the run-time. For example, if the simulator implements the Parallel DEVS (P-DEVS)

formalism, it will choose among internal transition, external transition or confluent transition
2
.

The client is provided a list of servers hosting DEVS Service. He selects some servers to distribute the

simulation of his model. Then, the model is uploaded and compiled in all the servers. The main server

selected creates a coordinator that creates simulators in the server where the coordinator resides and/or

over the other servers selected.

Summarizing from a user’s perspective, the simulation process is done through three steps (Figure 14):

1. Write a DEVS model (currently DEVSJAVA is only supported).

2. Provide a list of DEVS servers (through UDDI, for example). Since we are testing the

application, these services have not been published using UDDI by now. Select N number of

servers from the list available.

3. Run the simulation (upload, compile and simulate) and wait for the results.

Figure 14: Execution of DEVS SOA-Based M&S

7.1 Simulation service composition:
This is the bottom layer of the two-layer architecture and its functionalities are used by the MainSevice

layer. Its operations are transparent to the user. Once the user demands a simulation via the MainService

class, the coordinator (at the coordinator server or main server) requires as many simulation services as IP

2 The difference between P-DEVS and classic DEVS is the handling of confluent function. The DEVS/SOA

framework could have been built using other simulation formalisms. In fact, our simulation services could store any

kind of simulator -as long as the service updates the simulation cycle according to the simulator engine selected. The

service is independent in the sense of transition functions.

Page 17 of 27

addresses provided by the user. After that, the DEVS model is partitioned and the coordinator sends every

part to its corresponding service. When the simulation starts, each simulation service creates a DEVS

simulator for its models and executes the corresponding output and transition functions (see Figure 14).

It is possible for one simulation service to store more than one simulator for different components of the

same DEVS model, or to store more than one simulator for different components of different DEVS

models. This issue is solved as follows. After the main coordinator obtains a simulation service at a

certain IP address, a new simulator is created there, identified by the component name plus the IP address

of the user’s machine and containing the DEVS component itself. For example, if the coordinator must

send a DEVS component named Processor to a server located at 192.168.1.5 and coming from a user

located at 192.168.1.2, then a simulation service is required from 192.168.1.5 and a new simulator is

created there, identified by Processor@192.168.1.2 and containing the model named Processor.

Another issue is how to store the simulators created, because web services do not have memory. To this

end, we are using the server’s memory by means of static variables or attributes. Hence, the simulation

services include a static table, which associates simulator names with simulator instances. There is other

information stored by the Simulation services in the server memory, such as the IP address where the

services reside and a reporter, which logs all the information while the simulation is running.

The services provided by the Simulation service are enumerated below in detail:

• newSimulator: This service receives a DEVS component and a identifier. It creates a new DEVS

simulator identified by the name described above and containing the DEVS component received.

• initialize: This service receives the name of the simulator required and the current time. It takes

the corresponding simulator from its table (using the name received) and initializes it.

• receiveInput: This service receives four arguments: (1) the name of the simulator required, (2)

the name of the port where the message is coming from, (3) the message and (4) the name of the

port where the message is going to. The simulation service takes the simulator from its table and

executes the same function called receiveInput, which stores the message received at the input of

the model.

• lambda: It receives the name of the simulator required and the current time. This service takes the

simulator required and executes the output function (also called lambda) of the DEVS model

• deltfnc: This service receives the name of the simulator required and the current simulation time.

The service takes the simulator and executes an internal or external or confluent transition

function. The abstracted deltfn is provides in Figure 15. This allows both the classical DEVS and

P-DEVS models work seamlessly with DEVS/SOA simulation framework.

• getOutput: This service takes the required Simulator and returns the output stored in its DEVS

model.

• getTN: It receives the name of the simulator for which the time of the next event is returned.

• exit: It receives the name of the simulator to be removed from the table.

• getConsole: This service receives the IP address of the user’s machine, and return the content of

the log file related to this address.

• getIp: It returns the IP address of the simulation service.

Having described the services available in the DEVS/SOA architecture, following is the design of

DEVS/SOA coordinator and simulator that utilize these DEVS services. This simulator is called as

DEVSV/SOA simulator and it acts as an adapter for any DEVS simulation engine that executes the

DEVS simulation protocol. Currently, we have implemented the DEVS/SOA simulator in two DEVS

implementations viz. DEVSJAVA and Microsim/Java. More details on a complete example can be

seen in [23] that use these two independent implementations of abstract simulator interface. Efforts

are underway for a DEVS.net implementation using C# language.

Page 18 of 27

function deltfcn(double t) {

 Message x = input;

 if(x==null) {

 System.out.println(

 "ERROR RECEIVED NULL INPUT " + model.toString());

 return;

 }

 //if you receive an empty message and not imminent

 if (x.isEmpty() && t!=tN) {

 return;

 }

 //if incoming message is not empty and imminent

 //update the elapsed time, sigma

 //execute the deltcon transition function

 else if((!x.isEmpty()) && t==tN) {

 double e = t - tL;

 model.deltcon(e,x);

 }

 //if just imminent and no message

 //execute deltint transition function

 else if(t==tN) {

 model.deltint();

 }

 //if not imminent and just a message incoming

 //execute deltext transition function

 else if(!x.isEmpty()) {

 double e = t - tL;

 model.deltext(e,x);

 }

 //update tL (time of last event) and tN (time of next event)

 //update sigma (time advance)

 //reset incoming message collection

 tL = t;

 tN = tL + model.ta();

 input = new Message();

}

Figure 15: Abstract deltfun in Simulation service

DEVSV/SOA Coordinator

Equivalent to the Simulation service storing the simulators in a static way, the coordinator also stores the

simulators of the DEVS model in a static hash table, using the same nomenclature as was stated above

(DEVS component name plus client IP address identifying the simulator). Therefore, such table contains

pairs {simulator name, simulator service}, associating each simulator created with the simulation service

where it resides. The task of the coordinator is to execute a typical DEVS loop over the distributed

simulators. Figure 16 shows the algorithm executed by the simulate function. In such Table, iterations is

the number of cycles of the simulation, t is the current time, tL is the last time event, tN is the next time

event, simulationServices is the table of simulation services created by the coordinator and where the

simulators are located. Then, for a number of cycles, the output function is called through each of the

simulation services. It should be noted that the first argument of lambda function is a key, which is the

simulator identifier, since different simulators could be located at the same simulation service, this key

must be provided. After the output function is executed, the outputs of the components are ready to be

propagated. To this end, the propagateOutput function is called, which propagates the messages

generated from the outports to its corresponding inports. Next, the transition function is applied and

finally the time is updated.

From the instant in which the coordinator is created, it stores at any moment the DEVS model (currently

DEVSJAVA), the last timed event, the next time event and the IP address of the user’s machine.

Page 19 of 27

function simulate(long iterations)

 t = tN;

 for (i=0; i<iterations; i++)

 for each ({key,simService} in simulationServices)

 simService.lambda(key, t);

 propagateOutput();

 for each ({key,simService} in simulationServices)

 simService.deltfcn(key, t);

 tL = t;

 tN = min(simulationServices.getTN());

 t = tN;

Figure 16: DEVS simulation

It should be noted that the Coordinator is not a service. It is a class, which is used by the MainService

service. Again, it must be stressed that it derives from the DEVS Standard simulator interface, which

allows a DEVS coordinator to control and coordinate a DEVS simulator. The DEVS Standard interface

has been extended for obvious reasons and extended functionalities. The functions implemented in the

Coordinator are enumerated below:

• getTopComponentNames: This function receives the name of the DEVS root-coupled model and

returns a list containing the top-component names of the DEVS model.

• Constructor: The constructor receives the client IP address, the name of the DEVS model, and

the list of IP addresses where the model is going to be simulated. Hence, it creates as many

simulators as top-level components, created by the simulation services located at the IP addresses

given in the list.

• initialize: This function receives the initial time of simulation. It initializes the simulators.

• propagateOutput: As it was stated above, this function takes the output from the simulators and

sends them to its corresponding inputs.

• lamda: It receives the current time, and executes the output function in each of the simulators

stored.

• deltfcn: This function receives the current time and executes the internal or external transition

functions in the simulators stored.

• ta: It is the time advance function and receives the current time. It takes the minimum next time

event from the simulators stored.

• exit: This function calls the exit function of all the simulation services stored and clean the table

of simulators.

• simulate: This function receives the number of cycles of the simulation, and executes the

simulation as was described before.

7.2 Client Application
This Section provides the client application to execute DEVS model over an SOA framework using

Simulation as a Service. From many-sided modes of DEVS model generation [33,34], the next step is the

simulation of these models. The DEVSV/SOA client takes the DEVS models package and through the

dedicated servers hosting simulation services, it performs the following operations:

1. Upload the models to specific IP locations

2. Run-time compile at respective sites

3. Simulate the coupled-model

4. Receive the simulation output at client’s end

The DEVSV/SOA client as shown in Figure 17 operates in the following sequential manner:

1. The user selects the DEVS package folder at his machine

2. The top-level coupled model is selected as shown in Figure 17.

3. Various available servers are selected (Figure 17). Any number of available servers can be

selected (one at least).

Page 20 of 27

4. Clicking the button labelled “Assign Servers to Model Components” the user selects where is

going to simulate each of the coupled models, including the top-level one, i.e., the main server

where the coordinator will be created (Figure 18)

5. The user then uploads the model by clicking the Upload button. The models are partitioned and

distributed among the servers chosen in the previous point

6. The user then compiles the models at the server’s end by clicking the Compile button

Figure 17: GUI snapshot of DEVSV/SOA client hosting

distributed simulation

Figure 18: Server Assignment to

Models

8. Cross-Platform Execution over DEVS/SOA
In terms of net-ready capability testing, what is required is the communication of live web services with

those of test-models designed specifically for them. The approach we are working on has the following

steps:

1. Specify the scenario

2. Develop the DEVS model

3. Develop the test-model from DEVS models

4. Run the model and test-model over SOA

5. Execute as a real-time simulation

6. Replace the model with actual web-service as intended in scenario.

7. Execute the test-models with real-world web services

8. Compare the results of steps 5 and 7.

Of course, many issues of policy management and security considerations must be taken care of when

test-models are communicating with live Web-Services. However, considering the fact that for any

defense related mission-thread reliability testing the test-models would have the necessary security

provisions, the 8-step process listed above can be executed. This work would also involve generation of

DEVS models from Web Service Description Language or WSDLs specifications. A small portion of

Business Process Modeling Notation (BPMN) to DEVS transformation is described in [33].

One other section that requires some description is the multi-platform simulation capability as provided

by DEVSV/SOA framework. It consists of realizing distributed simulation among different DEVS

platforms or simulator engines such as DEVSJAVA, DEVS-C++, etc. In order to accomplish that, the

simulation services will be developed that are focused on specific platforms, however, managed by a

coordinator. In this manner, the whole model will be naturally partitioned according to their respective

implementation platform and executing the native simulation service. This kind of interoperability where

Page 21 of 27

multi-platform simulations can be executed with our DEVSML integration facilities. DEVSML will be

used to describe the whole hybrid model. At this level, the problem consists of message passing, which

has been solved in this work by means of an adapter pattern in the design of the “message” class [23].

Figure 19 shows a first approximation. The platform specific simulator generates messages or events, but

the simulation services will transform these platform-specific-messages (PSMsg) to our current platform-

independent-message (PIMsg) architecture developed in DEVS/SOA. Hence, we see that the described

DEVS/SOA framework can be extended towards net-ready capability testing. The DEVS/SOA

framework also needs to be extended towards multi-platform simulation capabilities that allow test-

models be written in any DEVS implementation (e.g. Java and C++) to interact with other as services.

However, a major drawback of our current architecture is that the user must send the whole DEVS model

implemented under all the platforms to use, which is not a good solution. Next, we propose a

modification on the Coordinator creation process that in some manner, allows to the user to store each

part of the model written in its corresponding platform.

Figure 19: Cross-platform execution.

8.1 Multi-platform DEVS/SOA architecture
Figure 20 depicts an example of a multi-platform DEVS model. Each atomic or coupled component may

be implemented using different simulation engines, called platforms. In Figure 20, SUBMODEL A is

implemented using DEVSJAVA [28], SUBMODEL B by means of aDEVS (C++) [52], and

SUBMODEL C using xDEVS (Java) [38].

Let us suppose that the whole model is implemented using DEVSJAVA. In our current DEVS/SOA

architecture, the application sends the whole model (root-coupled model included) to the servers by

means of the upload service, where all the files get compiled and finally, it executes the model sending

serialized messages among simulation services. This situation is not valid for the multi-platform model

depicted in

Figure 20 as the scenario cannot be compiled as a whole.

Figure 20: Multi-platform DEVS model

Page 22 of 27

In our proposed approach, we define the root coordinator by means of a Platform Independent Model

(PIM), for example, DEVSML. We may use the structure description of DEVSML to compose the root

coupled model, and send it to the main server, which will distribute the sub-models among its

corresponding servers. Figure 21 shows how a multi-platform DEVS model may be executed using our

proposed architecture. We define the root-coupled model using DEVSML (top of the Figure 21). The

coupled model is treated as an atomic model due to the inherent architecture of DEVS/SOA

digraph2Atomic adapter [23]. Consequently, it is immaterial if the sub-model is atomic or coupled.

Figure 21: Multi-platform DEVSV/SOA proposed architecture

The DEVSML document in the Figure 21 states that the main server is located at 192.168.1.3. This server

receives the DEVSML document and all the source code, distributes sub-models to respective servers and

creates the coordinator. For example, the main server sends SubModelA.java to the server located at

192.168.1.7, where the DEVS/SOA java implemented server compiles it. The same happens with the

corresponding SubModelB.cpp and SubModelC.java. After compiling all sub-models, the main server

creates one simulation service for each sub-model. Figure 21 (right side) shows how coordinator,

simulation services, and simulators are created. The main server creates a DEVSJAVA-based simulation

service located at 192.168.1.7, which also creates a DEVSJAVA-based simulator to store SubModelA.

The same occurs with sub-models B and C, but at IP addresses 192.168.1.5 and 192.168.1.9 respectively.

The rest of the behavior of the application is the same that in our current architecture. Messages are

passed by means of an adapter pattern, which as Figure 19 depicts, may be translated into different

platforms.

9. How Interoperability is supported
The proposed DEVS standard and its DEVS/SOA implementation support several modes of

interoperability. These are outlined in the following paragraphs.

9.1 DEVS-to-DEVS Interoperability
DEVS-to-DEVS Interoperability is the basic form of interoperability enabled by the DEVS standard as

discussed above. Adoption of the DEVS standard facilitates new development to achieve interoperability

at the syntactic, semantic and pragmatic levels mentioned above. More detail on these concepts in

application to testing of SOA systems can be found in [5, 20, 21, 22].

Page 23 of 27

9.2 DEVS-to-Non-DEVS Interoperability

9.2.1 Direct

As mentioned before, legacy simulations that can be refactored to implement the CoreSimulator interface

can be interoperate at the syntactic level with DEVS and other non-DEVS peers. In its strongest form,

such simulation methodology guarantees well-defined time preservation and simulation correctness as a

sound basis to aim for interoperability at the higher levels.

9.2.2 Via Client Gateways.

For a variety of reasons, although DEVS compliance is desirable, it can be expected that legacy systems

will continue to prevail and new non-compliant systems developed. The adoption of the SOA standard

however, will facilitate the interoperation of DEVS and non-DEVS components that are compliant with

the SOA standard. This form is realized in an Agent-implemented Test Instrumentation Infrastructure that

deploys DEVS models to act as agents that are attached to clients of services [5,22]. Such attachment can

be performed in automated fashion using tools such as Axis Toolkit to create the client stub given a

service’s Web Service Description Language (WSDL) [22,53]. As in Figure 22, these agents can observe

the web service requests originating from the client and server responses (or failure thereof) to

accumulate a variety of performance measurements. The agents can also serve as virtual users to interact

with other users to direct the course of test scenarios and collect performance metrics to support

scalability studies. Further, while collecting data, DEVS agents can communicate with each other to

coordinate and share information using the DEVS-to-DEVS configuration just discussed. Case studies are

available in reference [22].

Figure 22. DEVS/SOA interoperability

10. Multi-layered agent based TEST INSTRUMENTATION system using

GIG/SOA
A DEVS distributed federation is a DEVS coupled model whose components reside on different network

nodes and whose coupling is implemented through middleware connectivity characteristic of the

environment, e.g., SOAP for GIG/SOA. The federation models are executed by DEVS simulator nodes

that provide the time and data exchange coordination as specified in the DEVS abstract simulator

protocol.

As discussed earlier, in the general concept of experimental frame (EF), the generator sends inputs to the

SoS under test (SUT), the transducer collects SUT outputs and develops statistical summaries, and the

acceptor monitors SUT observables making decisions about continuation or termination of the experiment

[18]. Since the SoS is composed of system components, the EF is distributed among SoS components, as

illustrated in Figure 23. Each component may be coupled to an EF consisting of some subset of generator,

Page 24 of 27

acceptor, and transducer components. As mentioned, in addition an observer couples the EF to the

component using an interface provided by the integration infrastructure. We refer to the DEVS model that

consists of the observer and EF as a test agent.

Net-centric Service Oriented Architecture (SOA) provides a currently relevant technologically feasible

realization of the concept. As discussed earlier, the DEVS/SOA infrastructure enables DEVS models, and

test agents in particular, to be deployed to the network nodes of interest. As illustrated in Figure 23, in

this incarnation, the network inputs sent by EF generators are SOAP messages sent to other EFs as

destinations; transducers record the arrival of messages and extract the data in their fields, while acceptors

decide on whether the gathered data indicates continuation or termination is in order [18,33].

Since EFs are implemented as DEVS models, distributed EFs are implemented as DEVS models, or

agents as we have called them, residing on network nodes. Such a federation, illustrated in Figure 24,

consists of DEVS simulators executing on web servers on the nodes exchanging messages and obeying

time relationships under the rules contained within their hosted DEVS models. Complete analysis of the

design problem and its mapping to the three linguistic levels is available at [5].

Figure 23: Deploying Experimental Frame Agents and Observers

Net-centric

Environment

(e.g., GiG/SOA)

DEVS Test

Federation

Live

Test

Player

Service

Under
Test

DEVS

Simulator

Node

SOAP-

XML

DEVS

Observer

Agent

Service Discovery: UDDI

DEVS Simulator

Test Architecture

Sevice Description: WSDL

Packaging:XML

Messaging:SOAP

Communication: HTTP

SOA

Mission Thread

Figure 24: DEVS Test Federation in GIG/SOA Environment

Page 25 of 27

11. Conclusions
Achieving interoperability is one of the chief SoS engineering objectives in the development of command

and control (C2) capabilities for joint and coalition warfare. The importance of M&S in SoS design and

evaluation cannot be underestimated. M&S can be used strategically to provide early feasibility studies

and aid the design process. As components comprising SoS are designed and analyzed, their integration

and communication is the most critical part that must be addressed by the employed SoS M&S

framework. The integration infrastructure must support interoperability at syntactic, semantic and

pragmatic levels to enable such integration.

Currently there are several other approaches to distributed simulation and to integration of M&S with

advanced C2 systems. These approaches build on the internet or other net-centric middleware to provide

component connectivity and simulation services [1,20]. The latter may also include HLA

implementations; however, the extent of adoption of HLA in this context remains to be seen. The DEVS

standard provides a formal systems-based abstraction that can support higher level interoperability,

whether alone or on top of HLA. The DEVS/SOA implementation provides a SOA implementation

independent of HLA and is a viable approach to M&S integration with C2 SoS in the weaker gateway

form, and in the strong direct compliance form. Further, DEVS has been applied to frameworks like

DoDAF, UML and other systems engineering frameworks like System Entity Structure (SES). Figure 25

illustrates how M&S is increasingly incorporated in C2 SoS as source of smart components as well as a

methodology to deal with the interoperability problem. Indeed, DEVS components including decision

making agents, sensor simulators, and environmental representations can bring the power of M&S to the

development of C2 SoS as well as serving as support for command and control in real operation. The

underlying SOA standard that facilitates this interoperation can be expected to be widely adopted (for

example, it has been adopted by the DoD’s Global Information Grid initiative.

Figure 25: M&S as source of smart components in C4I systems

References
[1] Pullen, M., Wilson, L.T.C.K, Hieb, M., Tolk, A., “Extensible Modeling and Simulation Framework (XMSF)

C4I Testbed,” available from http://www.movesinstitute.org/xmsf/xmsf.html

[2] Sage, A., “From Engineering a System to Engineering an Integrated System Family, From Systems

Engineering to System of Systems Engineering”, 2007 IEEE International Conference on System of Systems

Engineering (SoSE). April 16th -18th, 2007, San Antonio, Texas

[3] Jacobs, R.W. “Model-Driven Development of Command and Control Capabilities For Joint and Coalition

Warfare,” Command and Control Research and Technology Symposium, June 2004.

[4] Dahmann, J.S., F. Kuhl, and R. Weatherly, Standards for Simulation: As Simple As Possible But Not

Simpler The High Level Architecture For Simulation. Simulation, 1998. 71(6): p. 378

[5] Mittal, S., Zeigler, B.P., Martin, J.L.R., Sahin, F., Jamshidi, M., “Modeling and Simulation for Systems of

Systems Engineering”, to appear in Systems of Systems -- Innovations for the 21st Century (to be published

by Wiley)

Page 26 of 27

[6] Tolk, A., and Muguira, J.A. “The Levels of Conceptual Interoperability Model (LCIM)”, Proceedings Fall

Simulation Interoperability Workshop, 2003

[7] DiMario M.J., “System of Systems Interoperability Types and Characteristics in Joint Command and

Control”, Proceedings of the 2006 IEEE/SMC International Conference on System of Systems Engineering,

Los Angeles, CA, USA - April 2006

[8] Levels of Information Systems Interoperability (LISI),

http://www.sei.cmu.edu/isis/guide/introduction/lisi.htm

[9] Turnitsa C., and A. Tolk, “Evaluation of the C2IEDM as an Interoperability-Enabling Ontology,”

Proceedings of Fall Simulation Interoperability Workshop, 2005.

[10] Muguira, J., Tolk., A “Applying a Methodology to identify Structural Variances in Interoperations,” JDMS:

The Journal of Defense Modeling and Simulation, Vol 3, No 2, 2006

[11] Zeigler, B.P., and Hammonds, P., “Modeling & Simulation-Based Data Engineering: Introducing

Pragmatics into Ontologies for Net-Centric Information Exchange”, 2007, New York, NY: Academic Press.

[12] Turnitsa C., and Tolk, A., “Evaluation of the C2IEDM as an Interoperability-Enabling Ontology,”

Proceedings of Fall Simulation Interoperability Workshop, 2005.

[13] Lasschuyt , E., Henken, M., Treurniet, W., and Visser, M., “How to Make an Effective Information

Exchange Data Model,” RTO-IST-042/9,2004

[14] Hoffmann, M., “Challenges of Model Interoperation in Military Simulations”. SIMULATION, Vol. 80, pp.

659-667, 2004

[15] Chaum, E., Hieb, M.R., and Tolk, A. “M&S and the Global Information Grid,” Proceedings

Interservice/Industry Training, Simulation and Education Conference (I/ITSEC), 2005.

[16] Zeigler, B. P., Kim, T.G., and Praehofer, H., “Theory of Modeling and Simulation” New York, NY,

Academic Press, 2000.

[17] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVS-Based Web Services for Net-centric T&E”, Summer

Computer Simulation Conference, 2007

[18] Badros, G. “JavaML: a Markup Language for Java Source Code”, Proceedings of the 9th International World

Wide Web Conference on Computer Networks: the international journal of computer and

telecommunication networking, pages 159-177

[19] Zeigler, B. P., Mittal, S., “Enhancing DoDAF with DEVS-Based System Life-cycle Process”, IEEE

International Conference on Systems, Man and Cybernetics, Hawaii, October 2005

[20] Reichenthal, S.W., SRML - Simulation Reference Markup Language W3C Note 18 December 2002

http://www.w3.org/TR/SRML/

[21] Mittal, S., “Extending DoDAF to allow DEVS-Based Modeling and Simulation”, Special issue on DoDAF,

Journal of Defense Modeling and Simulation (JDMS), Vol 3. No. 2

[22] Mittal, S. Martin, J.L.R., “Design and Analysis of Service Oriented Architectures using DEVS/SOA-Based

Modeling and Simulation”, whitepaper at www.duniptechnologies.com

[23] Mittal, S., Martin, J.L.R., Zeigler, B.P., ”DEVS/SOA: A Cross-platform Framework for Net-centric

Modeling and Simulation in DEVS Unified Process”, SIMULATION: Transactions of SCS, to appear

[24] DEVS Atomic Schema: http://www.duniptechnologies.com/binding/devsAtomic.xsd

[25] DEVS Coupled Schema: http://www.duniptechnologies.com/binding/devsCoupled.xsd

[26] Mittal, S., Martin, J.L.R., Zeigler, B.P., “DEVSML: Automating DEVS Execution over SOA Towards

Transparent Simulators”, Special Session on DEVS Collaborative Execution and Systems Modeling over

SOA, DEVS Integrative M&S Symposium DEVS' 07, Spring Simulation Multi-Conference, March 2007

[27] Mittal, S., Zeigler, B.P., Hwang, M.H., XML-Based Finite Deterministic DEVS (XFD-DEVS);

http://www.saurabh-mittal.com/fddevs/

[28] ACIMS software site: http://www.acims.arizona.edu/SOFTWARE/software.shtml

[29] Hu, X., and Zeigler, B.P., “Model Continuity in the Design of Dynamic Distributed Real-Time System”s,

IEEE Transactions on Systems, Man And Cybernetics— Part A, Volume 35, Issue 6, pp. 867-878,

November 2005

[30] Cho, Y., Zeigler, B.P., Sarjoughian, H., “Design and Implementation of Distributed Real-Time

DEVS/CORBA”, IEEE Sys. Man. Cyber. Conf., Tucson, Oct. 2001.

[31] Wainer, G., Giambiasi, N., “Timed Cell-DEVS: modeling and simulation of cell-spaces”. Invited paper for

the book Discrete Event Modeling & Simulation: Enabling Future Technologies, Springer-Verlag 2001

[32] Zhang, M., Zeigler, B.P., Hammonds, P., “DEVS/RMI-An Auto-Adaptive and Reconfigurable Distributed

Simulation Environment for Engineering Studies”, ITEA Journal, July 2005

[33] Mittal, S., “DEVS Unified Process for Integrated Development and Testing of Service Oriented

Architectures”, Ph. D. Dissertation, University of Arizona

[34] DUNIP: A Prototype Demonstration http://www.acims.arizona.edu/dunip/dunip.avi

[35] MatLab Simulink, http://www.mathworks.com/products/simulink/

Page 27 of 27

[36] OMNET++, http://www.omnetpp.org/

[37] NS-2, http://www.isi.edu/nsnam/ns/

[38] XDEVS web page: http://itis.cesfelipesegundo.com/~jlrisco/xdevs.html

[39] HLA, https://www.dmso.mil/public/transition/hla/

[40] Sarjoughian, H.S., Zeigler, B.P., "DEVS and HLA: Complimentary Paradigms for M&S?" Transactions of

the SCS, (17), 4, pp. 187-197, 2000

[41] Carstairs, D.J., “Wanted: A New Test Approach for Military Net-Centric Operations”, Guest Editorial,

ITEA Journal, Volume 26, Number 3, October 2005

[42] Mittal, S., Zeigler, B.P., “DEVS Unified Process for Integrated Development and Testing of System of

Systems”, Critical Issues in C4I, AFCEA-George Mason University Symposium, May 2008

[43] Sarjoughian, H., Zeigler, B.P., and Hall, S., “A Layered Modeling and Simulation Architecture for Agent-

Based System Development”, Proceedings of the IEEE 89 (2); 201-213, 2001

[44] Microsim/Java: An Implementation of DEVS formalism in Java at http://www.duniptechnologies.com

[45] Zeigler, B.P., Fulton, D., Hammonds, P., Nutaro, J., “Framework for M&S Based System Development and

Testing in Net-centric Environment”, ITEA Journal, Vol. 26, No. 3, October 2005

[46] Mittal, S., Zeigler, B.P., “Dynamic Simulation Control with Queue Visualization”, Summer Computer

Simulation Conference, SCSC’05, Philadelphia, July 2005

[47] Mittal, S., Zeigler, B.P., Hammonds, P., Veena, M., “Network Simulation Environment for Evaluation and

Benchmarking HLA/RTI Experiments”, JITC Report, Fort Huachuca, December 2004.

[48] Hu, X., Zeigler, B.P., Mittal, S., “Dynamic Configuration in DEVS Component-based Modeling and

Simulation”, SIMULATION: Transactions of the Society of Modeling and Simulation International,

November 2003

[49] Mittal, S., Zeigler, B.P.,, “Modeling/Simulation Architecture for Autonomous Computing”, Autonomic

Computing Workshop: The Next Era of Computing, Tucson, January 2003.

[50] XML: http://www.w3.org/XML/

[51] Martin, J.L.R., Mittal, S., et.al, “Optimization of Dynamic Data Types in Embedded Systems using

DEVS/SOA-based Modeling and Simulation”, 3rd International ICST Conference on Scalable Information

Systems, Italy, June 2008

[52] aDEVS: an open source C++ DEVS Simulation engine. Available at:

http://www.ornl.gov/~1qn/adevs/index.html

[53] Mittal, S., Martin,J.L.R., Zeigler, B.P., “WSDL-Based DEVS Agent for Net-Centric Systems Engineering”,

International Workshop on Modeling and Applied Simulation, Italy, September 2008

[54] Zeigler, B.P., Mittal, S., Hu, X., “Towards a Formal Standard for Interoperability in M&S/Systems of

Systems Engineering”, Critical Issues in C4I, AFCEA-George Mason University Symposium, May 2008

[55] Department of Defense Architecture Framework (DoDAF) version 1.5 downloadable from:

http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_II.pdf

Authors Biography
Saurabh Mittal is the CEO at DUNIP Technologies, India. Previously he worked as Research Assistant Professor

at the Department of Electrical and Computer Engineering at the University of Arizona where he received his Ph. D

in 2007. His areas of interest include Web-based M&S using SOA, interoperability, executable architectures,

distributed simulation, and System of Systems engineering using DoDAF. He can be reached at

saurabh.mittal@duniptechnologies.com

Bernard P. Zeigler is Professor of Electrical and Computer Engineering at the University of Arizona, Tucson and

Director of the Arizona Center for Integrative Modeling and Simulation. He is developing DEVS-methodology

approaches for testing mission thread end-to-end interoperability and combat effectiveness of Defense Department

acquisitions and transitions to the Global Information Grid with its Service Oriented Architecture (GIG/SOA). He

can be reached at zeigler@ece.arizona.edu

José L. Risco-Martín is an Assistant Professor in Complutense University of Madrid, Spain. He received his PhD

from Complutense University of Madrid in 2004. His research interests are computational theory of modeling and

simulation, with emphasis on DEVS, Dynamic memory management of embedded systems, and net-centric

computing. He can be reached at jlrisco@dacya.ucm.es

