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Abstract 
Modeling and Simulation (M&S) is finding increasing application in development and testing of 

command and control systems comprised of information-intensive component systems. Achieving 

interoperability is one of the chief System of systems (SoS) engineering objectives in the development of 

command and control (C2) capabilities for joint and coalition warfare.  In this paper, we apply an SoS 

perspective on the integration of M&S with such systems. We employ recently developed interoperability 

concepts based on linguistic categories along with the Discrete Event System Specification (DEVS) 

formalism to implement a standard for interoperability. We will show how the developed standard is 

implemented in DEVS/SOA net-centric modeling and simulation framework that uses XML-based Service 

Oriented Architecture (SOA). We will discuss the simulator interfaces and the design issues in their 

implementation in DEVS/SOA. We will illustrate the application of DEVS/SOA in a multi-agent test 

instrumentation system that is deployable as a SOA.  

1. Introduction 
Modeling and Simulation (M&S) is finding increasing application in important aspects of command and 

control systems comprised of information intensive component systems. One aspect of such application is 

the incorporation of M&S functionality into such systems which is also an objective of the Extensible 

Modeling and Simulation Framework (XMSF
1
). Another aspect is the use of M&S to support the 

development and testing such systems as instances of System of Systems (SoS). The SoS concept relates 

to the attempt to integrate disparate systems to achieve a specific goal, typically not co-incident with the 

                                                            
1
 XMSF: A set of Web-based technologies and distributed testbed [1] 
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goals of the pre-existing component systems.  Consequently, the defining concern in SoS engineering is 

interoperability, or lack thereof, among the constituent system [1, 2].  Achieving such interoperability is 

among the chief SoS engineering objectives in the development of command and control (C2) capabilities 

for joint and coalition warfare [3]. Sage [1] analogized the construction of SoS to the federation of socio-

political systems and drew a parallel between such processes and the federation that is supported by the 

High Level Architecture (HLA, an IEEE standard fostered by the DoD to enable interoperation of 

simulation components [4]).  In this light, the present author discussed the role that M&S can play in 

helping to address the interoperability problems in SoS engineering [5].  The present paper builds upon 

this work by considering not only the parallel between SoS engineering and distributed simulation, but 

also how M&S can be more integrally included within SoS engineering approaches.  The focus of this 

paper is to present fundamental concepts to help tackle the integration of M&S and C2 SoS through the 

use of concepts and standards for interoperability based on the Discrete Event Systems Specification 

(DEVS) formalism. Our ultimate motivation is to apply M&S concepts and technologies to support 

collaborative decision making in C2 SoS as well as the testing and evaluation of such systems.   

DEVS environments such as DEVSJAVA, DEVS-C++, and others [28] are embedded in object-oriented 

implementations; they support the goal of representing executable model architectures in an object-

oriented representational language. As a mathematical formalism, DEVS is platform independent, and its 

implementations adhere to the DEVS protocol so that DEVS models easily translate from one form (e.g., 

C++) to another (e.g., Java) [16]. Moreover, DEVS environments, such as DEVSJAVA, execute on 

commercial, off-the-shelf desktops or workstations and employ state-of-the-art libraries to produce 

graphical output.. DEVS environments are typically open architectures that have been extended to 

execute on various middleware such as the DoD’s HLA standard, CORBA, SOAP, and others and can be 

readily interfaced to other engineering and simulation and modeling tools [29,30,31,32]. Furthermore, 

DEVS operation over web middleware (SOAP) enables it to utilize the net-centric environment of the 

Global Information Grid/Service Oriented Architecture (GIG/SOA). As a result of recent advances, 

DEVS can support model continuity through a simulation-based development and testing life cycle [29].  

This means that the mapping of high-level requirement specifications into lower-level DEVS 

formalizations enables such specifications to be thoroughly tested in virtual simulation environments 

before being easily and consistently transitioned to operate in a real environment for further testing and 

fielding. 

This article is an extension of a recent article by authors where the Standard for DEVS M&S 

interoperability was proposed [54]. The present work is a realization of the concepts in [54]. 

2. Interoperability in Distributed Simulation 
As illustrated in Figure 1, HLA is a network middleware layer that supports message exchanges among 

simulation components, called federates, in a neutral format and also provides a range of services to 

support dynamic and efficient execution of simulations.  However, experience with HLA has been 

disappointing and forced proponents to acknowledge the difference between enabling heterogeneous 

simulations to exchange data, so-called  technical interoperability, and   substantive interoperability – the 

desired outcome of exchanging meaningful data so that coherent interaction among federates takes place 

[5]. Tolk introduced the Levels of Conceptual Interoperability Model (LCIM) which identified seven 

levels of interoperability among participating systems [6]. These levels also can be viewed as a 

refinement of the operational interoperability type which is one of three defined by Dimario [7]. The 

operational type concerns linkages between systems in their interactions with one another, the 

environment, and with users. The additional levels provide more elaboration to the catch-all category of 

substantive interoperability and, as illustrated in Figure 1, are missing from HLA standard as such. 
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Figure 1. HLA Technical Interoperability 

3. Levels of Conceptual Interoperability Model  
Although Levels of Information Systems Interoperability [8] models are used successfully to determine 

the degree of interoperability between information technology systems, they do not provide a systematic 

formulation of the underlying properties of information exchange.  To remedy this situation, the LCIM 

outlined in Table 1, was developed to become a bridge between conceptual and technical design for 

implementation, integration, or federation [9, 10].  

The last column lists key conditions that are required to reach an interoperability level from the one 

below. Of course, the conditions accumulate as the level increases. We note that the conditions given in 

the LCIM for pragmatic interoperability require that the use of data be mutually understood, where the 

term “use” is interpreted as the context of its application. A reformulation of LCIM was presented in [11] 

where more definitive concepts for pragmatic interoperability including the concepts of pragmatic frames 

and pragmatic equivalence. Moreover, the definition of the semantic level requires the use of a single 

reference semantic model as a hub for information exchange among participants in collaboration. 

However such a hub and spokes approach, while desirable, is not always feasible. [12] evaluated a 

common information exchange model, C2IEDM, as an interoperability-enabling ontology for command 

and control. The conclusion is that even if there is room for improvements, the model supports almost all 

basic needs for such a semantic bridge. However, [13] claim that in its current form, the model is 

unbalanced in its levels of detail and too large to be practical. In the stratification to be introduced below, 

we review a more streamlined and extended account of information exchange levels. 

Level of 

Conceptual 

Interoperability 

Characteristic Key Condition 

Conceptual 

The assumptions and constraints 

underlying the meaningful abstraction of 

reality are aligned 

Requires that conceptual models be 

documented based on engineering methods 

enabling their interpretation and evaluation by 

other engineers. 

Dynamic 

Participants are able to comprehend 

changes in system state and assumptions 

and constraints that each is making over 

time, and are able to take advantage of 

those changes. 

Requires common understanding of system 

dynamics  

Pragmatic 
Participants are aware of the methods and 

procedures that each is employing 

Requires that the use of the data – or the 

context of their application – is understood by 

the participating systems. 

Semantic The meaning of the data is shared 
Requires  a common information exchange 

reference model 

Syntactic 
Introduces a common structure to 

exchange information,  
Requires that a common data format is used 

Technical 
Data can be exchanged between 

participants 
Requires that a communication protocol exists  

Stand alone No interoperability  

Table 1: Levels of Conceptual Interoperability 
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4. Linguistic Levels 
The definitions given in [11] agree in general, but differ substantially, with those used in the LCIM. They 

are summarized:  

• Pragmatics: Data use in relation to data structure and context of application  

• Semantics: Low level semantics focuses on definitions and attributes of terms; high level 

semantics focuses on the combined meaning of multiple terms (Generalized Context). Note in 

contrast to the LCIM requirement for semantic interoperability, this definition focuses on the 

underlying requirement for achieving shared meanings rather than how this requirement is 

achieved. 

• Syntax focuses on a structure and adherence to the rules that govern that structure, e.g., XML 

(Rules and Structure) 

 

The authors of LCIM associate the lower layers with the problems of simulation interoperation while the 

upper layers relate to the problems of reuse and composition of models [14,15]. They conclude 

“simulation systems are based on models  and  their assumptions and constraints. If two simulation 

systems are combined, these assumptions and constraints must be aligned accordingly to ensure 

meaningful results.”[10]. This suggests that levels of interoperability that have been identified in the area 

of M&S can serve as guidelines to discussion of information exchange in general. Therefore, we consider 

an earlier developed conceptual layered architecture for M&S [16]. We’ll correlate the above linguistic 

definitions with the layers outlined below and shown in Figure 2.  

 

Figure 2.  Architecture for Modeling and Simulation 

Network Layer contains the actual computers (including workstations and high performance systems) and 

the connecting networks (both LAN and WAN, their hardware and software) that do the work of 

supporting all aspects of the M&S lifecycle. 

Execution Layer is the software that executes the models in simulation time and/or real time to generate 

their behavior. Included in this layer are the protocols that provide the basis for distributed simulation 

(such as those that are standardized in the HLA.  Also included are database management systems, 

software systems to support control of simulation executions, visualization and animation of the generated 

behaviors. 

Modeling Layer supports the development of models in formalisms that are independent of any given 

simulation layer implementation.  HLA just mentioned also provides object-oriented templates for model 

description aimed at supporting confederations of globally dispersed models. However, beyond this, the 

formalisms for model behavior, whether continuous, discrete or discrete event in nature) as well as 

structure change, are also included in this layer. Model construction and especially, the key processes of 
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model abstraction and continuity over the lifecycle are also included. We also add ontologies to this layer 

where they are understood as models of the world for a particular conceptualization intended to support 

information exchange. 

Design and Search Layer supports the design of systems, such as in the Department of Defense 

Architecture Framework (DoDAF) version 1.5 [55] where the design is based on specifying desired 

behaviors through models and implementing these behaviors through interconnection of system 

components. It also includes investigation of large families of alternative models, whether in the form of 

spaces set up by parameters or more powerful means of specifying alternative model structures such as 

provided by the SES methodology [11]. Artificial intelligence and simulated natural intelligence 

(evolutionary programming) may be brought in to help deal with combinatorial explosions occasioned by 

powerful model synthesizing capabilities. 

Decision Layer applies the capability to search and simulate large model sets at the layer below to make 

decisions in solving real-world problems. Included are course-of-action planning, selection of design 

alternatives and other choices where the outcomes may be  supported by concept explorations, “what-if“ 

investigations, and optimizations of the models constructed in the modeling layer using the simulation 

layer below it.  

Collaboration Layer enables people or intelligent agents with partial knowledge about a system, whether 

based on discipline, location, task, or responsibility specialization, to bring to bear individual perspectives 

and contributions to achieve an overall goal. 

Using the definitions for linguistic levels above, we correlate such levels with the layers just discussed. 

As illustrated in Figure 3, at the syntactic level we associate network and execution layers. The semantic 

level corresponds with the modeling layer – where we have included ontology frameworks as well as 

dynamic system formalisms as models.  Finally, the pragmatic level includes use of the information such 

as identified in the upper layers of the M&S architecture. This use occurs for example, in design and 

search, making decisions and collaborating to achieve common goals. Indeed, such mental activities, 

along with real-world physical actions that they lead to, provide the basis for enumerating the kinds of 

pragmatic frames that might be of interest in particular applications – the context of use.  

The resulting stratification leads us to propose Table 2 for defining effective interoperation of 

collaborating systems or services at the identified linguistic levels (first and second columns).  

 

 

Figure 3  Associating Linguistic Levels  with Layers of Modeling and Simulation 
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Linguistic 

Level 

A collaboration of systems 

or services interoperates at 

this level if: 

Examples 

Pragmatic – how 

information in 

messages is used 

The receiver reacts to the 

message in a manner that the 

sender intends 

An order from a commander is obeyed by the 

troops in the field as the commander intended.  

A necessary condition is that the information 

arrives in a timely manner and that its  meaning 

has been preserved  (semantic  interoperability)  

Semantic – shared  

understanding of 

meaning of messages  

The receiver assigns the same 

meaning as the sender did to 

the message.  

An order from a commander to multi-national 

participants in a coalition operation is 

understood in a common manner despite 

translation into different languages. Similarly 

geographic data must be translated correctly to 

UTM grid coordinates for ground forces and to 

LatLong for air and naval forces.   

Syntactic – common 

rules governing 

composition and 

transmission of 

messages 

The consumer is able to 

receive and parse the sender’s 

message  

A common network protocol (e.g. IPv4)  is 

employed ensuring that all nodes on the 

network can send and receive data bit arrays 

adhering to a prescribed format. 

Table 2. Linguistic levels of Interoperability 

5. Review of M&S foundational framework 
The theory of modeling and simulation presented in [16] provides a conceptual framework and an 

associated computational approach to methodological problems in M&S. The framework provides a set of 

entities and relations among the entities that, in effect, present a ontology of the M&S domain. The 

computational approach is based on the mathematical theory of systems and works with object orientation 

and other computational paradigms. It is intended to provide a sound means to manipulate the framework 

elements and to derive logical relationships among them that are usefully applied to real world problems 

in simulation modeling.  The framework entities are formulated in terms of the system specifications 

provided by systems theory, and the framework relations are formulated in terms of the morphisms 

(preservation relations) among system specifications.  Conversely, the abstractions provided by 

mathematical systems theory require interpretation, as provided by the framework, to be applicable to real 

world problems.  

In its computational realization, the framework is based on the DEVS formalism and implemented in 

various object oriented environments. Using Unified Modeling Language (UML) we can represent the 

framework as a set of classes and relations as illustrated in Figures 4 and 5.  The Framework for M&S as 

described in [16] establishes entity classes that are: source system, model, ontology, simulator, and 

experimental/pragmatic frames. These classes are related by the modeling and the simulation 

relationships.  Each entity is formally characterized as a system at an appropriate level of specification of 

a generic dynamic system.  The source system is the real or virtual environment that we are interested in 

modeling. It is viewed as a source of observable data, in the form of time-indexed trajectories of 

variables. The data that has been gathered from observing or otherwise experimenting with a system is 

called the system behavior database.  This data is viewed or acquired through experimental frames of 

interest to the model development and user. These data must be sufficient in scope to enable reliable 

comparison as well accepted by both the model developer and the test agency as the basis for comparison. 

Data sources for this purpose might be measurement taken in prior experiments, mathematical 
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representation of the measured data, or expert knowledge of the system behavior by accepted subject 

matter experts. An experimental frame is a specification of the conditions under which the system is 

observed or experimented with. An experimental frame is the operational formulation of the objectives 

that motivate a M&S project. A frame is realized as a system that interacts with the system of interest to 

obtain the data of interest under specified conditions.   When an experimental frame is realized as a 

system to interact with the model or system under test the specifications become components of the 

driving system. Pragmatic frames were recently introduced in [11] to generalize the concept of 

experimental frame to represent the objectives involved in creating ontologies.  System specification 

morphisms are implemented as relationships among entity classes. For example, the validity of a model 

with respect to a source system is characterized through a morphism at the behavioral level and 

implemented as a relationship between pairs of model and source system instances. Various 

implementations support different subsets of the classes and relations [OMG]. In particular, this article 

will review the implementation of DEVS within a Service Oriented Architecture (SOA) environment 

called DEVS/SOA [17,33,34]. 

 

Figure 4: M&S Framework formulated within UML 

 

 

Figure 5: M&S Framework Classes and Relations in a UML representation 
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In a System of systems, systems and/or subsystems often interact with each other because of 

interoperability and over all integration of the SoS. These interactions are achieved by efficient 

communication among the systems using either peer-to-peer communication or through central 

coordinator in a given SoS.   Since the systems within SoS are operationally independent, interactions 

among systems are generally asynchronous in nature. A simple yet robust solution to handle such 

asynchronous interactions (specifically, receiving messages) is to throw an event at the receiving end to 

capture the messages from single or multiple systems. Such system interactions can be represented 

effectively as discrete-event models. In discrete-event modeling, events are generated at random time 

intervals as opposed to some pre-determined time interval seen commonly in discrete-time systems. More 

specifically, the state change of a discrete-event system happens only upon arrival (or generation) of an 

event, not necessarily at equally spaced time intervals.  To this end, a discrete-event model is a feasible 

approach in simulating the SoS framework and its interaction. Several discrete-event simulation engines 

[35-38] are available that can be used in simulating interaction in a heterogeneous mixture of independent 

systems.  The advantage of DEVS is its effective mathematical representation and its support to 

distributed simulation using middleware such as DoD’s HLA [39].   

 

Figure 6: DEVS Hierarchical Model representation for systems and sub-systems 

5.1 DEVS Modeling and Simulation 
DEVS [16] is a formalism, which provides a means of specifying the components of a system in a 

discrete event simulation. In DEVS formalism, one must specify Basic Models and how these models are 

connected together. These basic models are called Atomic Models and larger models which are obtained 

by connecting these atomic blocks in meaningful fashion are called Coupled Models (shown Figure 6). 

Each of these atomic models has inports (to receive external events), outports (to send events), set of state 

variables, internal transition, external transition, and time advance functions. Mathematically it is 

represented as 7-tuple system: int, , , , , ,ext aM X S Y tδ δ λ=< >
 where X is an input set, S is the set of 

states, Y is the set of outputs, intδ
 is the internal transition function, extδ

 is the external transition function, 

λ  is the output function, and at  is the time advance function. The model’s description (implementation) 

uses (or discards) the message in the event to do the computation and delivers an output message on the 

outport and makes a state transition. A Java-based implementation of DEVS formalism, DEVSJAVA 

[40], can be used to implement these atomic or coupled models. In addition, DEVS-HLA [40] will be 

helpful in distributed simulation for simulating multiple heterogeneous systems in the System of systems 

framework.  

DEVS formalism categorically separates the Model, the Simulator and the Experimental frame (Figure 7).  

However, one of the major problems in this kind of mutually exclusively system is that the formalism 

implementation is itself limited by the underlying programming language. In other words, the model and 

the simulator exist in the same programming language. Consequently, legacy models as well as models 

that are available in one implementation are hard to translate from one language to another even though 

both the implementations are object oriented. Other constraints like libraries inherent in C++ and Java are 

another source of bottleneck that prevents such interoperability.  
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Simulation

Relation
Modeling

Relation

 

Figure 7:  Framework Entities and Relationships 

Brief Overview of Capabilities Provided by DEVS 

The prime motivation comes from an editorial by Carstairs [41] that demands a M&S framework at 

higher levels of system specifications where System of systems interact together using net-centric 

platform. At this level, model interoperability is one of the major concerns. The motivation for this work 

stems from this need of model interoperability between the disparate simulator implementations and 

provides a means to make the simulator transparent to model execution. DEVS, which is known to be 

component-based system, based on formal systems theoretical framework is the preferred means. Table 3 

outlines how it could provide solutions to the challenges in net-centric design and evaluation. The net-

centric DEVS framework requires enhancement to the basic DEVS capabilities, which are provided in 

later sections. 

Desired M&S Capability for Test 

and Evaluation (T&E) 

Solutions Provided by DEVS Technology 

Support of DoDAF need for executable 

architectures using  M&S such as 

mission based testing for GIG/SOA 

DEVS Unified Process [33,42] provides methodology and SOA 

infrastructure for integrated development and testing, extending 

DoDAF views [21]. 

Interoperability and cross-platform 

M&S using GIG/SOA 

Simulation architecture is layered to accomplish the technology 

migration or run different technological scenarios [43]. Provide 

net-centric composition and integration of DEVS ‘validated’ 

models using Simulation Web Services [26] 

Automated test generation and 

deployment in distributed simulation 

Separate a model from the act of simulation itself, which can be 

executed on single or multiple distributed platforms [16]. With 

its bifurcated test and development process, automated test 

generation is integral to this methodology [45]. 

Test artifact continuity and traceability 

through phases of system development 

Provide rapid means of deployment using model-continuity 

principles and concepts like “simulation becomes the reality” 

[29]. 

Real time observation and control of 

test environment  

Provide dynamic variable-structure component modeling to 

enable control and reconfiguration of simulation on the fly [47-

49]. Provide dynamic simulation tuning, interoperability testing 

and benchmarking. 

Table 3: Solutions provided by DEVS technology to support of M&S for T&E 
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Furthermore, this work describes distributed simulation using the web service technology. After the 

development of World Wide Web, many efforts in the distributed simulation field have been made for 

modeling, executing simulation and creating model libraries that can be assembled and executed over 

WWW. By means of XML and web services technology these efforts have entered upon a new phase. 

The proposed DEVS Modeling Language (DEVSML) [26] is built on eXtensible Markup Language 

(XML) [50] as the preferred means to provide such transparent simulator implementation. A prototype 

simulation framework called DEVS/SOA has been implemented using web services technology. It is 

currently in use by various research groups across the world towards a global net-centric simulation 

platform [51]. The central point resides in executing the simulator as a web service. The development of 

this kind of frameworks will help to solve large-scale problems and guarantees interoperability among 

different networked systems and specifically DEVS-validated models. This paper focuses on the overall 

approach, and the symmetrical SOA-Based architecture that allows for DEVS execution as a Simulation 

SOA. 

6. DEVS Standard 
The conceptual interoperability model described above provides a general guideline for supporting system 

interoperability. Following the layered approach of this conceptual model, next we review the work of 

DEVS standardization that aims to support M&S interoperability based on the DEVS M&S framework. 

This work of standardization correspond to the two levels shown in Figure 3: the semantic level that deals 

with standardization of model interface; and the syntactic level that deals with standardization of 

simulation protocol.   

The DEVS formalism [16], based on Mathematical Systems theory, provides a computational framework 

and tool set to support Systems concepts in application to SoS. We first provide a brief review. More 

detail is available in [16]. 

DEVS makes a sharp distinction between the model and the device that simulates it.  Both model and 

simulator are defined as mathematical systems as defined by Wymore and others (see [16] for details), 

and the relation between them is standardized by the concept of “abstract” simulator.  Information flow in 

the DEVS formalism, as implemented on an object-oriented substrate, is mediated by the concept of 

DEVS message, a container for port-value pairs. In a message sent from component A to component B, a 

port-value pair is a pair in which the port is an output port of A,   and the value is an instance of the base 

class of a DEVS implementation, or any of its sub-classes. A coupling is a four-tuple of the form (sending 

component A, output port of A, receiving component B, input port of B). This sets up a path where by a 

value placed on an output port of A by A’s output function is transmitted to the input port of B, to be 

consumed by the latter. In systems or simulations implemented in DEVS environments the concepts of 

ports, messages, and coupling are explicit in the code. However, for systems/simulations that were 

implemented without systems theory guidance, in legacy or non-DEVS environments, these concepts are 

abstract and need to be identified concretely with the constructs offered by the underlying environment. 

For SoS engineering, where legacy components are the norm, it is worth starting with the clear concepts 

and methodology offered by systems theory and DEVS, getting a grip on the interoperability problems, 

and then translating backwards to the non-DEVS concepts as necessary. 

Within a working group of the Simulation Interoperability Standards Organization, a standard has been 

under development to support interoperability of DEVS models implemented in different platforms as 

well as with legacy simulations. Figure 8 illustrates an architectural approach proposed to accommodate 

the various combinations and permutations of possible application, both currently known, as well as those 

that will emerge in the future. The basic idea is to define two sets of interfaces; the DEVS model Interface 

and the DEVS Simulator Interface, as well as a DEVS Simulation Protocol that operates between the two. 

The interfaces protocols are based on those in GenDEVS, an implementation at the heart of the 

DEVJAVA M&S environment [www.acims.arizona.edu]. DEVS/C++ and DEVSJAVA are platform 

specific implementations while DEVSML[26] and XFD-DEVS [27] are platform independent 

implementations in XML which can transform to any platform specific implementations.  
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Figure 8: Conceptual Architecture of Standard 

 As a direct consequence of the model-simulator separation there can be multiple ways in which the same 

model can be simulated – all adhering to the abstract simulator specification. Corresponding to different 

simulation modes, the standard has virtual-time and real-time simulators. In virtual-time simulation, the 

simulator interprets time as logical time so the simulation can skip from one event time to the next 

without traversing the intervening time interval.  However, in real-time simulation, time is interpreted as 

wall clock readings, so the real-time simulator will wait for the interval to its next scheduled event to 

expire before handling the event.  In addition to the model type/simulation mode combinations, the 

standard allows for the use of different forms of distribution of model components, e.g., single processor 

vs. multi-processor, and within the latter, conservative vs. optimistic time advance for virtual-time as well 

as centralized vs. non-centralized time control in real-time execution. The standard is also agnostic with 

respect to different implementation platforms, such as Windows vs. Unix, different programming 

languages, such as Java vs. C++, and different networking and middleware frameworks such as .Net vs. 

Apache. From the above introduction, we can see that the standard will have multiple simulation 

scenarios. For example, considering the combinations of simulation mode and distribution mode, we 

have: simulating a model in virtual-time and simulating a model in real-time both in distributed and non-

distributed fashion. 

 

Figure 9 DEVS Model Interfaces 

Among the interfaces (Figure 9), IODevs defines interface for the functions that handle message exchange 

based on input and output ports. Any model, whether DEVS or non-DEVS, can implement these 

functions so it can interoperate with other implementers of this interface, in the sense of receiving input 

and sending output. The basicDevs Interface defines the basic functions a DEVS model needs to 

implement such as deltext(), deltint(), out(), ta() and so on.  The basicDevs interface is the interface that is 

exposed to the atomic simulators. An additional interface, atomicDevs, provides a convenient set of 
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primitives for defining the basic functions in an atomic model. However, since the basic functions can be 

defined without using such primitives, the atomicDevs interface is optional.  The IOBasicDevs interface 

extends the IODevs interface and basicDevs interface. It provides a common basis for implementing 

atomic models and coupled models. Combining IOBasicDevs with atomicDevs, we get AtomicInterface 

which defines the function signatures an atomic model need to implement.  Of course, if atomicDevs is 

omitted, then AtomicInterface reduces to IOBasicDevs.  Similarly, CoupledDevs interface defines the 

function signatures that are used in DEVS coupled models. It also has methods that support adding 

components and couplings to the model; methods for retrieving a component by name and for accessing 

all components; and to access the internal coupling specifications (intended only by simulators).  

Combining IOBasicDevs with CoupledDevs, we get the Coupled interface which defines the functions 

coupled models need to implement. 

 

Figure 10  DEVS Simulator Interfaces 

 The basic simulator interface is the CoreSimulator that provides a common interface for DEVS and non-

DEVS simulation (Figure 10). Further, the CoreSimulator interface is the basic interface from which 

simulation services could be designed for a truly net-centric interoperable simulation framework [23]. 

Under the CoreSimulator interface, two classes of simulators have been defined CoupledSimulator and 

CoupledCoordinator interfaces where the latter also inherits from Coordintor. These apply to both virtual 

(logical); and real-time simulation. (Real time simulators interpret time as real wall clock time and have 

their own thread and system clock. Virtual or logical time simulators can advance from one event time to 

the next). The CoreSimulator interface includes methods that are invoked by the DEVS simulation 

protocol: 

interface coreSimulatorInterface{ 

void setSimulators (Collection<CoreSimulatorInterface>);  

void initialize(); 

Double nextTN(); 

void computeInputOutput(Double t); 

void applyDeltFunc(Double t); 

void putContentOnSimulator (CoreSimulatorInterface sim, ContentInterface c);  

void sendMessages(); 

6.1 DEVS Simulation Protocol 
DEVS treats a model and its simulator as two distinct elements. The simulation protocol describes how a 

DEVS model should be simulated whether in standalone fashion or in a coupled model. Such a protocol is 

implemented by a processor which can be a simulator or a coordinator. 

As illustrated in Figure 11, the DEVS protocol is executed as following: 
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1. It starts with the coordinator telling each of the simulators in the collection the others’ addresses and 

then to perform initialization function.  

2. A cycle is then entered in which the coordinator requests that each simulator provide its time of next 

event and takes the minimum of the returned values to obtain the global time of next event 

3. Each of the simulators applies its computeInputOutput() method to produce an   output that consists 

of a collection of contents (port/value) pairs – for  DEVS simulators this is a composite message 

computed according to the DEVS formalism based on its model’s current state.  

4. Then each simulator partitions its output into messages intended for recipient simulators and sends 

these messages to these recipient simulators – for DEVS simulators these recipients are determined 

from the output ports in the message and the coupling information that will have previously been 

received from the coordinator.  

5. Finally, each simulator executes its ApplyDeltFunc method which computes the combined effect of 

the received messages and internal scheduling on its state, a side effect of which is produce of time of 

next event, tN  – for DEVS simulators this state change is computed according to the DEVS 

formalism and the tN is updated using its model’s time advance.  

6. The coordinator obtains the next global time of next event and the cycle repeats 

 

 

Figure 11. Federation of DEVS with Non-DEVS Simulators 

It should be noted that the above is one form of many possible protocols that can provide various forms of 

conservative and optimistic simulation, each of which must be proved to be correct as a realization of the 

DEVS closure under coupling property [16]. One such implementation exists as Microsim/Java [44] 

wherein the DEVS simulation protocol adheres to the CoreSimulator interface but has different 

implementation when compared to GenDEVS. 

Implicit in the above description are the following constraints involving methods in the 

CoreSimulatorInterface: 

• The sendMessages() method “must” employ the putContentOnSimulator() method as follows:  for 

any simulator to which it wishes to send a content, it must call the recipient’s 

putContentOnSimulator() method with the recipient and the content as arguments.   

• Further, in applying its computeInputOutput() method, a simulator “must” be able to interpret  the 

contents  (satisfying the ContentInterface) it has received from the other simulators.  
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Notice that we cannot enforce the “must” requirements just given, and cannot prove that the simulation 

executes a desired behavior, unless we are given further information about its behavior. One way to do 

this is where the simulators are truly DEVS simulators in that they satisfy the interfaces and constraints 

given below. Failing this additional rigor, the interoperation involving DEVS and non-DEVS is purely at 

the technical level similar to that of a federation of simulators in HLA. This contrasts with the situation in 

which the federation is in fact derived from a DEVS coupled model for which correct simulation of the 

coupled model is guaranteed according to the DEVS formalism. 

7. DEVS/SOA  
An implementation of the standard within the Service Oriented Architecture (SOA) has been completed 

that provides DEVS modeling and simulation services over the World Wide Web [17, 23]. As shown in 

the Figure 12, at the top of the layered architecture is the application layer that contains models in 

DEVSJAVA or DEVSML, a way of representing DEVS models in the eXtended Markup Language 

(XML). This DEVSML is built on JAVAML [18], which is XML implementation of JAVA. The current 

development effort of DEVSML takes its power from the underlying JAVAML that is needed to specify 

the ‘behavior’ logic of atomic and coupled models. The DEVSML models are cross-transformable to 

Java. The second layer is the DEVSML layer itself that provides seamless integration, composition and 

dynamic scenario construction resulting in portable models in DEVSML that are complete in every 

respect. These DEVSML models can be ported to any remote location using the SOA infrastructure and 

can be executed at any remote location in a distributed or non-distributed manner. Another major 

advantage of such capability is total simulator ‘transparency’. The simulation engine is totally transparent 

to model execution over the SOA infrastructure. The DEVSML model description files in XML contains 

meta-data information about its compliance with various simulation ‘builds’ or versions to provide true 

interoperability between various simulator engine implementations. This has been achieved for at least 

two independent simulation engines as they have an underlying DEVS protocol to adhere to. This has 

been made possible with the implementation of a single atomic schema [24] and a single coupled schema 

[25] that validates the DEVSML descriptions generated from these two implementations. Such run-time 

interoperability provides great advantage when models from different repositories are used to compose 

large coupled models using the DEVSML integration capabilities. Detailed design can be seen in [17,23]. 

 

Figure 12: Layered Architecture of DEVSML towards transparent simulators in Net-centric domain 
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The complete setup requires one or more servers that are capable of running DEVS Simulation Service, as 

shown in Figure 12 by the dotted line. The capability to run the simulation service is provided by the 

server side design of DEVS Simulation protocol supported by the DEVSJAVA and Microsim/Java. Of 

course, many issues of policy management and security considerations must be taken care of in the 

generation of DEVS models from WSDLs specifications [22]. Furthermore, the multi-platform simulation 

capability provided by DEVS/SOA framework consists of realizing distributed simulation among 

different DEVS platforms or simulator engines such as DEVSJAVA, Microsim/Java, DEVS-C++, etc. 

and executing the native simulation service. This kind of interoperability where multi-platform 

simulations can be executed with our DEVSML integration facilities has been made possible with the 

hierarchical design of simulator interfaces as described in Section 6.  

Web-based simulation requires the convergence of simulation methodology and WWW technology 

(mainly Web Service technology). The fundamental concept of web services is to integrate software 

application as services. Web services allow the applications to communicate with other applications using 

open standards. We are offering DEVS-based simulators as a web service, and they must have these 

standard technologies: communication protocol (Simple Object Access Protocol, SOAP), service 

description (Web Service Description Language, WSDL), and service discovery (Universal Description 

Discovery and Integration, UDDI). Figure13 shows the framework of the proposed distributed simulation 

using SOA.  

The Simulation Service framework is two layered framework as depicted in Figure 13. The top-layer is 

the user coordination layer (MainService) that oversees the lower layer (SimulationService). The lower 

layer is the true simulation service layer that executes the DEVS simulation protocol as a Service. The 

lower layer is transparent to the modeler and only the top-level is provided to the user.  

The top-level (MainService layer) has four main services: 

• Upload DEVS model 

• Compile DEVS model 

• Simulate DEVS model (centralized) 

• Simulate DEVS model (distributed) 

 

 

Figure 13: DEVS/SOA distributed architecture 

The second lower (SimulationService) layer provides the DEVS Simulation protocol and is designed as 

per the DEVS Standard described earlier: 

• Initialize simulator i 

• Run transition in simulator i 
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• Run lambda function in simulator i 

• Inject message to simulator i 

• Get time of next event from simulator i 

• Get time advance from simulator i 

• Get console log from all the simulators 

• Finalize simulation service  

 

The explicit transition functions, namely, the internal transition function, the external transition function, 

and the confluent transition function, are abstracted to a single transition function that is made available 

as a Service. The transition function that needs to be executed depends on the simulator implementation 

and is decided at the run-time. For example, if the simulator implements the Parallel DEVS (P-DEVS) 

formalism, it will choose among internal transition, external transition or confluent transition
2
.  

The client is provided a list of servers hosting DEVS Service. He selects some servers to distribute the 

simulation of his model. Then, the model is uploaded and compiled in all the servers. The main server 

selected creates a coordinator that creates simulators in the server where the coordinator resides and/or 

over the other servers selected. 

Summarizing from a user’s perspective, the simulation process is done through three steps (Figure 14): 

1. Write a DEVS model (currently DEVSJAVA is only supported). 

2. Provide a list of DEVS servers (through UDDI, for example). Since we are testing the 

application, these services have not been published using UDDI by now. Select N number of 

servers from the list available. 

3. Run the simulation (upload, compile and simulate) and wait for the results. 

 

 

Figure 14: Execution of DEVS SOA-Based M&S 

7.1 Simulation service composition: 
This is the bottom layer of the two-layer architecture and its functionalities are used by the MainSevice 

layer. Its operations are transparent to the user. Once the user demands a simulation via the MainService 

class, the coordinator (at the coordinator server or main server) requires as many simulation services as IP 

                                                            
2 The difference between P-DEVS and classic DEVS is the handling of confluent function. The DEVS/SOA 

framework could have been built using other simulation formalisms. In fact, our simulation services could store any 

kind of simulator -as long as the service updates the simulation cycle according to the simulator engine selected. The 

service is independent in the sense of transition functions. 
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addresses provided by the user. After that, the DEVS model is partitioned and the coordinator sends every 

part to its corresponding service. When the simulation starts, each simulation service creates a DEVS 

simulator for its models and executes the corresponding output and transition functions (see Figure 14). 

It is possible for one simulation service to store more than one simulator for different components of the 

same DEVS model, or to store more than one simulator for different components of different DEVS 

models. This issue is solved as follows. After the main coordinator obtains a simulation service at a 

certain IP address, a new simulator is created there, identified by the component name plus the IP address 

of the user’s machine and containing the DEVS component itself. For example, if the coordinator must 

send a DEVS component named Processor to a server located at 192.168.1.5 and coming from a user 

located at 192.168.1.2, then a simulation service is required from 192.168.1.5 and a new simulator is 

created there, identified by Processor@192.168.1.2 and containing the model named Processor. 

Another issue is how to store the simulators created, because web services do not have memory. To this 

end, we are using the server’s memory by means of static variables or attributes. Hence, the simulation 

services include a static table, which associates simulator names with simulator instances. There is other 

information stored by the Simulation services in the server memory, such as the IP address where the 

services reside and a reporter, which logs all the information while the simulation is running. 

The services provided by the Simulation service are enumerated below in detail: 

• newSimulator: This service receives a DEVS component and a identifier. It creates a new DEVS 

simulator identified by the name described above and containing the DEVS component received. 

• initialize: This service receives the name of the simulator required and the current time. It takes 

the corresponding simulator from its table (using the name received) and initializes it. 

• receiveInput: This service receives four arguments: (1) the name of the simulator required, (2) 

the name of the port where the message is coming from, (3) the message and (4) the name of the 

port where the message is going to. The simulation service takes the simulator from its table and 

executes the same function called receiveInput, which stores the message received at the input of 

the model. 

• lambda: It receives the name of the simulator required and the current time. This service takes the 

simulator required and executes the output function (also called lambda) of the DEVS model 

• deltfnc: This service receives the name of the simulator required and the current simulation time. 

The service takes the simulator and executes an internal or external or confluent transition 

function. The abstracted deltfn is provides in Figure 15. This allows both the classical DEVS and 

P-DEVS models work seamlessly with DEVS/SOA simulation framework. 

• getOutput: This service takes the required Simulator and returns the output stored in its DEVS 

model. 

• getTN: It receives the name of the simulator for which the time of the next event is returned. 

• exit: It receives the name of the simulator to be removed from the table. 

• getConsole: This service receives the IP address of the user’s machine, and return the content of 

the log file related to this address. 

• getIp: It returns the IP address of the simulation service. 

 

Having described the services available in the DEVS/SOA architecture, following is the design of 

DEVS/SOA coordinator and simulator that utilize these DEVS services. This simulator is called as 

DEVSV/SOA simulator and it acts as an adapter for any DEVS simulation engine that executes the 

DEVS simulation protocol. Currently, we have implemented the DEVS/SOA simulator in two DEVS 

implementations viz. DEVSJAVA and Microsim/Java. More details on a complete example can be 

seen in [23] that use these two independent implementations of abstract simulator interface. Efforts 

are underway for a DEVS.net implementation using C# language. 
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function deltfcn(double t) { 

 Message x = input; 

 if(x==null) { 

  System.out.println( 

              "ERROR RECEIVED NULL INPUT " + model.toString()); 

  return; 

 } 

         

       //if you receive an empty message and not imminent 

 if (x.isEmpty() && t!=tN) { 

  return; 

 } 

 

       //if incoming message is not empty and imminent 

       //update the elapsed time, sigma 

       //execute the deltcon transition function 

 else if((!x.isEmpty()) && t==tN) { 

  double e = t - tL; 

  model.deltcon(e,x); 

 } 

 

       //if just imminent and no message 

       //execute deltint transition function 

 else if(t==tN) { 

  model.deltint(); 

 } 

 

       //if not imminent and just a message incoming 

       //execute deltext transition function 

 else if(!x.isEmpty()) { 

  double e = t - tL; 

  model.deltext(e,x); 

 } 

 

       //update tL (time of last event) and tN (time of next event) 

       //update sigma (time advance) 

       //reset incoming message collection 

 tL = t; 

 tN = tL + model.ta();  

 input = new Message();  

} 

Figure 15: Abstract deltfun in Simulation service 

DEVSV/SOA Coordinator 

Equivalent to the Simulation service storing the simulators in a static way, the coordinator also stores the 

simulators of the DEVS model in a static hash table, using the same nomenclature as was stated above 

(DEVS component name plus client IP address identifying the simulator). Therefore, such table contains 

pairs {simulator name, simulator service}, associating each simulator created with the simulation service 

where it resides. The task of the coordinator is to execute a typical DEVS loop over the distributed 

simulators. Figure 16 shows the algorithm executed by the simulate function. In such Table, iterations is 

the number of cycles of the simulation, t is the current time, tL is the last time event, tN is the next time 

event, simulationServices is the table of simulation services created by the coordinator and where the 

simulators are located. Then, for a number of cycles, the output function is called through each of the 

simulation services. It should be noted that the first argument of lambda function is a key, which is the 

simulator identifier, since different simulators could be located at the same simulation service, this key 

must be provided. After the output function is executed, the outputs of the components are ready to be 

propagated. To this end, the propagateOutput function is called, which propagates the messages 

generated from the outports to its corresponding inports. Next, the transition function is applied and 

finally the time is updated.  

From the instant in which the coordinator is created, it stores at any moment the DEVS model (currently 

DEVSJAVA), the last timed event, the next time event and the IP address of the user’s machine. 
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function simulate(long iterations) 

  t = tN; 

  for (i=0; i<iterations; i++) 

    for each ({key,simService} in simulationServices) 

      simService.lambda(key, t); 

      propagateOutput(); 

    for each ({key,simService} in simulationServices) 

      simService.deltfcn(key, t); 

    tL = t; 

    tN = min(simulationServices.getTN()); 

    t = tN; 

Figure 16: DEVS simulation 

It should be noted that the Coordinator is not a service. It is a class, which is used by the MainService 

service. Again, it must be stressed that it derives from the DEVS Standard simulator interface, which 

allows a DEVS coordinator to control and coordinate a DEVS simulator. The DEVS Standard interface 

has been extended for obvious reasons and extended functionalities. The functions implemented in the 

Coordinator are enumerated below: 

• getTopComponentNames: This function receives the name of the DEVS root-coupled model and 

returns a list containing the top-component names of the DEVS model. 

• Constructor: The constructor receives the client IP address, the name of the DEVS model, and 

the list of IP addresses where the model is going to be simulated. Hence, it creates as many 

simulators as top-level components, created by the simulation services located at the IP addresses 

given in the list. 

• initialize: This function receives the initial time of simulation. It initializes the simulators. 

• propagateOutput: As it was stated above, this function takes the output from the simulators and 

sends them to its corresponding inputs. 

• lamda: It receives the current time, and executes the output function in each of the simulators 

stored. 

• deltfcn: This function receives the current time and executes the internal or external transition 

functions in the simulators stored. 

• ta: It is the time advance function and receives the current time. It takes the minimum next time 

event from the simulators stored. 

• exit: This function calls the exit function of all the simulation services stored and clean the table 

of simulators. 

• simulate: This function receives the number of cycles of the simulation, and executes the 

simulation as was described before. 

 

7.2 Client Application 
This Section provides the client application to execute DEVS model over an SOA framework using 

Simulation as a Service. From many-sided modes of DEVS model generation [33,34], the next step is the 

simulation of these models. The DEVSV/SOA client takes the DEVS models package and through the 

dedicated servers hosting simulation services, it performs the following operations: 

1. Upload the models to specific IP locations 

2. Run-time compile at respective sites 

3. Simulate the coupled-model 

4. Receive the simulation output at client’s end 

 

The DEVSV/SOA client as shown in Figure 17 operates in the following sequential manner: 

1. The user selects the DEVS package folder at his machine 

2. The top-level coupled model is selected as shown in Figure 17. 

3. Various available servers are selected (Figure 17). Any number of available servers can be 

selected (one at least). 
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4. Clicking the button labelled “Assign Servers to Model Components” the user selects where is 

going to simulate each of the coupled models, including the top-level one, i.e., the main server 

where the coordinator will be created (Figure 18)  

5. The user then uploads the model by clicking the Upload button. The models are partitioned and 

distributed among the servers chosen in the previous point  

6. The user then compiles the models at the server’s end by clicking the Compile button 

 

 

Figure 17: GUI snapshot of DEVSV/SOA client hosting 

distributed simulation 

 

 

Figure 18: Server Assignment to 

Models 

8. Cross-Platform Execution over DEVS/SOA 
In terms of net-ready capability testing, what is required is the communication of live web services with 

those of test-models designed specifically for them. The approach we are working on has the following 

steps: 

1. Specify the scenario 

2. Develop the DEVS model 

3. Develop the test-model from DEVS models 

4. Run the model and test-model over SOA 

5. Execute as a real-time simulation 

6. Replace the model with actual web-service as intended in scenario. 

7. Execute the test-models with real-world web services  

8. Compare the results of steps 5 and 7. 

 

Of course, many issues of policy management and security considerations must be taken care of when 

test-models are communicating with live Web-Services. However, considering the fact that for any 

defense related mission-thread reliability testing the test-models would have the necessary security 

provisions, the 8-step process listed above can be executed. This work would also involve generation of 

DEVS models from Web Service Description Language or WSDLs specifications. A small portion of 

Business Process Modeling Notation (BPMN) to DEVS transformation is described in [33].  

One other section that requires some description is the multi-platform simulation capability as provided 

by DEVSV/SOA framework. It consists of realizing distributed simulation among different DEVS 

platforms or simulator engines such as DEVSJAVA, DEVS-C++, etc. In order to accomplish that, the 

simulation services will be developed that are focused on specific platforms, however, managed by a 

coordinator. In this manner, the whole model will be naturally partitioned according to their respective 

implementation platform and executing the native simulation service. This kind of interoperability where 
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multi-platform simulations can be executed with our DEVSML integration facilities. DEVSML will be 

used to describe the whole hybrid model. At this level, the problem consists of message passing, which 

has been solved in this work by means of an adapter pattern in the design of the “message” class [23]. 

Figure 19 shows a first approximation. The platform specific simulator generates messages or events, but 

the simulation services will transform these platform-specific-messages (PSMsg) to our current platform-

independent-message (PIMsg) architecture developed in DEVS/SOA. Hence, we see that the described 

DEVS/SOA framework can be extended towards net-ready capability testing. The DEVS/SOA 

framework also needs to be extended towards multi-platform simulation capabilities that allow test-

models be written in any DEVS implementation (e.g. Java and C++) to interact with other as services. 

However, a major drawback of our current architecture is that the user must send the whole DEVS model 

implemented under all the platforms to use, which is not a good solution. Next, we propose a 

modification on the Coordinator creation process that in some manner, allows to the user to store each 

part of the model written in its corresponding platform. 

 

Figure 19: Cross-platform execution. 

8.1 Multi-platform DEVS/SOA architecture 
Figure 20 depicts an example of a multi-platform DEVS model. Each atomic or coupled component may 

be implemented using different simulation engines, called platforms. In Figure 20, SUBMODEL A is 

implemented using DEVSJAVA [28], SUBMODEL B by means of aDEVS (C++) [52], and 

SUBMODEL C using xDEVS (Java) [38]. 

Let us suppose that the whole model is implemented using DEVSJAVA. In our current DEVS/SOA 

architecture, the application sends the whole model (root-coupled model included) to the servers by 

means of the upload service, where all the files get compiled and finally, it executes the model sending 

serialized messages among simulation services. This situation is not valid for the multi-platform model 

depicted in  

Figure 20 as the scenario cannot be compiled as a whole. 

 

Figure 20: Multi-platform DEVS model 
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In our proposed approach, we define the root coordinator by means of a Platform Independent Model 

(PIM), for example, DEVSML. We may use the structure description of DEVSML to compose the root 

coupled model, and send it to the main server, which will distribute the sub-models among its 

corresponding servers. Figure 21 shows how a multi-platform DEVS model may be executed using our 

proposed architecture. We define the root-coupled model using DEVSML (top of the Figure 21). The 

coupled model is treated as an atomic model due to the inherent architecture of DEVS/SOA 

digraph2Atomic adapter [23]. Consequently, it is immaterial if the sub-model is atomic or coupled. 

 

Figure 21: Multi-platform DEVSV/SOA proposed architecture 

The DEVSML document in the Figure 21 states that the main server is located at 192.168.1.3. This server 

receives the DEVSML document and all the source code, distributes sub-models to respective servers and 

creates the coordinator. For example, the main server sends SubModelA.java to the server located at 

192.168.1.7, where the DEVS/SOA java implemented server compiles it. The same happens with the 

corresponding SubModelB.cpp and SubModelC.java. After compiling all sub-models, the main server 

creates one simulation service for each sub-model.  Figure 21 (right side) shows how coordinator, 

simulation services, and simulators are created. The main server creates a DEVSJAVA-based simulation 

service located at 192.168.1.7, which also creates a DEVSJAVA-based simulator to store SubModelA. 

The same occurs with sub-models B and C, but at IP addresses 192.168.1.5 and 192.168.1.9 respectively. 

The rest of the behavior of the application is the same that in our current architecture. Messages are 

passed by means of an adapter pattern, which as Figure  19 depicts, may be translated into different 

platforms. 

9. How Interoperability is supported 
The proposed DEVS standard and its DEVS/SOA implementation support several modes of 

interoperability. These are outlined in the following paragraphs. 

9.1 DEVS-to-DEVS Interoperability 
DEVS-to-DEVS Interoperability is the basic form of interoperability enabled by the DEVS standard as 

discussed above. Adoption of the DEVS standard facilitates new development to achieve interoperability 

at the syntactic, semantic and pragmatic levels mentioned above.  More detail on these concepts in 

application to testing of SOA systems can be found in [5, 20, 21, 22]. 
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9.2 DEVS-to-Non-DEVS Interoperability  

9.2.1 Direct  

As mentioned before, legacy simulations that can be refactored to implement the CoreSimulator interface 

can be interoperate at the syntactic level with DEVS and other non-DEVS peers. In its strongest form, 

such simulation methodology guarantees well-defined time preservation and simulation correctness as a 

sound basis to aim for interoperability at the higher levels. 

9.2.2 Via Client Gateways.   

For a variety of reasons, although DEVS compliance is desirable, it can be expected that legacy systems 

will continue to prevail and new non-compliant systems developed. The adoption of the SOA standard 

however, will facilitate the interoperation of DEVS and non-DEVS components that are compliant with 

the SOA standard. This form is realized in an Agent-implemented Test Instrumentation Infrastructure that 

deploys DEVS models to act as agents that are attached to clients of services [5,22]. Such attachment can 

be performed in automated fashion using tools such as Axis Toolkit to create the client stub given a 

service’s Web Service Description Language (WSDL) [22,53].  As in Figure 22, these agents can observe 

the web service requests originating from the client and server responses (or failure thereof) to 

accumulate a variety of performance measurements. The agents can also serve as virtual users to interact 

with other users to direct the course of test scenarios and collect performance metrics to support 

scalability studies. Further, while collecting data, DEVS agents can communicate with each other to 

coordinate and share information using the DEVS-to-DEVS configuration just discussed. Case studies are 

available in reference [22].  

 

Figure 22.  DEVS/SOA interoperability 

10. Multi-layered agent based TEST INSTRUMENTATION system using 

GIG/SOA 
A DEVS distributed federation is a DEVS coupled model whose components reside on different network 

nodes and whose coupling is implemented through middleware connectivity characteristic of the 

environment, e.g., SOAP for GIG/SOA.  The federation models are executed by DEVS simulator nodes 

that provide the time and data exchange coordination as specified in the DEVS abstract simulator 

protocol. 

As discussed earlier, in the general concept of experimental frame (EF), the generator sends inputs to the 

SoS under test (SUT), the transducer collects SUT outputs and develops statistical summaries, and the 

acceptor monitors SUT observables making decisions about continuation or termination of the experiment 

[18].  Since the SoS is composed of system components, the EF is distributed among SoS components, as 

illustrated in Figure 23. Each component may be coupled to an EF consisting of some subset of generator, 
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acceptor, and transducer components. As mentioned, in addition an observer couples the EF to the 

component using an interface provided by the integration infrastructure. We refer to the DEVS model that 

consists of the observer and EF as a test agent.  

Net-centric Service Oriented Architecture (SOA) provides a currently relevant technologically feasible 

realization of the concept. As discussed earlier, the DEVS/SOA infrastructure enables DEVS models, and 

test agents in particular, to be deployed to the network nodes of interest. As illustrated in Figure 23, in 

this incarnation, the network inputs sent by EF generators are SOAP messages sent to other EFs as 

destinations; transducers record the arrival of messages and extract the data in their fields, while acceptors 

decide on whether the gathered data indicates continuation or termination is in order [18,33].   

Since EFs are implemented as DEVS models, distributed EFs are implemented as DEVS models, or 

agents as we have called them, residing on network nodes. Such a federation, illustrated in Figure 24, 

consists of DEVS simulators executing on web servers on the nodes exchanging messages and obeying 

time relationships under the rules contained within their hosted DEVS models. Complete analysis of the 

design problem and its mapping to the three linguistic levels is available at [5]. 

 

Figure 23:  Deploying Experimental Frame Agents and Observers 
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Figure 24: DEVS Test Federation in GIG/SOA Environment 
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11. Conclusions 
Achieving interoperability is one of the chief SoS engineering objectives in the development of command 

and control (C2) capabilities for joint and coalition warfare. The importance of M&S in SoS design and 

evaluation cannot be underestimated. M&S can be used strategically to provide early feasibility studies 

and aid the design process. As components comprising SoS are designed and analyzed, their integration 

and communication is the most critical part that must be addressed by the employed SoS M&S 

framework. The integration infrastructure must support interoperability at syntactic, semantic and 

pragmatic levels to enable such integration.  

Currently there are several other approaches to distributed simulation and to integration of M&S with 

advanced C2 systems.  These approaches build on the internet or other net-centric middleware to provide 

component connectivity and simulation services [1,20]. The latter may also include HLA 

implementations; however, the extent of adoption of HLA in this context remains to be seen.  The DEVS 

standard provides a formal systems-based abstraction that can support higher level interoperability, 

whether alone or on top of HLA.  The DEVS/SOA implementation provides a SOA implementation 

independent of HLA and is a viable approach to M&S integration with C2 SoS in the weaker gateway 

form, and in the strong direct compliance form. Further, DEVS has been applied to frameworks like 

DoDAF, UML and other systems engineering frameworks like System Entity Structure (SES). Figure 25 

illustrates how M&S is increasingly incorporated in C2 SoS as source of smart components as well as a 

methodology to deal with the interoperability problem. Indeed, DEVS components including decision 

making agents, sensor simulators, and environmental representations can bring the power of M&S to the 

development of C2 SoS as well as serving as support for command and control in real operation.  The 

underlying SOA standard that facilitates this interoperation can be expected to be widely adopted (for 

example, it has been adopted by the DoD’s Global Information Grid initiative.  

 

Figure 25: M&S as source of smart components in C4I systems 
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