
Towards a Formal Standard for Interoperability in

M&S/System of Systems Integration

Bernard Zeigler, Saurabh Mittal

Arizona Center for Integrative Modeling and Simulation,

University of Arizona,

Tucson, AS

{zeigler | saurabh} @ece.arizona.edu

Xiaolin Hu

Dept of Computer Science,

Georgia State University,

Atlanta, GA

xhu@cs.gsu.edu

Abstract

 Modeling and Simulation (M&S) is finding

increasing application in development and testing of

command and control systems comprised of

information-intensive component systems. In this

paper, we apply a System of Systems (SoS) perspective

on the integration of M&S with such systems. We

employ recently developed interoperability concepts

based on linguistic categories along with the Discrete

Event System Specification formalism to propose a

standard for interoperability. We will show how the

developed standard is implemented in DEVS/SOA net-

centric modeling and simulation framework.

1. Introduction

 Modeling and Simulation (M&S) is finding

increasing application in important aspects of

command and control systems comprised of

information intensive component systems. One aspect

of such application is the incorporation of M&S

functionality into such systems, an objective of the

Extensible Modeling and Simulation Framework

(XMSF), a set of Web-based technologies and

distributed testbed [1]. Another aspect, the use of M&S

to support the development and testing such systems,

as instances of System of Systems (SoS). The SoS

concept relates to the attempt to integrate disparate

systems to achieve a specific goal, typically not co-

incident with the goals of the pre-existing component

systems. Consequently, the defining concern in SoS

engineering is interoperability, or lack thereof, among

the constituent system [1, 2]. Achieving such

interoperability is among the chief SoS engineering

objectives in the development of command and control

(C2) capabilities for joint and coalition warfare [3].

Sage [1] analogized the construction of SoS to the

federation of socio-political systems and drew a

parallel between such processes and the federation that

is supported by the High Level Architecture (HLA, an

IEEE standard fostered by the DoD to enable

interoperation of simulation components [4]). In this

light, the present author discussed the role that

modeling and simulation (M&S) can play in helping to

address the interoperability problems in SoS

engineering [5]. The present paper builds upon this

work by considering not only the parallel between SoS

engineering and distributed simulation, but also how

M&S can be more integrally included within SoS

engineering approaches. The focus of this paper is to

present fundamental concepts to help tackle the

integration of M&S and C2 SoS through the use of

concepts and standards for interoperability based on

the Discrete Event Systems Specification (DEVS)

formalism. Our ultimate motivation is to apply M&S

concepts and technologies to support collaborative

decision making in C2 SoS as well as the testing and

evaluation of such systems.

2. Interoperability in Distributed

Simulation

 As illustrated in Figure 1, HLA is a network

middleware layer that supports message exchanges

among simulation components, called federates, in a

neutral format and also provides a range of services to

support dynamic and efficient execution of

simulations. However, experience with HLA has been

disappointing and forced proponents to acknowledge

the difference between enabling heterogeneous

simulations to exchange data, so-called technical

interoperability, and substantive interoperability – the

desired outcome of exchanging meaningful data so that

coherent interaction among federates takes place [5].

Tolk introduced the Levels of Conceptual

Interoperability Model (LCIM) which identified seven

levels of interoperability among participating systems

[6]. These levels also can be viewed as a refinement of

the operational interoperability type which is one of

three defined by Dimario [7]. The operational type

concerns linkages between systems in their interactions

with one another, the environment, and with users. The

additional levels provide more elaboration to the catch-

all category of substantive interoperability and, as

illustrated in Figure 1, are missing from HLA standard

as such.

3. Levels of Conceptual Interoperability

Model

Although Levels of Information Systems

Interoperability [8] models are used successfully to

determine the degree of interoperability between

information technology systems, they do not

Figure 1. HLA Technical Interoperability

provide a systematic formulation of the underlying

properties of information exchange. To remedy this

situation, the LCIM outlined in Table 1, was developed

to become a bridge between conceptual and technical

design for implementation, integration, or federation

[9, 10].

 The last column lists key conditions that are required

to reach an interoperability level from the one below.

Of course, the conditions accumulate as the level

increases. We note that the conditions given in the

LCIM for pragmatic interoperability require that the

use of data be mutually understood, where the term

“use” is interpreted as the context of its application. A

reformulation of LCIM was presented in [11] where

more definitive concepts for pragmatic interoperability

including the concepts of pragmatic frames and

pragmatic equivalence. Moreover, the definition of the

semantic level requires the use of a single reference

semantic model as a hub for information exchange

among participants in collaboration. However such a

hub and spokes approach, while desirable, is not

always feasible. [12] evaluated a common information

exchange model, C2IEDM, as an interoperability-

enabling ontology for command and control. The

conclusion is that even if there is room for

improvements, the model supports almost all basic

needs for such a semantic bridge. However, [13] claim

that in its current form, the model is unbalanced in its

levels of detail and too large to be practical. In the

stratification to be introduced below, we review a more

streamlined and extended account of information

exchange levels.

4. Linguistic Levels

 The definitions given in [11] agree in general, but

differ substantially, with those used in the LCIM. They

are summarized:

• Pragmatics: Data use in relation to data

structure and context of application

• Semantics: Low level semantics focuses on

definitions and attributes of terms; high level

semantics focuses on the combined meaning

of multiple terms (Generalized Context). Note

in contrast to the LCIM requirement for

semantic interoperability, this definition

focuses on the underlying requirement for

achieving shared meanings rather than how

this requirement is achieved.

• Syntax focuses on a structure and adherence to

the rules that govern that structure, e.g., XML

(Rules and Structure)

Table 1 Levels of Conceptual Interoperability
Level of

Conceptual

Interoperability

Characteristic Key Condition

Conceptual The assumptions

and constraints

underlying the

meaningful

abstraction of

reality are

aligned

Requires that

conceptual models

be documented

based on

engineering

methods enabling

their interpretation

and evaluation by

other engineers.

HLA

Middleware

Dynamic Participants are

able to

comprehend

changes in

system state and

assumptions and

constraints that

each is making

over time, and

are able to take

advantage of

those changes.

Requires common

understanding of

system dynamics

Pragmatic Participants are

aware of the

methods and

procedures that

each is

employing

Requires that the

use of the data – or

the context of their

application – is

understood by the

participating

systems.

Semantic The meaning of

the data is

shared

Requires a common

information

exchange reference

model

Syntactic Introduces a

common

structure to

exchange

information,

Requires that a

common data

format is used

Technical Data can be

exchanged

between

participants

Requires that a

communication

protocol exists

Stand alone No

interoperability

The authors of LCIM associate the lower layers with

the problems of simulation interoperation while the

upper layers relate to the problems of reuse and

composition of models [14,15]. They conclude

“simulation systems are based on models and their

assumptions and constraints. If two simulation systems

are combined, these assumptions and constraints must

be aligned accordingly to ensure meaningful

results.”[10]. This suggests that levels of

interoperability that have been identified in the area of

modeling and simulation (M&S) can serve as

guidelines to discussion of information exchange in

general. Therefore, we consider an earlier developed

conceptual layered architecture for M&S [16]. We’ll

correlate the above linguistic definitions with the

layers outlined below and shown in Figure 2.

Network Layer contains the actual computers

(including workstations and high performance

systems) and the connecting networks (both LAN and

WAN, their hardware and software) that do the work

of supporting all aspects of the M&S lifecycle.

Execution Layer is the software that executes the

models in simulation time and/or real time to generate

their behavior. Included in this layer are the protocols

that provide the basis for distributed simulation (such

as those that are standardized in the High Level

Architecture (HLA). Also included are database

management systems, software systems to support

control of simulation executions, visualization and

animation of the generated behaviors.

Modeling Layer supports the development of models in

formalisms that are independent of any given

simulation layer implementation. HLA just mentioned

also provides object-oriented templates for model

description aimed at supporting confederations of

globally dispersed models. However, beyond this, the

formalisms for model behavior, whether continuous,

discrete or discrete event in nature) as well as structure

change, are also included in this layer. Model

construction and especially, the key processes of model

abstraction and continuity over the lifecycle are also

included. We also add ontologies to this layer where

they are understood as models of the world for a

particular conceptualization intended to support

information exchange.

Execution Layer

Abstract Simulators, Real time Execution, ,Animation Visualization

Network Layer

Workstation, Distributed Grids, Service Oriented Architectures

Ontologies, Formalisms, Model Dynamic Structure, Life Cycle

Continuity, Model Abstraction

SES, DoDAF, Integrated System Development and Testing

Decision Layer

Exploration, Evaluation, Selection, Optimization

Collaboration Layer

Semantic Web, Composition, Orchestration

Modeling Layer

Design and Search Layer

Figure 2 Architecture for Modeling and Simulation

Design and Search Layer supports the design of

systems, such as in the Department of Defense

Architecture Framework (DoDAF) where the design is

based on specifying desired behaviors through models

and implementing these behaviors through

interconnection of system components. It also includes

investigation of large families of alternative models,

whether in the form of spaces set up by parameters or

more powerful means of specifying alternative model

structures such as provided by the SES methodology

[11]. Artificial intelligence and simulated natural

intelligence (evolutionary programming) may be

brought in to help deal with combinatorial explosions

occasioned by powerful model synthesizing

capabilities.

Decision Layer applies the capability to search and

simulate large model sets at the layer below to make

decisions in solving real-world problems. Included are

course-of-action planning, selection of design

alternatives and other choices where the outcomes may

be supported by concept explorations, “what-if“

investigations, and optimizations of the models

constructed in the modeling layer using the simulation

layer below it.

Collaboration Layer enables people or intelligent

agents with partial knowledge about a system, whether

based on discipline, location, task, or responsibility

specialization, to bring to bear individual perspectives

and contributions to achieve an overall goal.

Using the definitions for linguistic levels above, we

correlate such levels with the layers just discussed. As

illustrated in Figure 3, at the syntactic level we

associate network and execution layers. The semantic

level corresponds with the modeling layer – where we

have included ontology frameworks as well as

dynamic system formalisms as models. Finally, the

pragmatic level includes use of the information such as

identified in the upper layers of the M&S architecture.

This use occurs for example, in design and search,

making decisions and collaborating to achieve

common goals. Indeed, such mental activities, along

with real-world physical actions that they lead to,

provide the basis for enumerating the kinds of

pragmatic frames that might be of interest in particular

applications – the context of use.

The resulting stratification leads us to propose Table 2

for defining effective interoperation of collaborating

systems or services at the identified linguistic levels

(first and second columns).

5. DEVS Standard

The conceptual interoperability model described above

provides a general guideline for supporting system

interoperability. Following the layered approach of this

conceptual model, next we review the work of Discrete

Event Systems Specification (DEVS) standardization

that aims to support M&S interoperability based on the

DEVS M&S framework. This work of standardization

correspond to the two levels shown in Figure 3: the

semantic level that deals with standardization of model

interface; and the syntactic level that deals with

standardization of simulation protocol.

The DEVS formalism [16], based on Mathematical

Systems theory, provides a computational framework

and tool set to support Systems concepts in application

to SoS. We first provide a brief review. More detail is

available in [16].

Execution Layer

Network Layer

Decision Layer

Collaboration Layer

Modeling Layer

Design and Search Layer

Syntactic Level

Semantic Level

Pragmatic Level

 Figure 3 Associating Linguistic Levels with Layers of
Modeling and Simulation

Table 2. Linguistic levels of Interoperability

Linguistic

Level

A collaboration

of systems or

services

interoperates at

this level if:

Examples

Pragmatic –

how

information in

messages is

used

The receiver

reacts to the

message in a

manner that the

sender intends

An order from a

commander is

obeyed by the troops

in the field as the

commander

intended. A

necessary condition

is that the

information arrives

in a timely manner

and that its meaning

has been preserved

(semantic

interoperability)

Semantic –

shared

understanding

of meaning of

messages

The receiver assigns

the same meaning as

the sender did to the

message.

An order from a

commander to multi-

national participants in

a coalition operation is

understood in a

common manner

despite translation into

different languages.

Similarly geographic

data must be translated

correctly to UTM grid

coordinates for ground

forces and to LatLong

for air and naval

forces.

Syntactic –

common rules

governing

composition

and

transmission of

messages

The consumer is

able to receive and

parse the sender’s

message

A common network

protocol (e.g. IPv4) is

employed ensuring that

all nodes on the

network can send and

receive data bit arrays

adhering to a

prescribed format.

DEVS makes a sharp distinction between the model

and the device that simulates it. Both model and

simulator are defined as mathematical systems as

defined by Wymore and others (see [16] for details),

and the relation between them is standardized by the

concept of “abstract” simulator. Information flow in

the DEVS formalism, as implemented on an object-

oriented substrate, is mediated by the concept of DEVS

message, a container for port-value pairs. In a message

sent from component A to component B, a port-value

pair is a pair in which the port is an output port of A,

and the value is an instance of the base class of a

DEVS implementation, or any of its sub-classes. A

coupling is a four-tuple of the form (sending

component A, output port of A, receiving component B,

input port of B). This sets up a path where by a value

placed on an output port of A by A’s output function is

transmitted to the input port of B, to be consumed by

the latter. In systems or simulations implemented in

DEVS environments the concepts of ports, messages,

and coupling are explicit in the code. However, for

systems/simulations that were implemented without

systems theory guidance, in legacy or non-DEVS

environments, these concepts are abstract and need to

be identified concretely with the constructs offered by

the underlying environment. For SoS engineering,

where legacy components are the norm, it is worth

starting with the clear concepts and methodology

offered by systems theory and DEVS, getting a grip on

the interoperability problems, and then translating

backwards to the non-DEVS concepts as necessary.

Within a working group of the Simulation

Interoperability Standards Organization, a standard has

been under development to support interoperability of

DEVS models implemented in different platforms as

well as with legacy simulations. Figure 4 illustrates an

architectural approach proposed to accommodate the

various combinations and permutations of possible

application, both currently known, as well as those that

will emerge in the future. The basic idea is to define

two sets of interfaces; the DEVS model Interface and

the DEVS Simulator Interface, as well as a DEVS

Simulation Protocol that operates between the two. The

interfaces protocols are based on those in GenDEVS,

an implementation at the heart of the DEVJAVA M&S

environment [www.acims.arizona.edu]. DEVS/C++

and DEVSJAVA are platform specific

implementations while DEVSML[26] and FDDEVS

[27] are platform independent implementations in

XML which can transform to any platform specific

implementations.

Figure 4: Conceptual Architecture of Standard

 As a direct consequence of the model-simulator

separation there can be multiple ways in which the

same model can be simulated – all adhering to the

abstract simulator specification. Corresponding to

different simulation modes, the standard has virtual-

time and real-time simulators. In virtual-time

simulation, the simulator interprets time as logical time

so the simulation can skip from one event time to the

next without traversing the intervening time interval.

However, in real-time simulation, time is interpreted as

wall clock readings, so the real-time simulator will

wait for the interval to its next scheduled event to

expire before handling the event. In addition to the

model type/simulation mode combinations, the

standard allows for the use of different forms of

distribution of model components, e.g., single

processor vs. multi-processor, and within the latter,

conservative vs optimistic time advance for virtual-

time as well as centralized vs non-centralized time

control in real-time execution. The standard is also

agnostic with respect to different implementation

platforms, such as Windows vs Unix, different

programming languages, such as Java vs C++, and

different networking and middleware frameworks such

as .Net vs Apache. From the above introduction, we

can see that the standard will have multiple simulation

scenarios. For example, considering the combinations

of simulation mode and distribution mode, we have:

simulating a model in virtual-time and simulating

model in real-time both in distributed and non-

distributed fashion.

IODevs

atomicDevs
(optional)

IOBasicDevs

basicDevs

coupledDevs

AtomicInterfaceCoupled

DevsInterface

Figure 5 DEVS Model Interfaces

Among these interfaces, IODevs defines interface for

the functions that handle message exchange based on

input and output ports. Any model, whether DEVS or

non-DEVS, can implement these functions so it can

interoperate with other implementers of this interface,

in the sense of receiving input and sending output. The

basicDevs Interface defines the basic functions a

DEVS model needs to implement such as deltext(),

deltint(), out(), ta() and so on. The basicDevs interface

is the interface that is exposed to the atomic simulators.

An additional interface, atomicDevs, provides a

convenient set of primitives for defining the basic

functions in an atomic model. However, since the basic

functions can be defined without using such primitives,

the atomicDevs interface is optional. The IOBasicDevs

interface extends the IODevs interface and basicDevs

interface. It provides a common basis for implementing

atomic models and coupled models. Combining

IOBasicDevs with atomicDevs, we get AtomicInterface

which defines the function signatures an atomic model

need to implement. Of course, if atomicDevs is

omitted, then AtomicInterface reduces to IOBasicDevs.

Similarly, CoupledDevs interface defines the function

signatures that are used in DEVS coupled models. It

also has methods that support adding components and

couplings to the model; methods for retrieving a

component by name and for accessing all components;

and to access the internal coupling specifications

(intended only by simulators). Combining

IOBasicDevs with CoupledDevs, we get the Coupled

interface which defines the functions coupled models

need to implement.

coreSimulator

Atomic

Simulator

CoupledSimulator

Coordinator

CoupledCoordinator

Figure 6 DEVS Simulator Interfaces

 The basic simulator interface is the CoreSimulator

that provides a common interface for DEVS and non-

DEVS simulation. Further, the CoreSimulator interface

is the basic interface from which simulation services

could be designed for a truly net-centric interoperable

simulation framework [23]. Under the CoreSimulator

interface, two classes of simulators have been defined

CoupledSimulator and CoupledCoordinator interfaces

where the latter also inherits from Coordintor. These

apply to both virtual (logical); and real-time

simulation. (Real time simulators interpret time as real

wall clock time and have their own thread and system

clock. Virtual or logical time simulators can advance

from one event time to the next). The CoreSimulator

interface includes methods that are invoked by the

DEVS simulation protocol:

interface coreSimulatorInterface{
void setSimulators
 (Collection<CoreSimulatorInterface>);
void initialize();
Double nextTN();
void computeInputOutput(Double t);
void applyDeltFunc(Double t);
void putContentOnSimulator
 (CoreSimulatorInterface sim, ContentInterface c);
void sendMessages();

5.1 DEVS Simulation Protocol

DEVS treats a model and its simulator as two distinct

elements. The simulation protocol describes how a

DEVS model should be simulated whether in

standalone fashion or in a coupled model. Such a

protocol is implemented by a processor which can be a

simulator or a coordinator.

Coordinator

Atoimc1

Non-DEVS

Simulator

Atoimc2

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("

Coordinator

DEVS

Model

1

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("ApplyDeltFunc”)

putContentOnSimulator

DEVS

Simulator

DEVS

Simulator

DEVS

Model

2

?

Figure 7 Federation of DEVS with Non-DEVS Simulators

As illustrated in Figure 7, the DEVS protocol is

executed as following:

1. It starts with the coordinator telling each of the

simulators in the collection the others’ addresses

and then to perform initialization function.

2. A cycle is then entered in which the coordinator

requests that each simulator provide its time of

next event and takes the minimum of the returned

values to obtain the global time of next event

3. Each of the simulators applies its

computeInputOutput() method to produce an

output that consists of a collection of contents

(port/value) pairs – for DEVS simulators this is a

composite message computed according to the

DEVS formalism based on its model’s current

state.

4. Then each simulator partitions its output into

messages intended for recipient simulators and

sends these messages to these recipient simulators

– for DEVS simulators these recipients are

determined from the output ports in the message

and the coupling information that will have

previously been received from the coordinator.

5. Finally, each simulator executes its ApplyDeltFunc

method which computes the combined effect of

the received messages and internal scheduling on

its state, a side effect of which is produce of time

of next event, tN – for DEVS simulators this state

change is computed according to the DEVS

formalism and the tN is updated using its model’s

time advance.

6. The coordinator obtains the next global time of

next event and the cycle repeats

It should be noted that the above is one form of many

possible protocols that can provide various forms of

conservative and optimistic simulation, each of which

must be proved to be correct as a realization of the

DEVS closure under coupling property [16].

Implicit in the above description are the following

constraints involving methods in the

CoreSimulatorInterface:

• The sendMessages() method “must” employ the

putContentOnSimulator() method as follows: for

any simulator to which it wishes to send a content,

it must call the recipient’s

putContentOnSimulator() method with the

recipient and the content as arguments.

• Further, in applying its computeInputOutput()

method, a simulator “must” be able to interpret

the contents (satisfying the ContentInterface) it

has received from the other simulators.

Notice that we cannot enforce the “must” requirements

just given, and cannot prove that the simulation

executes a desired behavior, unless we are given

further information about its behavior. One way to do

this is where the simulators are truly DEVS simulators

in that they satisfy the interfaces and constraints given

below. Failing this additional rigor, the interoperation

involving DEVS and non-DEVS is purely at the

technical level similar to that of a federation of

simulators in HLA. This contrasts with the situation in

which the federation is in fact derived from a DEVS

coupled model for which correct simulation of the

coupled model is guaranteed according to the DEVS

formalism.

6. DEVS/SOA

An implementation of the standard within the Service

Oriented Architecture (SOA) has been completed that

provides DEVS modeling and simulation services over

the World Wide Web [17, 23], As shown in the Figure

8, at the top of the layered architecture is the

application layer that contains models in DEVSJAVA

or DEVSML, a way of representing DEVS models in

the eXtended Markup Language (XML). This

DEVSML is built on JAVAML [18], which is XML

implementation of JAVA. The current development

effort of DEVSML takes its power from the underlying

JAVAML that is needed to specify the ‘behavior’ logic

of atomic and coupled models. The DEVSML models

are cross-transformable to Java. The second layer is the

DEVSML layer itself that provides seamless

integration, composition and dynamic scenario

construction resulting in portable models in DEVSML

that are complete in every respect. These DEVSML

models can be ported to any remote location using the

SOA infrastructure and cam be executed at any remote

location in a distributed or non-distributed manner.

Another major advantage of such capability is total

simulator ‘transparency’. The simulation engine is

totally transparent to model execution over the SOA

infrastructure. The DEVSML model description files

in XML contains meta-data information about its

compliance with various simulation ‘builds’ or

versions to provide true interoperability between

various simulator engine implementations. This has

been achieved for at least two independent simulation

engines as they have an underlying DEVS protocol to

adhere to. This has been made possible with the

implementation of a single atomic schema [24] and a

single coupled schema [25] that validates the

DEVSML descriptions generated from these two

implementations. Such run-time interoperability

provides great advantage when models from different

repositories are used to compose large coupled models

using the DEVSML integration capabilities. Detailed

design can be seen in [17,23].

WEB

SERVICE

CLIENT

Middleware (SOAP, RMI etc)
Net-centric infrastructure

DEVS Simulator Services

DEVS Modeling Language (DEVML)

DEVSJAVA

DEVS
Agent

(Virtual User)

DEVS
Agent

(Observer)

WEB

SERVICE
CLIENT

Figure 8 DEVS/SOA interoperability

The complete setup requires one or more servers that

are capable of running DEVS Simulation Service, as

shown in the second layer in Figure 8. The capability

to run the simulation service is provided by the server

side design of DEVS Simulation protocol supported by

the DEVSJAVA. Of course, many issues of policy

management and security considerations must be taken

care of in the generation of DEVS models from

WSDLs specifications [22]. Furthermore, the multi-

platform simulation capability provided by

DEVSV/SOA framework consists of realizing

distributed simulation among different DEVS

platforms or simulator engines such as DEVSJAVA,

DEVS-C++, etc. and executing the native simulation

service. This kind of interoperability where multi-

platform simulations can be executed with our

DEVSML integration facilities has been made possible

with the hierarchical design of simulator interfaces as

described in Section 5.

7. How Interoperability is supported

The proposed DEVS standard and its DEVS/SOA

implementation support several modes of

interoperability. These are outlined in the following

paragraphs.

7.1 DEVS-to-DEVS Interoperability

DEVS-to-DEVS Interoperability is the basic form of

interoperability enabled by the DEVS standard as

discussed above. Adoption of the DEVS standard

facilitates new development to achieve interoperability

at the syntactic, semantic and pragmatic levels

mentioned above. More detail on these concepts in

application to testing of SOA systems can be found in

[5, 20, 21, 22].

7.2 DEVS-to-Non-DEVS Interoperability

7.2.1 Direct. As mentioned before, legacy simulations

that can be refactored to implement the CoreSimulator

interface can be interoperate at the syntactic level with

DEVS and other non-DEVS peers. In its strongest

form, such simulation methodology guarantees well-

defined time preservation and simulation correctness as

a sound basis to aim for interoperability at the higher

levels.

7.2.2 Via Client Gateways. For a variety of reasons,

although DEVS compliance is desirable, it can be

expected that legacy systems will continue to prevail

and new non-compliant systems developed. The

adoption of the SOA standard however, will facilitate

the interoperation of DEVS and non-DEVS

components that are compliant with the SOA standard.

This form is realized in an Agent-implemented Test

Instrumentation Infrastructure that deploys DEVS

models to act as agents that are attached to clients of

services [5,22]. Such attachment can be performed in

automated fashion using tools such as Axis Toolkit to

create the client stub given a service’s Web Service

Description Language (WSDL) [22]. As in Figure 8,

these agents can observe the web service requests

originating from the client and server responses (or

failure thereof) to accumulate a variety of performance

measurements. The agents can also serve as virtual

users to interact with other users to direct the course of

test scenarios and collect performance metrics to

support scalability studies. Further, while collecting

data, DEVS agents can communicate with each other

to coordinate and share information using the DEVS-

to-DEVS configuration just discussed. Case studies are

available in reference [22].

8. Conclusions

Achieving interoperability is one of the chief SoS

engineering objectives in the development of command

and control (C2) capabilities for joint and coalition

warfare. The importance of M&S in SoS design and

evaluation cannot be underestimated. M&S can be

used strategically to provide early feasibility studies

and aid the design process. As components comprising

SoS are designed and analyzed, their integration and

communication is the most critical part that must be

addressed by the employed SoS M&S framework. The

integration infrastructure must support interoperability

at syntactic, semantic and pragmatic levels to enable

such integration.

Currently there are several other approaches to

distributed simulation and to integration of M&S with

advanced C2 systems. These approaches build on the

internet or other net-centric middleware to provide

component connectivity and simulation services [1,20].

The latter may also include HLA implementations;

however, the extent of adoption of HLA in this context

remains to be seen. The DEVS standard provides a

formal systems-based abstraction that can support

higher level interoperability, whether alone or on top

of HLA. The DEVS/SOA implementation provides a

SOA implementation independent of HLA and is a

viable approach to M&S integration with C2 SoS in

the weaker gateway form, and in the strong direct

compliance form. Further, DEVS has been applied to

frameworks like DoDAF, UML and other systems

engineering frameworks like SES. It is not a major step

from here to see how DEVS components including

decision making agents, sensor simulators, and

environmental representations can bring the power of

M&S to the development of C2 SoS. The underlying

SOA standard that facilitates this interoperation can be

expected to be widely adopted (for example, it has

been adopted by the DoD’s Global Information Grid

initiative).

9. References

[1] Mark Pullen,LTC Ken Wilson, Michael Hieb, Andreas

Tolk,Extensible Modeling and Simulation Framework (XMSF)

C4I Testbed, http://www.movesinstitute.org/xmsf/xmsf.html

[2] Andrew Sage: From Engineering a System to Engineering an

Integrated System Family, From Systems Engineering to

System of Systems Engineering, 2007 IEEE International

Conference on System of Systems Engineering (SoSE). April

16th -18th, 2007, San Antonio, Texas

 [3] Jacobs, Robert W. “Model-Driven Development of Command

and Control Capabilities For Joint and Coalition Warfare,”

Command and Control Research and Technology Symposium,

June 2004.

[4] Dahmann, J.S., F. Kuhl, and R. Weatherly, Standards for

Simulation: As Simple As Possible But Not Simpler The High

Level Architecture For Simulation. Simulation, 1998. 71(6): p.

378

[5] Saurabh Mittal, Bernard P. Zeigler, Jose L. Risco Martin, Ferat

Sahin and Mo Jamshidi Modeling and Simulation for Systems

of Systems Engineering to appear in Systems of Systems --

Innovations for the 21st Century (to be published by Wiley)

[6] Tolk, A., and Muguira, J.A. The Levels of Conceptual

Interoperability Model (LCIM). Proceedings Fall Simulation

Interoperability Workshop, 2003

[7] M.J. DiMario System of Systems Interoperability Types and

Characteristics in Joint Command and Control, Proceedings of

the 2006 IEEE/SMC International Conference on System of

Systems Engineering, Los Angeles, CA, USA - April 2006

[8] Levels of Information Systems Interoperability (LISI),

http://www.sei.cmu.edu/isis/guide/introduction/lisi.htm

[9] Turnitsa C., and A. Tolk, “Evaluation of the C2IEDM as an

Interoperability-Enabling Ontology,” Proceedings of Fall

Simulation Interoperability Workshop, 2005.

[10] Muguira, James. and Tolk., A “Applying a Methodology to

identify Structural Variances in Interoperations,” JDMS: The

Journal of Defense Modeling and Simulation, Vol 3, No 2,

2006

[11] Zeigler, B.P., and P. Hammonds, “Modeling & Simulation-

Based Data Engineering: Introducing Pragmatics into

Ontologies for Net-Centric Information Exchange”, 2007, New

York, NY: Academic Press.

[12] Turnitsa C., and A. Tolk, “Evaluation of the C2IEDM as an

Interoperability-Enabling Ontology,” Proceedings of Fall

Simulation Interoperability Workshop, 2005.

[13] Lasschuyt E., M. van Henken, W. Treurniet, and M. Visser,

“How to Make an Effective Information Exchange Data

Model,” RTO-IST-042/9,2004

[14] Hoffmann, M., Challenges of Model Interoperation in Military

Simulations. SIMULATION, Vol. 80, pp. 659-667, 2004

[15] Chaum, E., Hieb, M.R., and Tolk, A. “M&S and the Global

Information Grid,” Proceedings Interservice/Industry Training,

Simulation and Education Conference (I/ITSEC), 2005.

[16] Zeigler, B. P., T. G. Kim, and H. Praehofer. (2000). Theory of

Modeling and Simulation. New York, NY, Academic Press.

 [17] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVS-Based Web

Services for Net-centric T&E”, Summer Computer Simulation

Conference, 2007

[18] Badros, G. JavaML: a Markup Language for Java Source Code,

Proceedings of the 9th International World Wide Web

Conference on Computer Networks: the international journal of

computer and telecommunication networking, pages 159-177

 [19] Zeigler, B. P., S Mittal, “Enhancing DoDAF with DEVS-

Based System Life-cycle Process”, IEEE International

Conference on Systems, Man and Cybernetics, Hawaii,

October 2005

[20] Steven W. Reichenthal, SRML - Simulation Reference Markup

Language W3C Note 18 December 2002

http://www.w3.org/TR/SRML/

[21] S Mittal, “Extending DoDAF to allow DEVS-Based Modeling

and Simulation”, Special issue on DoDAF, Journal of Defense

Modeling and Simulation (JDMS), Vol 3. No. 2

[22] S Mittal, BP Zeigler, JLR Martin, J Nutaro, “Design and

Analysis of Service Oriented Architectures using DEVS/SOA-

Based Modeling and Simulation”, submitted to IEEE

Transactions on Systems, Man and Cybernetics, Part C, Special

Issue on Information Reuse and Integration

[23] S. Mittal, JLR Martin, BP Zeigler, ”DEVS/SOA: A Cross-

platform Framework for Net-centric Modeling and Simulation

in DEVS Unified Process”, submitted to SIMULATION:

Transactions of SCS

[24] Atomic Schema:

http://www.u.arizona.edu/~saurabh/fddevs/NewXMLSchema.x

sd

[25] Coupled Schema:

http://www.u.arizona.edu/~saurabh/fddevs/CoupledDevs.xsd

[26]S Mittal, JLR Martín, BP Zeigler, “DEVSML: Automating

DEVS Execution over SOA Towards Transparent Simulators”,

Special Session on DEVS Collaborative Execution and

Systems Modeling over SOA, DEVS Integrative M&S

Symposium DEVS' 07, Spring Simulation Multi-Conference,

March 2007

[27] S Mittal, MH Hwang, BP Zeigler, Finite Deterministic DEVS

(FDDEVS):

http://www.u.arizona.edu/%7Esaurabh/fddevs/FD-DEVS.html

