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Abstract 
 

   Modeling and Simulation (M&S) is finding 

increasing application in development and testing of 

command and control systems comprised of 

information-intensive component systems.  In this 

paper, we apply a System of Systems (SoS) perspective 

on the integration of M&S with such systems. We 

employ recently developed interoperability concepts 

based on linguistic categories along with the Discrete 

Event System Specification formalism to propose a 

standard for interoperability. We will show how the 

developed standard is implemented in DEVS/SOA net-

centric modeling and simulation framework. 

 

 

1. Introduction 
 

   Modeling and Simulation (M&S) is finding 

increasing application in important aspects of 

command and control systems comprised of 

information intensive component systems. One aspect 

of such application is the incorporation of M&S 

functionality into such systems, an objective of the 

Extensible Modeling and Simulation Framework 

(XMSF), a set of Web-based technologies and 

distributed testbed [1]. Another aspect, the use of M&S 

to support the development and testing such systems, 

as instances of System of Systems (SoS). The SoS 

concept relates to the attempt to integrate disparate 

systems to achieve a specific goal, typically not co-

incident with the goals of the pre-existing component 

systems.  Consequently, the defining concern in SoS 

engineering is interoperability, or lack thereof, among 

the constituent system [1, 2].  Achieving such 

interoperability is among the chief SoS engineering 

objectives in the development of command and control 

(C2) capabilities for joint and coalition warfare [3]. 

Sage [1] analogized the construction of SoS to the 

federation of socio-political systems and drew a 

parallel between such processes and the federation that 

is supported by the High Level Architecture (HLA, an 

IEEE standard fostered by the DoD to enable 

interoperation of simulation components [4]).  In this 

light, the present author discussed the role that 

modeling and simulation (M&S) can play in helping to 

address the interoperability problems in SoS 

engineering [5].  The present paper builds upon this 

work by considering not only the parallel between SoS 

engineering and distributed simulation, but also how 

M&S can be more integrally included within SoS 

engineering approaches.  The focus of this paper is to 

present fundamental concepts to help tackle the 

integration of M&S and C2 SoS through the use of 

concepts and standards for interoperability based on 

the Discrete Event Systems Specification (DEVS) 

formalism. Our ultimate motivation is to apply M&S 

concepts and technologies to support collaborative 

decision making in C2 SoS as well as the testing and 

evaluation of such systems.   

2. Interoperability in Distributed 

Simulation 
 

   As illustrated in Figure 1, HLA is a network 

middleware layer that supports message exchanges 

among simulation components, called federates, in a 

neutral format and also provides a range of services to 

support dynamic and efficient execution of 

simulations.  However, experience with HLA has been 

disappointing and forced proponents to acknowledge 

the difference between enabling heterogeneous 

simulations to exchange data, so-called  technical 



interoperability, and   substantive interoperability – the 

desired outcome of exchanging meaningful data so that 

coherent interaction among federates takes place [5]. 

Tolk introduced the Levels of Conceptual 

Interoperability Model (LCIM) which identified seven 

levels of interoperability among participating systems 

[6]. These levels also can be viewed as a refinement of 

the operational interoperability type which is one of 

three defined by Dimario [7]. The operational type 

concerns linkages between systems in their interactions 

with one another, the environment, and with users. The 

additional levels provide more elaboration to the catch-

all category of substantive interoperability and, as 

illustrated in Figure 1, are missing from HLA standard 

as such. 

 

3. Levels of Conceptual Interoperability 

Model  
 

Although Levels of Information Systems 

Interoperability [8] models are used successfully to 

determine the degree of interoperability between 

information technology systems, they do not 

 
Figure 1. HLA Technical Interoperability 

 

provide a systematic formulation of the underlying 

properties of information exchange.  To remedy this 

situation, the LCIM outlined in Table 1, was developed 

to become a bridge between conceptual and technical 

design for implementation, integration, or federation 

[9, 10]. 

 

   The last column lists key conditions that are required 

to reach an interoperability level from the one below. 

Of course, the conditions accumulate as the level 

increases. We note that the conditions given in the 

LCIM for pragmatic interoperability require that the 

use of data be mutually understood, where the term 

“use” is interpreted as the context of its application. A 

reformulation of LCIM was presented in [11] where 

more definitive concepts for pragmatic interoperability 

including the concepts of pragmatic frames and 

pragmatic equivalence. Moreover, the definition of the 

semantic level requires the use of a single reference 

semantic model as a hub for information exchange 

among participants in collaboration. However such a 

hub and spokes approach, while desirable, is not 

always feasible. [12] evaluated a common information 

exchange model, C2IEDM, as an interoperability-

enabling ontology for command and control. The 

conclusion is that even if there is room for 

improvements, the model supports almost all basic 

needs for such a semantic bridge. However, [13] claim 

that in its current form, the model is unbalanced in its 

levels of detail and too large to be practical. In the 

stratification to be introduced below, we review a more 

streamlined and extended account of information 

exchange levels. 

 

4. Linguistic Levels 

 
   The definitions given in [11] agree in general, but 

differ substantially, with those used in the LCIM. They 

are summarized:  

• Pragmatics: Data use in relation to data 

structure and context of application  

• Semantics: Low level semantics focuses on 

definitions and attributes of terms; high level 

semantics focuses on the combined meaning 

of multiple terms (Generalized Context). Note 

in contrast to the LCIM requirement for 

semantic interoperability, this definition 

focuses on the underlying requirement for 

achieving shared meanings rather than how 

this requirement is achieved. 

• Syntax focuses on a structure and adherence to 

the rules that govern that structure, e.g., XML 

(Rules and Structure) 

 

Table 1 Levels of Conceptual Interoperability 
Level of 

Conceptual 

Interoperability 

Characteristic Key Condition 

Conceptual The assumptions 

and constraints 

underlying the 

meaningful 

abstraction of 

reality are 

aligned 

Requires that 

conceptual models 

be documented 

based on 

engineering 

methods enabling 

their interpretation 

and evaluation by 

other engineers. 

 

HLA

Middleware



Dynamic Participants are 

able to 

comprehend 

changes in 

system state and 

assumptions and 

constraints that 

each is making 

over time, and 

are able to take 

advantage of 

those changes. 

Requires common 

understanding of 

system dynamics  

Pragmatic Participants are 

aware of the 

methods and 

procedures that 

each is 

employing 

Requires that the 

use of the data – or 

the context of their 

application – is 

understood by the 

participating 

systems. 

 

Semantic The meaning of 

the data is 

shared 

Requires  a common 

information 

exchange reference 

model 

Syntactic Introduces a 

common 

structure to 

exchange 

information,  

Requires that a 

common data 

format is used 

Technical Data can be 

exchanged 

between 

participants 

Requires that a 

communication 

protocol exists  

Stand alone No 

interoperability 

 

 

The authors of LCIM associate the lower layers with 

the problems of simulation interoperation while the 

upper layers relate to the problems of reuse and 

composition of models [14,15]. They conclude 

“simulation systems are based on  models  and  their 

assumptions and constraints. If two simulation systems 

are combined, these assumptions and constraints must 

be aligned accordingly to ensure meaningful 

results.”[10]. This suggests that levels of 

interoperability that have been identified in the area of 

modeling and simulation (M&S) can serve as 

guidelines to discussion of information exchange in 

general. Therefore, we consider an earlier developed 

conceptual layered architecture for M&S [16]. We’ll 

correlate the above linguistic definitions with the 

layers outlined below and shown in Figure 2.  

 

Network Layer contains the actual computers 

(including workstations and high performance 

systems) and the connecting networks (both LAN and 

WAN, their hardware and software) that do the work 

of supporting all aspects of the M&S lifecycle. 

 

Execution Layer is the software that executes the 

models in simulation time and/or real time to generate 

their behavior. Included in this layer are the protocols 

that provide the basis for distributed simulation (such 

as those that are standardized in the High Level 

Architecture (HLA).  Also included are database 

management systems, software systems to support 

control of simulation executions, visualization and 

animation of the generated behaviors. 

 

Modeling Layer supports the development of models in 

formalisms that are independent of any given 

simulation layer implementation.  HLA just mentioned 

also provides object-oriented templates for model 

description aimed at supporting confederations of 

globally dispersed models. However, beyond this, the 

formalisms for model behavior, whether continuous, 

discrete or discrete event in nature) as well as structure 

change, are also included in this layer. Model 

construction and especially, the key processes of model 

abstraction and continuity over the lifecycle are also 

included. We also add ontologies to this layer where 

they are understood as models of the world for a 

particular conceptualization intended to support 

information exchange. 

Execution Layer

Abstract Simulators, Real time Execution, ,Animation  Visualization

Network Layer

Workstation,    Distributed Grids, Service Oriented Architectures 

Ontologies, Formalisms, Model Dynamic Structure, Life Cycle 

Continuity, Model Abstraction

SES, DoDAF, Integrated System Development and Testing

Decision Layer

Exploration, Evaluation, Selection, Optimization   

Collaboration Layer

Semantic Web, Composition, Orchestration                        

Modeling Layer

Design and Search Layer

 
Figure 2  Architecture for Modeling and Simulation 
 

Design and Search Layer supports the design of 

systems, such as in the Department of Defense 

Architecture Framework (DoDAF) where the design is 

based on specifying desired behaviors through models 

and implementing these behaviors through 

interconnection of system components. It also includes 

investigation of large families of alternative models, 

whether in the form of spaces set up by parameters or 

more powerful means of specifying alternative model 

structures such as provided by the SES methodology 

[11]. Artificial intelligence and simulated natural 

intelligence (evolutionary programming) may be 

brought in to help deal with combinatorial explosions 



occasioned by powerful model synthesizing 

capabilities. 

 

Decision Layer applies the capability to search and 

simulate large model sets at the layer below to make 

decisions in solving real-world problems. Included are 

course-of-action planning, selection of design 

alternatives and other choices where the outcomes may 

be  supported by concept explorations, “what-if“ 

investigations, and optimizations of the models 

constructed in the modeling layer using the simulation 

layer below it.  

 

Collaboration Layer enables people or intelligent 

agents with partial knowledge about a system, whether 

based on discipline, location, task, or responsibility 

specialization, to bring to bear individual perspectives 

and contributions to achieve an overall goal. 

 

Using the definitions for linguistic levels above, we 

correlate such levels with the layers just discussed. As 

illustrated in Figure 3, at the syntactic level we 

associate network and execution layers. The semantic 

level corresponds with the modeling layer – where we 

have included ontology frameworks as well as 

dynamic system formalisms as models.  Finally, the 

pragmatic level includes use of the information such as 

identified in the upper layers of the M&S architecture. 

This use occurs for example, in design and search, 

making decisions and collaborating to achieve 

common goals. Indeed, such mental activities, along 

with real-world physical actions that they lead to, 

provide the basis for enumerating the kinds of 

pragmatic frames that might be of interest in particular 

applications – the context of use.  

 

The resulting stratification leads us to propose Table 2 

for defining effective interoperation of collaborating 

systems or services at the identified linguistic levels 

(first and second columns).  

 

5. DEVS Standard 
 

The conceptual interoperability model described above 

provides a general guideline for supporting system 

interoperability. Following the layered approach of this 

conceptual model, next we review the work of Discrete 

Event Systems Specification (DEVS) standardization 

that aims to support M&S interoperability based on the 

DEVS M&S framework. This work of standardization 

correspond to the two levels shown in Figure 3: the 

semantic level that deals with standardization of model 

interface; and the syntactic level that deals with 

standardization of simulation protocol.   

 

The DEVS formalism [16], based on Mathematical 

Systems theory, provides a computational framework 

and tool set to support Systems concepts in application 

to SoS. We first provide a brief review. More detail is 

available in [16]. 

Execution Layer

Network Layer

Decision Layer

Collaboration Layer

Modeling Layer

Design and Search Layer

Syntactic Level

Semantic Level

Pragmatic Level

 Figure 3  Associating Linguistic Levels  with Layers of 
Modeling and Simulation 
 

 

Table 2. Linguistic levels of Interoperability 

Linguistic 

Level 

A collaboration 

of systems or 

services 

interoperates at 

this level if: 

Examples 

Pragmatic – 

how 

information in 

messages is 

used 

The receiver 

reacts to the 

message in a 

manner that the 

sender intends 

An order from a 

commander is 

obeyed by the troops 

in the field as the 

commander 

intended.  A 

necessary condition 

is that the 

information arrives 

in a timely manner 

and that its  meaning 

has been preserved  

(semantic  

interoperability)  

Semantic – 

shared  

understanding 

of meaning of 

messages  

The receiver assigns 

the same meaning as 

the sender did to the 

message.  

An order from a 

commander to multi-

national participants in 

a coalition operation is 

understood in a 

common manner 

despite translation into 

different languages. 

Similarly geographic 

data must be translated 

correctly to UTM grid 

coordinates for ground 



forces and to LatLong 

for air and naval 

forces.   

Syntactic – 

common rules 

governing 

composition 

and 

transmission of 

messages 

The consumer is 

able to receive and 

parse the sender’s 

message  

A common network 

protocol (e.g. IPv4)  is 

employed ensuring that 

all nodes on the 

network can send and 

receive data bit arrays 

adhering to a 

prescribed format. 

 

DEVS makes a sharp distinction between the model 

and the device that simulates it.  Both model and 

simulator are defined as mathematical systems as 

defined by Wymore and others (see [16] for details), 

and the relation between them is standardized by the 

concept of “abstract” simulator.  Information flow in 

the DEVS formalism, as implemented on an object-

oriented substrate, is mediated by the concept of DEVS 

message, a container for port-value pairs. In a message 

sent from component A to component B, a port-value 

pair is a pair in which the port is an output port of A,   

and the value is an instance of the base class of a 

DEVS implementation, or any of its sub-classes. A 

coupling is a four-tuple of the form (sending 

component A, output port of A, receiving component B, 

input port of B). This sets up a path where by a value 

placed on an output port of A by A’s output function is 

transmitted to the input port of B, to be consumed by 

the latter. In systems or simulations implemented in 

DEVS environments the concepts of ports, messages, 

and coupling are explicit in the code. However, for 

systems/simulations that were implemented without 

systems theory guidance, in legacy or non-DEVS 

environments, these concepts are abstract and need to 

be identified concretely with the constructs offered by 

the underlying environment. For SoS engineering, 

where legacy components are the norm, it is worth 

starting with the clear concepts and methodology 

offered by systems theory and DEVS, getting a grip on 

the interoperability problems, and then translating 

backwards to the non-DEVS concepts as necessary. 

Within a working group of the Simulation 

Interoperability Standards Organization, a standard has 

been under development to support interoperability of 

DEVS models implemented in different platforms as 

well as with legacy simulations. Figure 4 illustrates an 

architectural approach proposed to accommodate the 

various combinations and permutations of possible 

application, both currently known, as well as those that 

will emerge in the future. The basic idea is to define 

two sets of interfaces; the DEVS model Interface and 

the DEVS Simulator Interface, as well as a DEVS 

Simulation Protocol that operates between the two. The 

interfaces protocols are based on those in GenDEVS, 

an implementation at the heart of the DEVJAVA M&S 

environment [www.acims.arizona.edu]. DEVS/C++ 

and DEVSJAVA are platform specific 

implementations while DEVSML[26] and FDDEVS 

[27] are platform independent implementations in 

XML which can transform to any platform specific 

implementations.  

 

 
Figure 4: Conceptual Architecture of Standard 

 

   As a direct consequence of the model-simulator 

separation there can be multiple ways in which the 

same model can be simulated – all adhering to the 

abstract simulator specification. Corresponding to 

different simulation modes, the standard has virtual-

time and real-time simulators. In virtual-time 

simulation, the simulator interprets time as logical time 

so the simulation can skip from one event time to the 

next without traversing the intervening time interval.  

However, in real-time simulation, time is interpreted as 

wall clock readings, so the real-time simulator will 

wait for the interval to its next scheduled event to 

expire before handling the event.  In addition to the 

model type/simulation mode combinations, the 

standard allows for the use of different forms of 

distribution of model components, e.g., single 

processor vs. multi-processor, and within the latter, 

conservative vs optimistic time advance for virtual-

time as well as  centralized vs non-centralized time 

control in real-time execution. The standard is also 

agnostic with respect to different implementation 

platforms, such as Windows vs Unix, different 

programming languages, such as Java vs C++, and 

different networking and middleware frameworks such 

as .Net vs Apache. From the above introduction, we 

can see that the standard will have multiple simulation 

scenarios. For example, considering the combinations 

of simulation mode and distribution mode, we have: 

simulating a model in virtual-time and simulating 

model in real-time both in distributed and non-

distributed fashion. 



IODevs

atomicDevs
(optional)

IOBasicDevs

basicDevs

coupledDevs

AtomicInterfaceCoupled

DevsInterface

 
Figure 5 DEVS Model Interfaces 

 
Among these interfaces, IODevs defines interface for 

the functions that handle  message exchange based on 

input and output ports. Any model, whether DEVS or 

non-DEVS, can implement these functions so it can 

interoperate with other implementers of this interface, 

in the sense of receiving input and sending output. The 

basicDevs Interface defines the basic functions a 

DEVS model needs to implement such as deltext(), 

deltint(), out(), ta() and so on.  The basicDevs interface 

is the interface that is exposed to the atomic simulators. 

An additional interface, atomicDevs, provides a 

convenient set of primitives for defining the basic 

functions in an atomic model. However, since the basic 

functions can be defined without using such primitives, 

the atomicDevs interface is optional.  The IOBasicDevs 

interface extends the IODevs interface and basicDevs 

interface. It provides a common basis for implementing 

atomic models and coupled models. Combining 

IOBasicDevs with atomicDevs, we get AtomicInterface 

which defines the function signatures an atomic model 

need to implement.  Of course, if atomicDevs is 

omitted, then AtomicInterface reduces to IOBasicDevs.  

Similarly, CoupledDevs interface defines the function 

signatures that are used in DEVS coupled models. It 

also has methods that support adding components and 

couplings to the model; methods for retrieving a 

component by name and for accessing all components; 

and to access the internal coupling specifications 

(intended only by simulators).  Combining 

IOBasicDevs with CoupledDevs, we get the Coupled 

interface which defines the functions coupled models 

need to implement. 
 

coreSimulator

Atomic

Simulator

CoupledSimulator

Coordinator

CoupledCoordinator

 
Figure 6  DEVS Simulator Interfaces 

 

   The basic simulator interface is the CoreSimulator 

that provides a common interface for DEVS and non-

DEVS simulation. Further, the CoreSimulator interface 

is the basic interface from which simulation services 

could be designed for a truly net-centric interoperable 

simulation framework [23]. Under the CoreSimulator 

interface, two classes of simulators have been defined 

CoupledSimulator and CoupledCoordinator interfaces 

where the latter also inherits from Coordintor. These 

apply to both virtual (logical); and real-time 

simulation. (Real time simulators interpret time as real 

wall clock time and have their own thread and system 

clock. Virtual or logical time simulators can advance 

from one event time to the next). The CoreSimulator 

interface includes methods that are invoked by the 

DEVS simulation protocol: 

 
interface coreSimulatorInterface{ 
void setSimulators 
                     (Collection<CoreSimulatorInterface>);  
void initialize(); 
Double nextTN(); 
void computeInputOutput(Double t); 
void applyDeltFunc(Double t); 
void putContentOnSimulator 
        (CoreSimulatorInterface sim, ContentInterface c); 
void sendMessages(); 

 

5.1 DEVS Simulation Protocol 
 

DEVS treats a model and its simulator as two distinct 

elements. The simulation protocol describes how a 

DEVS model should be simulated whether in 

standalone fashion or in a coupled model. Such a 

protocol is implemented by a processor which can be a 

simulator or a coordinator. 
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Figure 7 Federation of DEVS with Non-DEVS Simulators 
 

As illustrated in Figure 7, the DEVS protocol is 

executed as following: 

1. It starts with the coordinator telling each of the 

simulators in the collection the others’ addresses 

and then to perform initialization function.  

2. A cycle is then entered in which the coordinator 

requests that each simulator provide its time of 

next event and takes the minimum of the returned 

values to obtain the global time of next event 

3. Each of the simulators applies its 

computeInputOutput() method to produce an   

output that consists of a collection of contents 

(port/value) pairs – for  DEVS simulators this is a 

composite message computed according to the 

DEVS formalism based on its model’s current 

state.  

4. Then each simulator partitions its output into 

messages intended for recipient simulators and 

sends these messages to these recipient simulators 

– for DEVS simulators these recipients are 

determined from the output ports in the message 

and the coupling information that will have 

previously been received from the coordinator.  

5. Finally, each simulator executes its ApplyDeltFunc 

method which computes the combined effect of 

the received messages and internal scheduling on 

its state, a side effect of which is produce of time 

of next event, tN  – for DEVS simulators this state 

change is computed according to the DEVS 

formalism and the tN is updated using its model’s 

time advance.  

6. The coordinator obtains the next global time of 

next event and the cycle repeats 

 

It should be noted that the above is one form of many 

possible protocols that can provide various forms of 

conservative and optimistic simulation, each of which 

must be proved to be correct as a realization of the 

DEVS closure under coupling property [16].  

 

Implicit in the above description are the following 

constraints involving methods in the 

CoreSimulatorInterface: 

• The sendMessages() method “must” employ the 

putContentOnSimulator() method as follows:  for 

any simulator to which it wishes to send a content, 

it must call the recipient’s 

putContentOnSimulator() method with the 

recipient and the content as arguments.   

• Further, in applying its computeInputOutput() 

method, a simulator “must” be able to interpret  

the contents  (satisfying the ContentInterface) it 

has received from the other simulators.  

 

Notice that we cannot enforce the “must” requirements 

just given, and cannot prove that the simulation 

executes a desired behavior, unless we are given 

further information about its behavior. One way to do 

this is where the simulators are truly DEVS simulators 

in that they satisfy the interfaces and constraints given 

below. Failing this additional rigor, the interoperation 

involving DEVS and non-DEVS  is purely at the 

technical level similar to that of a federation of 

simulators in HLA. This contrasts with the situation in 

which the federation is in fact derived from a DEVS 

coupled model for which correct simulation of the 

coupled model is guaranteed according to the DEVS 

formalism. 

 

6. DEVS/SOA  
 

An implementation of the standard within the Service 

Oriented Architecture (SOA) has been completed that 

provides DEVS modeling and simulation services over 

the World Wide Web [17, 23], As shown in the Figure 

8, at the top of the layered architecture is the 

application layer that contains models in DEVSJAVA 

or DEVSML, a way of representing DEVS models in 

the eXtended Markup Language (XML). This 

DEVSML is built on JAVAML [18], which is XML 

implementation of JAVA. The current development 

effort of DEVSML takes its power from the underlying 

JAVAML that is needed to specify the ‘behavior’ logic 

of atomic and coupled models. The DEVSML models 

are cross-transformable to Java. The second layer is the 

DEVSML layer itself that provides seamless 

integration, composition and dynamic scenario 

construction resulting in portable models in DEVSML 

that are complete in every respect. These DEVSML 

models can be ported to any remote location using the 

SOA infrastructure and cam be executed at any remote 



location in a distributed or non-distributed manner. 

Another major advantage of such capability is total 

simulator ‘transparency’. The simulation engine is 

totally transparent to model execution over the SOA 

infrastructure. The DEVSML model description files 

in XML contains meta-data information about its 

compliance with various simulation ‘builds’ or 

versions to provide true interoperability between 

various simulator engine implementations. This has 

been achieved for at least two independent simulation 

engines as they have an underlying DEVS protocol to 

adhere to. This has been made possible with the 

implementation of a single atomic schema [24] and a 

single coupled schema [25] that validates the 

DEVSML descriptions generated from these two 

implementations. Such run-time interoperability 

provides great advantage when models from different 

repositories are used to compose large coupled models 

using the DEVSML integration capabilities. Detailed 

design can be seen in [17,23]. 

WEB

SERVICE

CLIENT

Middleware (SOAP, RMI etc)
Net-centric infrastructure

DEVS Simulator Services

DEVS Modeling Language (DEVML)

DEVSJAVA

DEVS
Agent

( Virtual User)

DEVS
Agent

(Observer)

WEB

SERVICE
CLIENT

 
Figure 8  DEVS/SOA interoperability 

 

The complete setup requires one or more servers that 

are capable of running DEVS Simulation Service, as 

shown in the second layer in Figure 8. The capability 

to run the simulation service is provided by the server 

side design of DEVS Simulation protocol supported by 

the DEVSJAVA. Of course, many issues of policy 

management and security considerations must be taken 

care of in the generation of DEVS models from 

WSDLs specifications [22]. Furthermore, the multi-

platform simulation capability provided by 

DEVSV/SOA framework consists of realizing 

distributed simulation among different DEVS 

platforms or simulator engines such as DEVSJAVA, 

DEVS-C++, etc. and executing the native simulation 

service. This kind of interoperability where multi-

platform simulations can be executed with our 

DEVSML integration facilities has been made possible 

with the hierarchical design of simulator interfaces as 

described in Section 5.  

 

7. How Interoperability is supported 
 

The proposed DEVS standard and its DEVS/SOA 

implementation support several modes of 

interoperability. These are outlined in the following 

paragraphs. 

 

7.1 DEVS-to-DEVS Interoperability 

DEVS-to-DEVS Interoperability is the basic form of 

interoperability enabled by the DEVS standard as 

discussed above. Adoption of the DEVS standard 

facilitates new development to achieve interoperability 

at the syntactic, semantic and pragmatic levels 

mentioned above.  More detail on these concepts in 

application to testing of SOA systems can be found in 

[5, 20, 21, 22]. 

 

7.2 DEVS-to-Non-DEVS Interoperability  
 

7.2.1 Direct. As mentioned before, legacy simulations 

that can be refactored to implement the CoreSimulator 

interface can be interoperate at the syntactic level with 

DEVS and other non-DEVS peers. In its strongest 

form, such simulation methodology guarantees well-

defined time preservation and simulation correctness as 

a sound basis to aim for interoperability at the higher 

levels. 

 

7.2.2 Via Client Gateways.  For a variety of reasons, 

although DEVS compliance is desirable, it can be 

expected that legacy systems will continue to prevail 

and new non-compliant systems developed. The 

adoption of the SOA standard however, will facilitate 

the interoperation of DEVS and non-DEVS 

components that are compliant with the SOA standard. 

This form is realized in an Agent-implemented Test 

Instrumentation Infrastructure that deploys DEVS 

models to act as agents that are attached to clients of 

services [5,22]. Such attachment can be performed in 

automated fashion using tools such as Axis Toolkit to 

create the client stub given a service’s Web Service 

Description Language (WSDL) [22].  As in Figure 8, 

these agents can observe the web service requests 

originating from the client and server responses (or 

failure thereof) to accumulate a variety of performance 

measurements. The agents can also serve as virtual 

users to interact with other users to direct the course of 

test scenarios and collect performance metrics to 

support scalability studies. Further, while collecting 

data, DEVS agents can communicate with each other 

to coordinate and share information using the DEVS-



to-DEVS configuration just discussed. Case studies are 

available in reference [22].  

 

8. Conclusions 
 

Achieving interoperability is one of the chief SoS 

engineering objectives in the development of command 

and control (C2) capabilities for joint and coalition 

warfare. The importance of M&S in SoS design and 

evaluation cannot be underestimated. M&S can be 

used strategically to provide early feasibility studies 

and aid the design process. As components comprising 

SoS are designed and analyzed, their integration and 

communication is the most critical part that must be 

addressed by the employed SoS M&S framework. The 

integration infrastructure must support interoperability 

at syntactic, semantic and pragmatic levels to enable 

such integration.  

 

Currently there are several other approaches to 

distributed simulation and to integration of M&S with 

advanced C2 systems.  These approaches build on the 

internet or other net-centric middleware to provide 

component connectivity and simulation services [1,20]. 

The latter may also include HLA implementations; 

however, the extent of adoption of HLA in this context 

remains to be seen.  The DEVS standard provides a 

formal systems-based abstraction that can support 

higher level interoperability, whether alone or on top 

of HLA.  The DEVS/SOA implementation provides a 

SOA implementation independent of HLA and is a 

viable approach to M&S integration with C2 SoS in 

the weaker gateway form, and in the strong direct 

compliance form. Further, DEVS has been applied to 

frameworks like DoDAF, UML and other systems 

engineering frameworks like SES. It is not a major step 

from here to see how DEVS components including 

decision making agents, sensor simulators, and 

environmental representations can bring the power of 

M&S to the development of C2 SoS.  The underlying 

SOA standard that facilitates this interoperation can be 

expected to be widely adopted (for example, it has 

been adopted by the DoD’s Global Information Grid 

initiative).  
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