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Abstract

Discrete EVent Specification (DEVS) environmengslarown to be implemented over middleware systaofsas
HLA, RMI, CORBA and others. DEVS exhibits concepsystems theory and modeling and supports cayutlie
system behavior from the physical and behaviorakpectives. Further, they are implemented usinge€ibj
oriented languages like Java and C++. This reseavabrk uses the Java platform to implement DEVS aver
Service Oriented Architecture (SOA) framework. €hlhe DEVS/SOA, the framework supports a deve upsanel
testing environment known as DEVS Unified Procdsst ts built on a model-continuity-based life cycle
methodology. DEVS Unified Process allows DEVS-bagedieling and Simulation (M&S) over net-centric
platforms using DEVS/SOA. This framework also plewithe crucial feature of run-time composabilitycoupled
systems using SOA. We describe the architecturedasiyns of the both the server and the client. dlkent
application communicates with multiple servers mgsDEVS simulation services. These Simulationicesvare
developed using the proposed symmetrical serviceitacture wherein the server can act as both waise
provider and a service consumer contrary to thedinactional client-server paradigm. We also dischssv this
Services based architecture provides solutionscfoss-platform distributed M&S. We demonstrate DISCA
framework with a scenario of Joint Close Air Sugpspecified in Business Process Modeling NotatRPMN). We
also provide a real-world application of Network atd monitoring using DEVS/SOA layered architectura
framework.

1. Introduction

DEVS environments such as DEVSJAVA, DEVS-C++, anthers [9] are embedded in object-oriented
implementations, they support the goal of représgnexecutable model architectures in an obje@rded
representational language. As a mathematical faismalDEVS is platform independent, and its impletagans
adhere to the DEVS protocol so that DEVS model#yetanslate from one form (e.g., C++) to anotfey., Java)
[10]. Moreover, DEVS environments, such as DEVSJA\WXecute on commercial, off-the-shelf desktops or
workstations and employ state-of-the-art librariesproduce graphical output that complies with stdy and
international standards. DEVS environments areciflyi open architectures that have been extendeddoute on
various middleware such as the DoD’s HLA stand@@RBA, SOAP, and others and can be readily intedao
other engineering and simulation and modeling t¢®}s9, 27, 28, 30]. Furthermore, DEVS operatioreroweb
middleware (SOAP) enables it to fully participatethe net-centric environment of the Global Infotima Grid/
Service Oriented Architecture (GIG/SOA) [8]. Asesult of recent advances, DEVS can support modsiraaty
through a simulation-based development and tedtiagcycle [2]. This means that the mapping of hilgvel
requirement specifications into lower-level DEVS$nalizations enables such specifications to beotingily tested

in virtual simulation environments before beingilgaand consistently transitioned to operate ireal environment
for further testing and fielding.

DEVS formalism categorically separates the Mod®, $imulator and the Experimental frame. Howewag of
the major problems in this kind of mutually exclredy system is that the formalism implementatioitsslIf limited
by the underlying programming language. In othemrdsp the model and the simulator exist in the same
programming language. Consequently, legacy modelgedl as models that are available in one implaat&m are
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hard to translate from one language to another ¢vengh both the implementations are object orekn@ther
constraints like libraries inherent in C++ and Jaawe another source of bottleneck that preventsh suc
interoperability.

Brief Overview of Capabilities Provided by DEVS

The prime motivation comes from an editorial by $Zairs [1] that demands a M&S framework at higlesels of
system specifications where System of systemsaotapgether using net-centric platform. At thigsele model
interoperability is one of the major concerns. Tetivation for this work stems from this need of deb
interoperability between the disparate simulatoplementations and provides a means to make thelationu
transparent to model execution. DEVS, which is kndw be component-based system, based on formansyst
theoretical framework is the preferred means. Tabtaitlines how it could provide solutions to thHealtenges in
net-centric design and evaluation. The net-ceridiVS framework requires enhancement to the basiv®E
capabilities, which are provided in later sections.

Desired M&S Capability for T&E Solutions Provided by DEVS Technology

Support of DoDAF need for executableDEVS Unified Process [31] provides methodology &@@iA
architectures using M&S such as infrastructure for integrated development and nestéxtending
mission based testing for GIG SOA | DoDAF views [32].

Interoperability and cross-platform Simulation architecture is layered to accomplightdthnology
M&S using GIG/SOA migration or run different technological scenafib3, 17].
Provide net-centric composition and integratio&VSs
‘validated’ models using Simulation Web Serviced][1

Automated test generation and Separate a model from the act of simulation itseffich can be
deployment in distributed simulation | executed on single or multiple distributed platferih0]. With
its bifurcated test and development process, autmitast
generation is integral to this methodology [18].

Test artifact continuity and traceability Provide rapid means of deployment using model-ooitt
through phases of system developmenprinciples and concepts like “simulation becomesréality”
[2].

Real time observation and control of | Provide dynamic variable-structure component modeio
test environment enable control and reconfiguration of simulationtioa fly [14-
17]. Provide dynamic simulation tuning, interopéligibtesting
and benchmarking.

Table 1: Solutions provided by DEVS technology to suppdii&.S for T&E

Furthermore, this work aims to develop and evalda&tibuted simulation using the web service tetbgy. After

the development of World Wide Web, many effortshie distributed simulation field have been madenfiodeling,
executing simulation and creating model librarieattcan be assembled and executed over WWW. By sn&fan
XML and web services technology these efforts herntered upon a new phase. We proposed DEVS Modeling
Language (DEVSML) [19] that is built on eXtensiliarkup Language (XML) [29] as the preferred meams t
provide such transparent simulator implementatfoprototype simulation framework called DEVS/SOAsHzeen
implemented using web services technology. Therakpbint resides in executing the simulator ased wervice.
The development of this kind of frameworks will peb solve large-scale problems and guaranteeopdeability
among different networked systems and specificBIEVS-validated models. This paper focuses on therailv
approach, and the symmetrical SOA-Based archite¢hat allows for DEVS execution as a SimulatiorASO

The paper is organized as follows. The next segimvides information about the related work intriisited
simulation and DEVS standardization efforts. SecBodescribes the underlying technologies suchE¢I) Web
Services, XML, and DEVS Modeling Language (DEVSMBection 4 introduces DEVS/SOA and presents its
relationship with DEVS Unified Process (DUNIP) ajpwith DEVSML. It also compares with Model Driven
Architecture (MDA) with DUNIP. Section 5 presentetDEVS/SOA distributed simulation framework inalktlt
provides the symmetrical web services architectilme conceptual design, the implemented packagishenWeb
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Service design architecture. By symmetrical sewermean that it acts as both a service provideraasdrvice
consumer. This section presents both the serverckent designs. Section 6 extends the DEVS/SOMméwaork
towards cross-platform distributed simulation fravoek and provides theoretical basis to conduct ssmatform
simulation on SOA. It discusses Interoperabilitect®n 7 provides one illustrative example thatcdess the
complete life-cycle in DEVS Unified Process and hemwodel is made Net-centric executable using DEC®. It
also provide two other applications that relatdlission Thread modeling as applicable to DoDAF arfoactive
network health monitoring system. Finally, SectBprovides conclusions and open research lines.

2. Related Work

There have been a lot of efforts in the area dfitliged simulation using parallelized DEVS fornsati. Issues like
‘causal dependency’ [10] and ‘synchronization peofol [20] have been adequately dealt with solutibke: 1.
restriction of global simulation clock until alletmodels are in sync, or 2. rolling back the sirtioitaof the model
that has resulted in the causality error. Our chasethod of web centric simulation does not addtesse
problems as they fall in a different domain. In puoposed work, the simulation engine rests sajelyhe Server.
Consequently, the coordinator and the model sirardare always in sync.

Most of the existing web-centric simulation effoctnsist of the following components:

1. the Application The top level coupled model with (optional) inteigd visualization.

2. Model partitioner Element that partitions the model into variousaer coupled models to be executed at
a different remote location

3. Model deployerElement that deployed the smaller partitioned et®tb different locations

4. Model initializer. Element that initializes the partitioned modedl anake it ready for simulation

5. Model Simulator Element that coordinate with root coordinator whihe execution of partitioned model
execution.

The Model Simulator design is almost same in athefimplementation and is derived directly fromgbiel DEVS
formalism [10]. There are however, different methaoa implement the former four elements. DEVS/G2itl] uses
all the components above. DEVS/P2P [22] implemstép 2 using hierarchical model partitioning basadcost-
based metric. DEVS/RMI [30] has a configuring emgthat integrates the functionality of step 1, @ &nabove.
DEVS/Cluster [23] is a multi-threaded distributedEZS simulator built on CORBA, which again, is foeds
towards development of simulation engine.

As stated earlier, the efforts have been in tha afaising the parallel DEVS and implementing tineusator engine
in the same language as that of the model.

These efforts are in no means similar to what we pr@posed in our paper [19]. Our work is focusegards
interoperability at the application level, spedilig, at the model level and hiding the simulatogiee as a whole.
We are focused towards taking XML just as a comigcation middleware, as used in SOAP, for existingvBE
models, but not as complete solution in itself. Wérild like the user or designer to code the bedrawmi any of the
programming languages and let the DEVSML SOA aechiire be responsible to create a coupled model,
integrating code in either of the languages and/eléhg us with an executable model that can beukitad. The
user need not learn any new syntax, any new larguegyvever, what he must use is the standardizesioveof P-
DEVS implementation such as DEVSJAVA Version 3.p(f@aintained atvww.acims.arizona.edu

This kind of capability where the user can integrais model from models stored in any web repogitwhether it
contained public models of legacy systems or petary standardized models will provide more bentfithe
industry as well as to the user, thereby trulyizezg the model-reuse paradigm.

In further sections we will provide details abobetDEVS/SOA server and client, design of DEVS Satuorl
interface and standardized libraries that are usedr implementation.
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3. Underlying Technologies
3.1 DEVS

DEVS formalism consists of models, the simulatadl #me Experimental Frame. We will focus our attemtio the
two types of models i.e. atomic and coupled modEte atomic model is the irreducible model defons that
specify the behavior for any modeled entity. Thepted model is the aggregation/composition of twarmre
atomic models connected by explicit couplings. Thapled model N can itself be a part of componerd larger
coupled model system giving rise to a hierarchig&BVS model construction. Detailed descriptions aldoEVS
Simulator, Experimental Frame and of both atomit @esupled models can be found in [10]. Next wéaevsome
of the background required for discussion on tlegaof DEVS foundation.

3.1.1 DEVS Specification

The DEVS formalism was introduced by Bernard Zeiffl®] to provide a mean of modeling discrete ev@stems
in a hierarchical and modular way. DEVS exhibhg toncepts of system theory and modeling, andastgpp
capturing the system behavior in the physical agttblioral perspectives. A DEVS model can be eitmeatomic
or coupled model. In the DEVS formalism, a largstem can be modeled by both atomic and coupledetsod
The atomic model is the basic model that descrihesbehavior of a component. A Discrete Event &yst
specification (DEVS) atomic model is defined by #teucture in Figure 1.

M=<X,S Y, dn, dyll , ta!
where
X is the set of input values
Sis the set of state
Y is the set of output values
d.: S® S is the internal transition function
d.,. QxX ® S is the external transition function, where
Q={(s,e)|sS,0 e ta(s)}isthe total state set, and
e is the time elapsed since last transition
II: S® Y is the output function
ta: S® Ry i is the time advance function

Figure 1: Classic DEVS Specification

Atomic and coupled models can be simulated usingiesgtial computation or various forms of parallalis The
basic parallel DEVS formalism extends the classiEVB by allowing bags of inputs to the external sitian

function, and it introduces the confluent transitfanction to control the collision behavior whesteiving external
events at the time of the internal transition. Pheallel DEVS atomic model is defined by the sinoe in Figure 2.

M =<X,S,Y, dn, Aoy, Aonll , tal
where
X is the set of input values
Sis the set of state
Y is the set of output values
d.: S ® Sisthe internal transition function
d.: Q xX® ® S is the external transition function,
whereX” is a set of bags over elements in X, Q is thed &itde
set.
d. SxX° ® S is the confluent transition function,
subject tadco(S, ) = din(S)
Il : S® Y"is the output function
ta: S® R,y is the time advance function

Figure 2: Parallel DEVS Specification
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A DEVS-coupled model designates how atomic modatfs ke coupled together and how they interact waithe
other to form a complex model. The coupled model lose employed as a component in a larger couptetthand
can construct complex models in a hierarchical wayhe specification provides component and coupling
information. The coupled DEVS model is definedtesdtructure in Figure 3.

M=<X,Y, D, {(Myh{l}}, {Z}!
Where
X is a set of inputs
Y is a set of outputs
D is a set of DEVS component names
Foreach| D,
M;is a DEVS component model
I;is the set of influences for |
Foreach] I,
Zj is the i-to-j output translation function.

Figure 3: Coupled DEVS Specification

Three different DEVS formalisms have been introduceThe classic DEVS formalism treats components
sequentially, and the parallel DEVS formalism tseadmponents concurrently. These formalisms alslude the
means to build coupled model from atomic models.

3.1.2 Hierarchy of Systems specifications

Systems theory deals with a hierarchy of systemifipations which defines levels at which a systaay be
known or specified. Table 2 shows this Hierarchppétem Specifications (in simplified form, see]j10

At level 0 we deal with the input and output insexé of a system.

At level 1 we deal with purely observational redogs of the behavior of a system. This is an I/{@atren
which consists of a set of pairs of input behavianrd associated output behaviors.

At level 2 we have knowledge of the initial statbem the input is applied. This allows partitionitinge
input/output pairs of level 1 into non-overlappisgbsets, each subset associated with a differariingt
state.

At level 3 the system is described by state spackstate transition functions. The transition fimrct
describes the state-to-state transitions causéieoyputs and the outputs generated thereupon.

At level 4 a system is specified by a set of congmi® and a coupling structure. The components are
systems on their own with their own state set aatedransition functions. A coupling structureide$
how those interact. A property of coupled systenictvlis called “closure under coupling” guaranterest t
a coupled system at level 3 itself specifies aesystThis property allows hierarchical constructimi
systems, i.e., that coupled systems can be usashgsonents in larger coupled systems.

Level | Name What we specify at this level
4 Coupled | System built up by several component systems which
Systems | are coupled together
3 I/0 System| System with state and state transitions to genénate
behavior
2 I/0 Collection of input/output pairs constituting the

Function | allowed behavior partitioned according to the atiti
state the system is in when the input is applied

1 I/0 Collection of input/output pairs constituting the
Behavior |allowed behavior of the system from an external
Black Box view

0 I/0 Frame | Input and output variables and poggtioer with
allowed values

Table 2 Hierarchy of System Specifications
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As we shall see in a moment, the system specificdtierarchy provides a mathematical underpinningefine a
framework for modeling and simulation. Each of dmities (e.g., real world, model, simulation, @xgerimental
frame) will be described as a system known or $igelcat some level of specification. The essenaaadeling and
simulation lies in establishing relations betweairgof system descriptions. These relations pettathe validity
of a system description at one level of specifaatielative to another system description at adifiit (higher,
lower, or equal) level of specification.

Based on the arrangement of system levels as showable 2, we distinguish between vertical andizuomtal
relations. A vertical relation is called an assticiamapping and takes a system at one level dfifspation and
generates its counterpart at another level of fpation. The downward motion in the structure-tehhvior
direction, formally represents the process by whith behavior of a model is generated. This isveeie in
simulation and testing when the model generatesb#tevior which then can be compared with the ddsir
behavior.

The opposite upward mapping relates a system gdiscriat a lower level with one at a higher levédl o
specification. While the downward association ofdfications is straightforward, the upward assimmis much
less so. This is because in the upward directidarnmation is introduced while in the downward difen
information is reduced. Many structures exhibit faene behavior and recovering a unigue structara & given
behavior is not possible. The upward direction, &esv, is fundamental in the design process whestrugture
(system at level 3) has to be found which is cap&bbenerate the desired behavior (system at Llgvel

3.1.3 Framework for Modeling & Simulation

The Framework for M&Sas described in [10], establishergitiesand theirelationshipsthat are central to the M&S
enterprise (see Figure 2). The entities of then&aork aresource system, experimental frame, model
simulator;they are linked by theodelingand thesimulationrelationships. Each entity is formally characed as
a system at an appropriate level of specificatigthiwa generic dynamic system. See [10] for dethdiscussion.

Experimental Frame

Simulation

Modeling Relation

Relation

Figure 4: Framework Entities and Relationships

3.1.4 Model Continuity

Model continuity refers to the ability to transiti@s much as possible of a model specificatiorutjinahe stages of
a development process. This is opposite to theodtswity problem where artifacts of different dgsistages are
disjointed and thus cannot be effectively consurbgdeach other. This discontinuity between the actd of
different design stages is a common deficiency a$thdesign methods and results in inherent inctergiy among
analysis, design, test, and implementation arsfgci]. Model continuity allows component modelsaafistributed
real-time system to be tested incrementally, areh tdeployed to a distributed environment for execoutlt
supports a design and test process having 4 stepgX1]),
1) Conventional simulation to analyze the system undst within a model of the environment linked by
abstract sensor/actuator interfaces.
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2) Real-time simulation, in which simulators are repld by a real-time execution engines while leavieg
models unchanged.

3) Hardware-in-the-loop (HIL) simulation in which tlemvironment model is simulated by a DEVS real-time
simulator on one computer while the model underitesxecuted by a DEVS real-time execution engine
on the real hardware.

4) Real execution, in which DEVS models interact vitie real environment through the earlier estabtishe
sensor/actuator interfaces that have been apptelgriastantiated under DEVS real-time execution.

Model continuity reduces the occurrence of desigardpancies along the development process, tlcosasing the
confidence that the final system realizes the $igation as desired. Furthermore, it makes thegtegiocess easier
to manage since continuity between models of diffedesign stages is retained.

3.2 Web Services and Interoperability using XML

Service oriented Architecture (SOA) framework igramework consisting of various W3C standards, tmiciw

various computational components are made availabléservices’ interacting in an automated manperatds

achieving machine-to-machine interoperable intéwacover the network. The interface is specifiethgsWeb

Service Description language (WSDL) [25] that camganformation about ports, message types, pgregy and
other relating information for binding two interamets. It is essentially a client server framewoskerein client

request a ‘service’ using SOAP message that ismndted via HTTP in XML format. A Web service islgished

by any commercial vendor at a specific URL to bastoned/requested by another commercial applicatiothe

Internet. It is designed specifically for machimertachine interaction. Both the client and the seencapsulate
their message in a SOAP wrapper.

3.3 DEVSML

DEVSML is a way of representing DEVS models in XNHnguage. This DEVSML is built on JAVAML [7],
which is XML implementation of JAVA. The current widopment effort of DEVSML takes its power from the
underlying JAVAML that is needed to specify the Hagior’ logic of atomic and coupled models. The CEWL
models are transformable back'n forth to java anDEVSML. It is an attempt to provide interoperépibetween
various models and create dynamic scenarios. Heedd architecture of the said capability is shawhRigure 5.

DEVSIL

CLIENT

SERVER

JAVA Modeling C++ Modeling
Language Language
(JAVAML) (CPlusML)*

XML-Based XML-Based

DEVS Simulator 1 DEVS Simulator 2 DEVS Simulatorn

e.g. xDEVS-Spain  €.g. GENDEVS-ACIMS e.g. aDEVS

Figure 5: DEVS Transparency and Net-centric model interdmétausing DEVSML.
Client and Server categorization is done for DE\CBASmplementation

Page 7 of 35



At the top is the application layer that containedel in DEVS/JAVA or DEVSML. The second layer iseth
DEVSML layer itself that provides seamless inteigrat composition and dynamic scenario constructasulting

in portable models in DEVSML that are complete venry respect. These DEVSML models can be porteshio
remote location using the net-centric infrastruetand be executed at any remote location. Anothajorm
advantage of such capability is total simulatoarigparency’. The simulation engine is totally tp@rent to model
execution over the net-centric infrastructure. EVSML model description files in XML contains metata
information about its compliance with various siatidn ‘builds’ or versions to provide true interogleility
between various simulator engine implementatiomés Tias been achieved for at least two indepersiamilation
engines as they have an underlying DEVS protocoladbere to. This has been made possible with the
implementation of a single atomic DTD and a singteipled DTD that validates the DEVSML descriptions
generated from these two implementations. Suchtim@-interoperability provides great advantage whesdels
from different repositories are used to composeaydrigcoupled models using DEVSML seamless integratio
capabilities. More details about the implementatian be seen at [MIT07e]

4. Overarching DEVS Unified Process

This section describes the refined bifurcated Mdciahtinuity process and how various elements likeomated
DEVS model generation, automated test-model gapnarédnd net-centric simulation over SOA are pgetber in
the process, resulting in DEVS Unified Process (DR)N31]. The DEVS Unified Process (DUNIP) is buwt the
bifurcated Model-continuity based life-cycle metbtmyy. The design of simulation-test framework ascin
parallel with the simulation-model of the systemden design. The DUNIP process consists of the violig
elements:

Automated DEVS Model Generation from various reguient specification formats

Collaborative model development using DEVS Modeliagguage (DEVSML)

Automated Generation of Test-suite from DEVS sirtiatamodel

Net-centric execution of model as well as testesaiter SOA

Considerable amount of effort has been spent ityaing various forms of requirement specificationi, state-
based, Natural Language based, Rule-based, BPMN/MBBEed and DoDAF-based, and the automated pracesse
which each one should employ to deliver DEVS heheral models and DEVS state machines [31]. Sinuarlat
execution today is more than just model executioracsingle machine. With Grid applications and atwdrative
computing the norm in industry as well as in séfantommunity, a net-centric platform using XML asddleware
results in an infrastructure that supports distaducollaboration and model reuse. The infrastmacpuovides for a
platform-free specification language DEVS Modellranguage (DEVSML) [MITO7e] and its net-centric exgaon
using Service-Oriented Architecture called DEVS/S{3,33]. Both the DEVSML and DEVSV/SOA provide
novel approaches to integrate, collaborate and tedgjn@xecute models on SOA. This infrastructure psuts
automated procedures is the area of test-case ajiemedeading to test-models. Using XML as the eyst
specifications in rule-based format, a tool knovenAautomated Test Case Generator (ATC-Gen) was dpeedl
which facilitated the automated development of tegtlels[6,18]. The integration of DEVSML and DEVEIS is
performed with the layout as shown below in Figéire

Various model specification formalisms are suppbré@d mapped into DEVSML models including UML stat
charts [5], a table driven state-based approach[3Rlisiness Process Modeling Notation (BPMN) [3%#.8b
DoDAF-based[32]. A translated DEVSML model is fedthe DEVSML client that coordinates with the DEVEM
server farm. Once the client has DEVSJAVA modelBE/SML server can be used to integrate the clgemodel
with models that are available at other sites toageenhanced integrated DEVSML file that can poeda coupled
DEVSML model. The DEVS/SOA enabled server can bé integrated DEVSML file to deploy the component
models to assigned DEVS web-server simulated eagifiee result is a distributed simulation, or algively, a
real-time distributed execution of the coupled mode
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DEVS Atomic 4@
in DEVSML

Automated DEVS
Atomic behavior D ML
Co sition
3

DEVS

Model
Generator in

DEVSML

Distributed

DEVS Execution
Over SOA DEVS.
Web-Service

SIMULATION Engines
SERVICES

Automated DEVS
Coupled Scenario

DEVS Coupled 4b
in DEVSML

Figure 6: Net-centric collaboration and execution using DBALSand DEVS/SOA

4.1 MDA and DUNIP

DUNIP is built on the paradigm of Model-Based Ergiring, or Model-Driven Architecture (MDA). Howevyéhe
scope of DUNIP goes beyond the MDA objectives. Riidbconcerns with the current MDA state of adlirde:
MDA approach is underpinned by a variety of techhi&tandards, some of which are yet to be specified
(e.g. executable UML)
Tools developed my many vendors are not interoperab
MDA approach is considered too-idealistic lackiteyative nature of Software Engineering process
MDA practice requires skilled practitioners and igasrequires engineering discipline not commonly
available to code developers.

Further, MDA does not have any underlying Systenesty and groups like INCOSre working with OMG to
adapt UML to systems engineering. Various othesreffke Wegmann [3] have recommended MDA to bézagtil
using an underlying common systems modeling ongol®gsting is included only as an extension of UMhown

as executable UML [Mel02], for which there is naremt standard. Consequently, there is no testiagnéwork
that binds executable UML and simulation-basedrtgsDespite these shortcomings, MDA has been adopy
Joint Single Integrated Air Picture (SIAP) Systenfingineering Organization (JSSEO) and various
recommendations have come forth to enhance the Mibpkess. JSSEO is applying MDA approach toward
development of aerospace Command and Control (@@akilities, for which a single integrated air piet is
foundational. The data-driven nature of C2 Systé®ystems (SoS) means that powerful MDA concep&ptidell

to collaborative SoS challenges.

Current DoD enterprise-level approaches for mampdoS interoperability, like the Net Centric Opinas and
Warfare Reference Model (NCOW/RM), DoD Architecturgamework (DoDAF) and the Joint Technical
Architecture (JTA), simply do not have the techhisaength to deal with the extremely complex epgiing
challenges. We proposed enhanced DoDAF [32] toigeoMEVS-based Model engineering. MDA as impleménte
by industry and adapted by JSSEO, does have thésiteqtechnical power, but requires innovative iragring
practices.

! International Council on Systems Engineering
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Realizing the importance of MDA concepts and thecexable profile of UML, the basic objective of whiis to

simulate the model, JSSEO is indirectly lookingtla Modeling & Simulation domain as applicable toSS
engineering. Table 3 brings out the shortcoming8IDA in its current state and the capabilities pded by DEVS

technology and in turn, DUNIP process.

Desired M&S Capability | MDA | DUNIP

Need for executable Yes, although not a Yes, underlying DEVS theory
architectures using M&S| standard yet
Applicable to GIG SOA Not reported yet Yes

Interoperability and cross--- Yes, DEVSML and DEVSV/SOA provides
platform M&S using cross-platform M&S using Simulation Web
GIG/SOA Services

Automated test generatign-- Yes, based on formal Systems theory and
and deployment in test-models autogeneration at various levels
distributed simulation of System specifications

Test artifact continuity To some extent, Yes
and traceability through model becomes thg
phases of systemapplication itself
development

Real time observation and-- Dynamic Model Reconfiguration and rup-
control of test time simulation control integral to DEVS
environment M&S. Enhanced MVC framework is

designed to provide this capability

Table 3: Comparison of MDA and DUNIP

MDA as applied to Integration of Process-Driven SOAViodels

In an independent study [36], Model Driven Softw&evelopment (MDSD) was applied to the integratain
process-driven SOA models. UML2 was used as this basards integration. Their approach is basethemotion
of domain-specific languages (DSL) for modelingioas types of models. Once DSL has been identiftedneta-
model is created that represents this particulagdaiiog domain. Meta-models are defined in termsneta-meta-
model. In UML, this is the meta object facility (MR They created a meta-meta-model that would ddfwth the
UML2 meta-model and their selected DSL extensidinie whole objective is to find a common ground anday
to express the relationship between a meta-modekltla® implementation code. This kind of capabilithere a
single meta-meta-model can be used to integratedifferent DSLs towards a common model allowing csfie
constraints of each meta-model is very much ne@d8®A domain as multiple tools and standards gxistenting
such integration. To integrate two models withafi#ént DSLs, the models are first decomposed atita-model
level, required information extracted and supplete@non the basis of meta-meta-model), which resintan
integrated model.

In our DUNIP process, such collaboration comes nafiiu due to the proposed DEVS atomic and coupled
Document Type Definitions (DTDs) that specify anyEWWS model in any domain specific language
implementations. The underlying DEVS Modeling Laage (DEVSML) meta-model that defines these atomét a
coupled DTDs is used for validating any DEVS modéie current DEVSML implementation has successfully
integrated two DSL implementations (GenDEVS-ACIM® §nd xDEVS-Spain[4]) on common DEVSML atomic
and coupled DTDs.

5. Distributed Simulation using DEVS/SOA

Web-based simulation requires the convergencenofilation methodology and WWW technology (mainly Web
Service technology). The fundamental concept of satvices is to integrate software applicationaasises. Web
services allow the applications to communicate vather applications using open standards. We aiering
DEVS-based simulators as a web service, and thesg have these standard technologies: communicptimocol
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(Simple Object Access Protocol, SOAP), service dgson (Web Service Description Language, WSDL)da
service discovery (Universal Description Discovang Integration, UDDI).

Figure 7 shows the framework of the proposed thisted simulation using SOA. The complete setupiregwone
or more servers that are capable of running DEVRuSition Service. The capability to run the simigiatservice is
provided by the server side design of DEVS Simataprotocol supported by the latest DEVSJAVA Vensiol. d

The Simulation Service framework is two layeredrfeavork. The top-layer is the user coordination tatjet
oversees the lower layer. The lower layer is the simulation service layer that executes the DEWsulation
protocol as a Service. The lower layer is tranggatieethe modeler and only the top-level is prodide the user.

The top-level has four main services:
Upload DEVS model
Compile DEVS model
Simulate DEVS model (centralized)
Simulate DEVS model (distributed)

The second lower layer provides the DEVS Simulagimtocol services:
- Initialize simulator i
Run transition in simulator i
Run lambda function in simulator i
Inject message to simulator i
Get time of next event from simulator i
Get time advance from simulator i
Get console log from all the simulators
Finalize simulation service

MODEL

Server 2
COORDINATOR
|| SIMULATION
Server 1 SERVICE
r| COORDINATOR (< SIMULATORS
| SIMULATION
SERVICE \
Server n
SIMULATORS
COORDINATOR
SIMULATION
— Upload and compile SERVICE
—> Simulators creation and message passing
SIMULATORS

Figure 7: DEVS/SOA distributed architecture

The explicit transition functions, namely, the i@ transition function, the external transitiamétion, and the
confluent transition function, are abstracted ®irgle transition function that is made availakdeaaService. The
transition function that needs to be executed dépem the simulator implementation and is decidethe run-
time. For example, if the simulator implements farallel DEVS (P-DEVS) formalism, it will choose any
internal transition, external transition or confitiéransition.

2 The difference between P-DEVS and classic DEV$hés handling of confluent function. The DEVS/SOA
framework could have been built using other simatatormalisms. In fact, our simulation servicesikcbstore any
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The client is provided a list of servers hostingLEService. He selects some servers to distrilgesimulation of
his model. Then, the model is uploaded and compitedll the servers. The main server selected eseat
coordinator that creates simulators in the senlere/the coordinator resides and/or over the ateters selected.

Summarizing from a user’s perspective, the simohagirocess is done through three steps (Figure 8):

1. Write a DEVS model (currently DEVSJAVA is only supped).

2. Provide a list of DEVS servers (through UDDI, foxaenple). Since we are testing the application, ¢hes
services have not been published using UDDI by r&slect N number of servers from the list available

3. Run the simulation (upload, compile and simulate) wait for the results.

1.- DEVSML
SERVICES?

2.-LIST OF
RESOURCES

DEVS
models

4.- DISTRIBUTED
SIMULATION OVER SOA

3.- CONFIG

SIMULATION CLIENT APPLICATION
+
; ROOT COUPLED MODEL

(XML)
+

5.- REZ

MY MODELS

Figure 8: Execution of DEVS SOA-Based M&S

5.1 Symmetrical Services Architecture

The Web Service framework is essentially a clieriser framework wherein a Server on requested biieat
provides services. These services are nothingdimpatational code that is executed at the seresrdswith a valid
return value. The mode of communication betweencttent and the server is done using standards Xikk.,
HTTP, and SOAP. This standardized mode of commtinitg@rovides interoperability between various g&g as
the data, expressed in XML, is machine-readable.

In order to implement our DEVS/SOA framework, werdao beyond this client-server paradigm for thrasgaligm

is not distributed in nature. Even though it opesabn a Network (Internet), it is not distributéile needed to
implement a distributed framework to have the cépatf distributed modeling and simulation. Thésulibuted

DEVS protocol has two types of components i.e. @oator and the Simulator that corresponds to pleasumodel

and an atomic model respectively. These compomezed to deploy at remote nodes so that distribexedution

can take place.

In the current SOA framework, the Server can ordis aas a provider of service and the Client onlis &s a
consumer of service. Contrary to this functionalitye DEVS simulation components mentioned above lia
placed anywhere on the network. It is unavoidahé the same Server can act as a provider andsaiman while
executing DEVS simulation protocol. Consequenthg $SOA that executes the DEVS simulation protosol i
constructed such that the servers that provide DE€&/ice can play the role of both the Coordinaod the

kind of simulator -as long as the service upddtessimulation cycle according to the simulator ergielected. The
service is independent in the sense of transitiotfons.
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Simulator. As shown in Figure 8, Step 2 providdistaof resources (servers) available on the Ir@ethat provides
DEVS simulation services. Once the list of ser¥g@vailable to the User, he assigns the role afr@ioator to one
of the servers and rests of them become Simulatdge details on this assignment is provided iotiBa 5.3.

During the execution of DEVS simulation protocahck of the Simulators makes calls to other Simulegoich

calls are executed using the SOA framework. ThésellStors also coordinate with the Coordinator gdime same
transport mechanism. As a result, the same Simuigsitimvoking services from other Simulators whileviding

services to other Simulators or Coordinator. Thais resulted in an architecture that is symmethgadefault i.e. it
acts as both a service provider and a service comsurhe temporal role of a remote node is guidethb DEVS
simulation protocol.

The DEVS simulation layer services are defined separate WSDL that implements this symmetricatetien.
Further, in addition to the roles of Simulator aomer and provider, the architecture allows the termode to act
as either Coordinator or Simulator. This assignnentade at Step 3 in Figure 8, and is elaborat&kction 5.3.

The next few sections give detailed account of sigenmetrical server and client designs that implesien
symmetrical services architecture.

5.2 Server Design

5.2.1 Conceptual Design

5.2.1.1 Abstraction of a Coupled Model with an Atorit Model with DEVS State Machine

One of the significant development steps we undérip this effort is the masking of coupled modeglam atomic
model. Due to closure under coupling of the DEV8&mrfalism, we have an abstraction mechanism by which
coupled model can be executed like an atomic mddetontrast to the DEVS hierarchical modeling, veha
coupled model is merely a container and has caorefipg coupled-simulators (Figure 9), now it is sidered an
atomic model with lowest level atomic simulator diie 10). This has been accomplished by implemgrdim
adapter as shown in Figure 10. The adaptgraph2Atomictakes each coupled component of the model andituses
as an atomic model.

The number of simulators created depends on thebeumf components of the model at the top-level tred

number of servers selected by the user. If the mmoaletains 10 top-level components (including tloatained

digraphs) and the user select 5 servers, then @laions are created in each server. After the wisataulation

process, each simulation service sends a repokttbaihie user containing information related toaliRiresses and
simulator assignment.

root-coordinator

Root-coordinator

coordinator

simulator

COUDled Model

N

Coupled Model  Atomic Mode| e—————

g

AtomucModel Atomchodel —| simulator |s|mu|ator |

Coupled Mod |

| Atomic Model |

| Coupled Modell simulator

‘ Atomic Model || Atomic Model ‘ Digraph2itomic

Adapter
Figure 9: Hierarchical simulator assignment for a
hierarchical model

Figure 10: Hierarchical simulator assignment with
Digraph2Atomic adapter

5.2.1.2 Message Serialization
The issue of message passing and models uploagnis tthrough serialization and SOA technologiesufeg?
illustrates the message serialization process. Vdhesmponent makes an external transition or egedhie output
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function, the message received or emitted is seehland then sent to the coordinator through thrilation
service. The coordinator stores the location ohesamulation service, so he is able to requedhallmessages after
each iteration.

All the communication between the coordinator amdugation services is done through SOA protocoleTh
serialization is done through Java serializatioilities. In a newly developed real-time versioncleasimulator
knows each simulation service at its end (from tiagpinformation). So the communication can be sdhby
passing messages from simulation services to stionlaervices directly, without using the coordorat

5.2.1.3 Centralized Simulation

The centralized simulation is done through a céctardinator which is located at the main serUére coordinator
createsn simulation services over Internet. Each simulatenvice createm simulators in order to simulation
components of the model. Figure 11 shows the psod@ace the simulation starts, the coordinator ebescthe
output function of the simulation services (in Figul: point 0 and 1). After that, the output isgagated and
internal transitions occur. Propagating an outpe&ns that once the coordinator takes the seriatimgzlit from the
simulation services (2 and 3), it is sent to osimulation services by means of coupling informmatié and 5). This
information is known by the coordinator and no oshes all messages must flow through the coordinato

RT
COORDINATOR Output
0.- nextTN propagation COORD.INATOR
(Waiting)
/ Output _

4.- Message Propagation e
3.- Message Serialized \\
Serialized 0.- nextTN o \\ . 0.- nex{TN
SIMULATION SIMULATION ( 3.- Message
RT SIMULATION ;serialized RT SIMULATION
SERVICE SERVICE

External / SERVICE SERVICE

Internal transition S-M External
1-nextTN | (ransition 2.- Message Deserialized Internal Transition 4 Méssage

Transition ‘ -~
Deserialized
1.- ne);tTN 2.- Message

SIMULATOR SIMULATOR

Figure 11: Centralized communication among services Figure 12: Real-time communication among services

RT-SIMULATOR

RT-SIMULATOR

As it appears, the coordinator participates innadissage-passing and is the bottleneck. We desidjg&tbuted
DEVS SOA protocol where the coupling informationdewnloaded to each of the models and coordinaor i
relieved of message-passing. It is described &safsl

5.2.1.4 Real-time Simulation
Real-time (RT) DEVS simulation is defined as theaxion of DEVS simulation protocol in wall-clodknie rather
than logical time. For the real-time (RT) simulati?ve have incorporated one additional service to SOA
framework: the RT simulation service. This serviodends the previous simulation service by meanswof
functions:

Modify external output function

Start simulation

The design is similar in many aspects, but instefaal central coordinator, all the simulation is ebved by an RT
coordinator without any intervention. Furthermotike RT simulation service creates RT simulator<chERT
simulation service knows the coupling informatien,the message passing is made directly from stionlaervice
to simulation service at the other end. The RT dimator is located at the main server. This co@ttincreates
RT simulation services over the Internet. Each &tien service creates RT simulators in order to simulate the
components of the model. After that the couplinfgrimation is broken down (on a per-model basis) semt to the
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corresponding RT simulation service. Figure 12siilates the process. Once the simulation staescdbrdinator
executes theimulateservice and nothing else. The simulate servicéswar internal or external transitions using
real time (0). If an internal transition happens, (the output is generated and propagated usingcolugling
information serializing and de-serializing messa@3 and 4).

5.2.2 Package Design

The global design of the whole architecture at eesvend is as follows, as shown in Figure . Thedeling

package constitutes the DEVS modeling library. Cen&EVS model is received by the servers, it izilehsing an
adapter pattern. Presently, only DEVSJAVA models altowed. But, since this framework follows an @tea
pattern, other Java-based models will be allowefitimre. Figure 14 depicts the classes containdtli;mpackage,
such asDigraph2Atomi¢ RTCouplingfor real-time simulation purposes aMkssageand Atomic classes. Both
Messageand Atomic classes are inherited fromntity which allows serialization and deserializatioktomic

encapsulates a DEVS atomic model Meksagesncapsulates a DEVS message or event.

Figure 13: Server’s package structure for DEVS SOA

Figure 14: Modeling package for DEVS SOA

Thesimulation.api package contains the interface for our DEVS/SOAutdtors. Thesimulation package contains
simulators and coordinators, that$mulator Coordinator, RTSimulatorandRTCoordinatorclasses as shown in
Figure . TheRT prefix indicates that the class is designed fai-tienme simulation. The main difference with other
simulators platforms starts here. In both centealiand real-time simulations, the Coordinator iscexed at the
first server selected by the user. This coordinest@alled through MainServiceclass published as a Web service.
The Coordinator receives the user IP, the namkeofdot coupled model, and a list of IPs. SucholigPs is used to
invoke simulation services in other remote serverghis way, the components of the model are sharaong N
servers, where N is the length of that list. Th@@mator also stores the user IP, the DEVSJAVA eh@ahd a list
of simulation services activated. In the case oitradized simulation, this list is used to propa&gahd to receive
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messages through the coupling protocol storeddrrdbt coupled model. In addition, the Coordinatores the last
event time and the next event time. In the caseaftime simulations, instead of event times, RT&oordinator
only knows the time in which the simulation mustsbepped.

Figure 15: Simulation package in DEVS SOA

The servicepackage contains the services offered. It confdi@isiService SimulationandRTSimulatiorclasses as
shown in

Figure 16.MainServiceis designed to allow upload, compile and start #irmulation process creating the
coordinator. Simulation services are used to steeesimulators used and to establish a communicagtween the
DEVS simulators stored at this server and otherdinators, if any, hosted in other servers. Ongegecould be
executing more than one simulator. It depends emtimber of components that the root coupled mooleains
and the number of servers selected by the uses. i$tthe reason because there is not a uniquéorela¢tween
simulation service and simulator. The assignmersirofulators corresponding to the models at theleopl is done
by default through round-robin mechanism that takaese of model-simulator number mismatch. In certai
applications, it is important that the user or ghieir level program be able to direct any specifudet to any
particular IP server. For example, we are develppipplications where DEVS models act as obserfers-bosted
clients of other services. Clearly, ability to ggsimodels to servers is critical in such an appboa
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Figure 16: Service package in DEVS SOA

The proxy package (Figure 17) contains the proxies of theises. All these classes are automatically genérate
from the WSDL files that are generated from theviser package using Apache Axis framework. The wusgy
needs theMainServiceproxy. The server needs this service and dfiewlationservicesMainServiceacts like a
coordinator for all the lower-level services thrbuigterfaces. It assigns and initializes the cowmattir that starts
other simulators, after distributing the simulatatgespective IPs and initializing the simulatervices. Once the
simulators are active, tHdainServicewaits for them to complete the execution to reeghe logs and simulation
outputs.

5.2.3 Symmetrical Service Design

The simulation engine is implemented in two différevays. The first is the centralized version wibical time

execution and the other is a real-time version. détails below cater to the centralized versiore ©perations of
real-time version are almost the same except tisead of just the coordinator controlling the dation clock,

each of the simulators maintains its own threadeil-time and exchange messages independently wyithe

intervention from coordinator.

As described earlier, this framework is a layemagniework containing two layers:
1. User Layer
2. Simulation Layer

The User layer is called &8ainServicelayer and it interfaces with the Simulation layederneath. The user can
freely consider both the centralized and distridutersion of the simulation algorithm. This fagilis provided at
the second layer of services described in lateicsec However, the centralized mode performs nalotver than
the real-time distributed simulation due to obvioeasons of coordinator loading.

In developing DEVS/SOA client, we considered réalet simulation as the default option. Detailedf@@nance
analysis of both of these implementations is ircpss and will be reported in our forthcoming puddiin.
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Figure 17: Proxy package in DEVS SOA
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5.2.3.1MainServicecompaosition:

TheMainServicdayer provides the set of services that are avigilto the user (as a client). ThkainService.wsdl
is provided in the appendix that the user can aseplement its own client. For better usabilitye Wave
implemented the Client as well and it is descrilvethe following sections. ThilainServicdayer provides the
following services:

- upload It is used to upload the model to the differesmvers. This service enables the user to take their
DEVS models and upload the code physically fronirtheachines to the designated DEVS/SOA server
farm. This service receives (1) the package narh&ghns the folder where the model is saved as#reer
side, (2) the content of the java files, whichridact the DEVS model implementation, (3) the narhthe
java files, and (4) the list of IP addresses wlileeemodel is being uploaded. Once the model isaged to
the first server of the list, the server applicatéxecutes this service in the next server ofiite |
compile This service is used to compile the uploaded rfilds at the Servers and make them ready to
execute the simulation. It receives (1) the packagme, which is the folder where the model was
previously uploaded, (2) the file names of the DEX&del implementation, and (3) the list of IP addes
that are selected by the user and where the medéahulated. In the client application we have deyed,
the first argument is dynamically generated atdlent’'s end and is important because if the maslel
uploaded with the same package name repeatedigetiver class loader does not instantiates theofaest
compiled. To overcome this issue, the model filesndt contain any package declaration and a package
name is assigned at run-time compilation. Oncembedel is compiled at the first server’'s end, thevese
application executes this service in the next sesf/éhe list of IP addresses.
getTopComponentNamedhis service is used to obtain the name of thddepl DEVS model. It receives
the name of the root coordinator and returns theeyasf names. This service may be used to assaaialtie
server address with each of the top-level DEVS camapts.
simulate, simulateAssoc, simulateRT and simulated&RT: The simulation services create a Coordinator
which runs itssimulatefunction. TheRT suffix indicates that a real-time simulation seevis required by
the user. Théssocsuffix indicates that the user is passing relatigRsaddress, model’s name), that is, in
which server the corresponding model is executbd. fonAssodunctions apply a round-robin algorithm.
The main difference among these functions is therdinator created. ACoordinator in the case of
centralized simulation and &iT Coordinatorin the case of real-time simulations (see Figurd2)l In all
cases, such services receive: (1) the IP addregee aflient running the service, (2) the name ef ithot-
coordinator in the DEVS model, and (3) the relatlmtween model names and IP addresses (if it is
provided by the user). In the case of real-timeusation, the service also receives the time to nlesthe
simulation. Finally, the service returns the siniolaresults.

5.2.3.2Simulation service composition:

This is the bottom layer of the two-layerarchitecture and its functionalities are usedh®MainSevicdayer. Its
operations are transparent to the user. Once #radesnands a simulation via th&inServiceclass, the coordinator
(at the coordinator server or main server) requaemany simulation services as IP addresses guoblig the user.
After that, the DEVS model is partitioned and tleerclinator sends every part to its correspondingice Then the
simulation starts, each simulation service creat&®EVS simulator for its models and executes theesponding
output and transition functions (see Figure 11).

It is possible for one simulation service to storere than one simulator for different componenthef same DEVS
model, or to store more than one simulator foredlédht components of different DEVS models. Thisésis solved
as follows. After the main coordinator obtainsrauwiation service at a certain IP address, a newlaior is created
there, identified by the component name plus theadl@ress of the user's machine and containing tBY®
component itself. For example, if the coordinatansinsend a DEVS component namcessorto a server
located at 192.168.1.8nd coming from a user located at 192.168.1.2, themmulation service is required from
192.168.1.5 and a new simulator is created thdemtified byProcessor@192.168.1.2nd containing the model
namedProcessor

Another issue is how to store the simulators crbdiecause web services do not have memory. Tettiiswe are
using the server's memory by means of static veegbr attributes. Hence, the simulation servicetude a static
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table, which associatesmulator namesvith simulator instancesFigure 15 shows this attribute in the Simulation
service class, callesimulators

There is other information stored by the Simulasenvices in the server memory, such as the |Peaddvhere the
services reside and a reporter, which logs allrtf@mation while the simulation is running.

The services provided by the Simulation serviceeagmerated below:
- newSimulator This service receives a DEVS component and a iiiemtit creates a new DEVS simulator

identified by the name described above and comgitiie DEVS component received.
initialize: This service receives the name of the simulatouired and the current time. It takes the
corresponding simulator from its table (using thene received) and initializes it.
receivelnput: This service receives four arguments: (1) the nafiibe simulator required, (2) the name of
the port where the message is coming from, (3)niessage and (4) the name of the port where the
message is going to. The simulation service takesstmulator from its table and executes the same
function calledreceivelnputwhich stores the message received at the inphieafodel.
lambda: It receives the name of the simulator required #m current time. This service takes the
simulator required and executes the output fundédso calledambda)of the DEVS model
deltfnc: This service receives the name of the simulatouired and the current simulation time. The
service takes the simulator and executes an idtemnaxternal or confluent transition function. The
abstracted deltfn is provides in Figure 18. Thieve$ both the classical DEVS and P-DEVS models work
seamlessly with DEVS/SOA simulation framework.
getOutput: This service receives the name of the simulatquired and returns the output stored in its
DEVS model.
getTN: It receives the name of the simulator for whioh time of the next event is returned.
exit: It receives the name of the simulator to be rerddwem the table.
getConsoleThis service receives the IP address of the usstshine, and return the content of the log file
related to this address.
getlp: It returns the IP address of the simulation servic

function deltfcn(double t) {
Message x = input;
if(x==null) {
System.out.printin(
"ERROR RECEIVED NULL INPUT " + model. toString());
return;

}
if (x.iIsSEmpty() && t!=tN) {
return;

}

else if((Ix.isEmpty()) && t==tN) {
double e =t- tL;
model.deltcon(e,x);

}
else if(t==tN) {
model.deltint();

}

else if(!x.isEmpty()) {
double e =t-tL;
model.deltext(e,x);

}

tL=t

tN = tL + model.ta();

input = new Message();

Figure 18: Abstract deltfun in Simulation service
Having described the services available in the DISZ®\ architecture, following is the design of DE®&A

coordinator and simulator that utilize these DE®viges. The coordinator and the simulator are émgnted in
the devsoa.simulatiopackage. This simulator is called as DEVSV/SOAuwator and it acts as an adapter for any
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DEVS simulation engine that executes the DEVS stioh protocol. Currently, it adapts to the DEVSIAV
Version 3.0 as available from ACIMS.

DEVSV/SOA Coordinator:

Equivalent to the Simulation service storing thawdators in a static way, the coordinator alsoestdhe simulators
of the DEVS model in a static hash table, usingghme nomenclature as was stated above (DEVS canpon
name plus client IP address identifying the sinarjatTherefore, such table contains pairs {simulatame,
simulator service}, associating each simulator te@avith the simulation service where it residelse Task of the
coordinator is to execute a typical DEVS loop otee distributed simulators. Figure 19 shows theortigm
executed by theimulatefunction. In such Tabléterationsis the number of cycles of the simulatioms the current
time, tL is the last time eventlN is the next time evengjmulationServices the table of simulation services created
by the coordinator and where the simulators aratést: Then, for a number of cycles, the outputtionds called
through each of the simulation services. It shdichoted that the first argumentlafmbdafunction is a key, which
is the simulator identifier, since different simiales could be located at the same simulation sentiis key must
be provided. After the output function is executib@, outputs of the components are ready to beagatpd. To this
end, thepropagateOutpufunction is called, which propagates the messageerated from the outports to its
corresponding inports. Next, the transition funeti® applied and finally the time is updated.

function  simulate(long iterations)
t=1tN;
for (i=0; i<iterations; i++)
for each  ({key,simService} in simulationServices)
simService.lambda(key, t);
propagateOutput();
foreach  ({key,simService} in simulationServices)
simService.deltfcn(key, t);
tL=t
tN = min(simulationServices.getTN());
t=tN;

Figure 19: DEVS simulation

From the instant in which the coordinator is crdat# stores at any moment the DEVS model (curyentl
DEVSJAVA), the last timed event, the next time evamd the IP address of the user's machine.

It should be noted that the Coordinator is notraise. It is a class, which is used by tiainServiceservice. The
functions implemented in the Coordinator are enateer below:

getTopComponentNameghis function receives the name of the DEVS roatpted model and returns a
list containing the top-component names of the DEU®#lel.

Constructor: The constructor receives the client IP addressnéime of the DEVS model, and the list of IP
addresses where the model is going to be simul&tedce, it creates as many simulators as top-level
components, created by the simulation servicesddcat the IP addresses given in the list.

initialize: This function receives the initial time of simudat. It initializes the simulators.
propagateOutputAs it was stated above, this function takes thpuiufrom the simulators and sends them
to its corresponding inputs.

lamda: It receives the current time, and executes thputdtinction in each of the simulators stored.
deltfcn: This function receives the current time and exestite internal or external transition functions in
the simulators stored.

ta: It is the time advance function and receives tireent time. It takes the minimum next time eveotrf

the simulators stored.

exit: This function calls the exit function of all thémsilation services stored and clean the table of
simulators.

simulate: This function receives the number of cycles ofgimulation, and executes the simulation as was
described before (Figure 19).
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5.3 Client Application

This Section provides the client application toaite DEVS model over an SOA framework using Sinioilats a
Service. From many-sided modes of DEVS model géoerdFigure 7), the next step is the simulationttodse
models. The DEVSV/SOA client takes the DEVS moded€kage and through the dedicated servers hosting
simulation services, it performs the following ogigons:

1. Upload the models to specific IP locations

2. Run-time compile at respective sites

3. Simulate the coupled-model

4. Receive the simulation output at client’s end

The DEVSV/SOA client as shown in Figure 20 operatgbe following sequential manner:

1. The user selects the DEVS package folder at his©imac

2. The top-level coupled model is selected as showrigare 21.

3. Various available servers are selected (Figure 2t&y. number of available servers can be selectee @
least).

4. Clicking the button labelled “Assign Servers to Mb@omponents” the user selects where is goingntalate
each of the coupled models, including the top-lewst, i.e., the main server where the coordinatitirbe
created (Figure 21)

5. The user then uploads the model by clicking theodglbutton. The models are partitioned and digtibu
among the servers chosen in the previous point

6. The user then compiles the models at the served<g clicking the Compile button

Figure 21: Server Assignment to Models

Figure 20: GUI snapshot of DEVSV/SOA client hosting distribaite
simulation
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6. Cross-Platform Execution over DEVS/SOA

6.1 Introduction

In terms of net-ready capability testing, whataguired is the communication of live web servicethwhose of
test-models designed specifically for them. Therapgh we are working on has the following steps:

Specify the scenario

Develop the DEVS model

Develop the test-model from DEVS models

Run the model and test-model over SOA

Execute as a real-time simulation

Replace the model with actual web-service as irgénid scenario.

Execute the test-models with real-world web sewsvice

Compare the results of steps 5 and 7.

ONoU~WNE

Of course, many issues of policy management angriseconsiderations must be taken care of whernexlels
are communicating with live Web-Services. Howevamsidering the fact that for any defense relatéssion-

thread reliability testing the test-models wouldvdahe necessary security provisions, the 8-stepgss listed
above can be executed. This work would also invgeeeration of DEVS models from WSDLs specificasioA

small portion of BPMN-to-DEVS transformation is debed in [31].

One other section that requires some descriptiothés multi-platform simulation capability as progi by
DEVSV/SOA framework. It consists of realizing dibtited simulation among different DEVS platforms or
simulator engines such as DEVSJAVA, DEVS-C++, Btorder to accomplish that, the simulation servigdl be
developed that are focused on specific platfornosydver, managed by a coordinator. In this manter,whole
model will be naturally partitioned according teeithrespective implementation platform and exegutime native
simulation service. This kind of interoperabilityhare multi-platform simulations can be executedhwatur
DEVSML integration facilities. DEVSML will be usetb describe the whole hybrid model. At this levisle
problem consists of message passing, which has ¢mead in this work by means of an adapter patierthe
design of the “message” class (used in Figure Xl ). Figure 22 shows a first approximation. THetfprm
specific simulator generates messages or evertshésimulation services will transform these folah-specific-
messages (PSMsg) to our current platform-indeparntdessage (PIMsg) architecture developed in DEV&/SO

COORDINATOR

(Waiting)
l )

/

uipui

Propagation

O-nextTN-—~_ .=~ ™~ =% _0-nextTN
- ¢
SIMULATION 3= PIMsg SIMULATION
serialized

SERVICE SERVICE

DEVS-C++

DEVSJAVA

\ Externai I
Transition 4.- PSMsg

|
2.- P‘SMsg \ /

|
|
1.- nextTN 2.-PSI
\[ SIMULATOR ],/ ( SIMULATOR 1

| DEvssava | DEVS-C#+

nnnnnnn

Transition

Figure 22: Cross-platform execution. First approximation
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Hence, we see that the described DEVS/SOA frameeamkbe extended towards net-ready capabilityntgsiihe
DEVS/SOA framework also needs to be extended tosvamalti-platform simulation capabilities that alldest-
models be written in any DEVS implementation (dayxa and C++) to interact with other as services.

However, a major drawback of our current architextis that the user must send the whole DEVS model
implemented under all the platforms to use, whilmat a good solution. Next, we propose a modificabn the
Coordinator creation process that in some mantiewysto the user to store each part of the modétem in its
corresponding platform.

6.2 Multi-platform DEVS/SOA architecture

Figure 23 depicts an example of a multi-platformM3Emodel. Each atomic or coupled component may be
implemented using different simulation enginesjechplatforms In Figure 23, SUBMODEL A is implemented
using DEVSJAVA [9], SUBMODEL B by means of aDEVS+€) [38], and SUBMODEL C using xDEVS (Java)
[4].

Let us suppose that the whole model is implemeunsaty DEVSJAVA. In our current DEVS/SOA architeauthe
application sends the whole model (root-coupled ehdacluded) to the servers by means of tipdoad service,
where all the files get compiled and finally, iteexites the model sending serialized messages asimiogation
services. This situation is not valid for the mulatform model depicted in

Figure , since the scenario cannot be compiledvasode.

In our proposed approach, we define the root coatdr by means of Blatform Independent Model (PlMjor
example, DEVSML. We may use the structure desaorptf DEVSML to compose the root coupled model, and
send it to the main server, which will distribulbe tsub-models among its corresponding servers.

Figure shows how a multi-platform DEVS model mayaxecuted using our proposed architecture. We €¢fia
root-coupled model using DEVSML (top of the Fig@4). The coupled model is treated as an atomic hthdeto
the inherent architecture of DEVS/S@#graph2Atomicadapter. Consequently, it is immaterial if the-suidel is
atomic or coupled (Section 5.2.1.1).

ROOT COUPLED MODEL

_, SUBMODEL A

(DEVSJAVA)
SUBMODEL C
(xDEVS)
SUBMODEL B
(aDEVS)

Figure 23: Multi-platform DEVS model

The DEVSML document in the Figure 23 states thatrtfain server is located at 192.168.1.3. This senaeives
the DEVSML document and all the source code, thistds sub-models to respective servers and crélages
coordinator. For example, the main server sehglsModelA.javao the server located at 192.168.1.7, where the
DEVS/SOA java implemented server compiles it. Tame happens with the correspondBigbModelB.cpmnd
SubModelC.java After compiling all sub-models, the main serveeates one simulation service for each sub-
model. Figure 24 (right side) shows how coordinagimulation services, and simulators are creafée. main
server creates a DEVSJAVA-based simulation serkdcated at 192.168.1.7, which also creates a DEW3JA
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based simulator to stoBubModelAThe same occurs with sub-models B and C, bR addresses 192.168.1.5 and

192.168.1.9 resp

The rest of the behavior of the application isghme that in our current architecture. Messagepas®sed by means

ectively.

of an adapter pattern, which as Figure depicty, Imeatranslated into different platforms.

DEVSML MODEL
L
SOADEVS
(MULTI-PLATFORM)
ROOT COUPLED MODEL
COORDINATOR
192.168.1.3
| suBMODEL A
BT »/%
SUBMODEL € SIM. SERVICE SIM. SERVICE SIM. SERVICE
(XDEVS) (DEVSJAVA) (aDEVS) (xDEVS)
192.168.1.7 192.168.1.5 192.168.1.9
| suBMODEL B
(aDEVS) 7
A4 A
SIMULATOR SIMULATOR SIMULATOR
(DEVSJAVA) (aDEVS) (xDEVS)
SubModelA SubModelB SubModelC
=

Figure 24: Multi-platform DEVSV/SOA proposed architecture
7. Applications

This section contains two sub-sections. Sectiord@als with an example in lab-setting through whialious
concepts laid out in earlier sections are demotestr&ection 7.2 brings about a real-world appbcathat could
utilize the capabilities provided by DEVS/SOA franuek.

7.1 Joint Close Air Support Example

The JCAS system requirements come in many formratstaserved as a base example to test many dbtHeIP
earlier processes for requirements-to-DEVS transfdion. It was specified using the state-basedagubr, BPEL-
based approach and restricted natural languag®agpf31]. This case study describes all thredefapproaches
leading to an executable DEVS model with identiiatulation results. Finally, the executable modeéxecuted
over a net-centric platform using DEVSML and DEVS/Sarchitecture.

The Joint Close Air Support Model is expressedianpEnglish as shown in Figure 25 below. It im@a#i example
involving components exchanging messages towaisranon objective. The requirements are then treetsio
various DEVS generating modes. We shall see theutioa of JCAS for each of the approaches. The corapts
of JCAS model are:

1. JTAC

2. UAV

3. CAOC

4, USMC Aircraft
5. AWACS
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The scenario is as follows:

JCAS JMT Operational Scenario #1

A.

Special Operations Force (SOF) (AFSOC and NSW) JTAC working
with Operational Detachment-Alpha (ODA) is tasked to request
Immediate CAS on a stationary mechanized target in mountainous
terrain. A Predator unmanned aerial vehicle (UAV) is on station for
support.

SOF JTAC contacts AWACS with request. AWACS passes the
request to Special Operations Liaison Element (SOLE) in the
Combine Air Operations Center (CAOC).

Joint Special Operations Task Force (JSOFT) approves the request
and CAOC assigns a section of USMC F/A-18Ds, F-15Es, and a
single B-1B. Ordnance consists of 20mm, Joint Direct Attack
Munitions (JDAMSs), and Laser Guided Bombs (LGBSs).

Aircraft get situational brief from AWACS aircraft while in route, then
switch to SOF JTAC for Terminal Attack Control and deconfliction
from orbiting UAV. A 9-Line brief will be given to each section/single
aircraft. JTAC will continue to execute CAS missions until all
weapons are expended.

We approached the scenario using a BPMN diagrama.stkenario in Figure 25 is expressed as a BPMNatiag
shown in Figure 26 below. The BPMN diagram wastecananually using the tool Borland Eclipse Toge2G06.
The Eclipse Together tool generated the correspgndiipel and .wsdl files for the JCAS scenariotoltal 10 files

Figure 25: JCAS Operational Scenario

were generated (5 .bpel and 5 .wsdl files). Theegpgrd files are shown in Figure 27.
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Figure 27: Snapshot of a BPMN-to-DEVS

. Figure 28: Coupled scenario for JCAS model
Transformation tool

We took these generated files to our BPEL-to-DEMS4formation tool [31] and generated the DEVS rhodeof
these files. The transformation process generdteddlowing .java files (which include additionfiles as well)
shown in Figure 27 above.

1. JCAS.java

2. JTAC.java

3. AWACS.java

4. CAOC.java

5. UAV.java

6. USMCAircraft.java

7. CASResources.java

8. CASResourceSpec.java
9. CASResSpec.java

10. ceaseAttackUSMC.java
11. CONST .java

12. getReady.java

13. initialAttack.java

14. latLong.java

15. requestDeconflict.java
16. requestTAC.java

17. sitBrief.java

18. sitBriefRequest.java
19. TimerMessage.java

The additional files correspond to various messdbes were exchanged in the scenario. The filethé bold
(above) are the main component files that conts@JEVS state machine.

Finally, using the BPMN-to-DEVS tool, the packagasawcompiled run-time and simulation was executdte T
Execute button brings up the DEVSJAVA SimulatiomWer (Figure 28) which executes the simulation.

Net-centric Execution of JCAS

Execution of JCAS DEVS models on net-centric SOAtfpkm was done using the DEVS/SOA tool. The client
application as described in Section 5.3 was usexdgoute the operation. Two servers were seleotedrnonstrate
the concept (as shown in Figure 29). Both the seraee located at ACIMS lab, University of Arizortdowever
other server at Spain, University Computense derMamdere also used in various testing sessions Alown in
Figure 29 (in the console window) is the procestle$ being uploaded, compiled and the simulatioprogress.
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Figure 29: DEVSV/SOA client running the JCAS model using Slation services on two hosts

Finally, when the simulation is over, the consakpthys the following output. The simulation logsrh both of the
servers are categorically displayed. Figure 30vweloows the complete console log for all the openatdone
using DEVS/SOA client.

Models assigned specifically to respective Server | P:
--Component Model: JCASNum1 --> 150.135.220.240:808 0
--Component Model: USMCAircraft --> 150.135.220.240 :8080
--Component Model: CAOCobserver --> 150.135.220.240 :8080

--Component Model: UAV --> 150.135.218.205:8080
--Component Model: CAOC --> 150.135.218.205:8080
--Component Model: JTAC --> 150.135.218.205:8080
--Component Model: AWACS --> 150.135.218.205:8080

Uploading in progress... please wait...

Initiating UPLOAD...

Uploading files to server 150.135.218.205:8080
Files uploaded.

Uploading files to server 150.135.220.240:8080
Files uploaded.

Compilation in progress....please wait....

Starting compilation at remote servers.....
Compiling project at 150.135.218.205:8080...
Project compiled.

Compiling project at 150.135.220.240:8080...
Project compiled.

Waiting to start SIMULATION....

Simulation in Progress....please wait...
Running simulation ...

11 iterations.

Simulators output:

150.135.218.205 output:
JTAC sending message: << port: InmediateCASOut va lue: CASResourcesSpec >>
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State at: JTAC is: waitForAssignment

AWACS sending message: << port: requestimmediateC ASOut value: CASResourcesSpec
>>
State at: AWACS is: doSurveillance

CAOC sending message: << port: readyOrderOut valu e: getReady port:
YouCanUseUSMCAircraftOut value: CASResources >>
State at: CAOC is: passive

JTAC sending message: << port: TACCommandOut valu e: initialAttack >>
State at: JTAC is: continueExecution

UAV sending message: << port: targetLocationOut v alue: (Lat,Long) >>
State at: UAV is: passive

AWACS sending message: << port: sitBriefOut value : sitBrief >>
State at: AWACS is: doSurveillance

JTAC sending message: << port: TACCommandOut valu e: ceaseAttack >>

State at: JTAC is: passive

150.135.220.240 output:

USMCAiIrcraft  sending message: << port: requestFor TACOut value: requestTAC >>
State at: USMCAircraft is: waitForTAC

USMCAircraft ~ sending message: << port: sitBriefRe questOut value:
sitBriefRequest port: deconflictRequestOut value: r equestDeconflict >>
State at: USMCAircraft is: attack

USMCAircraft  sending message: << port: fireComman d value: fire >>

State at: USMCAircraft is: attack

SIMULATION over!

Figure 30: Simulation output at client’s application using D&SOA client

7.2 Distributed Multi-level Test Federations

A DEVS distributed federation is a DEVS coupled mlogthose components reside on different networleaahd
whose coupling is implemented through middlewaneneativity characteristic of the environment, eSQAP for
GIG/SOA. The federation models are executed by BEWnulator nodes that provide the time and dathanxge
coordination as specified in the DEVS abstract $aou protocol.

As discussed earlier, in the general concept oéexpental frame (EF), the generator sends inputsdd@&oS under
test (SUT), the transducer collects SUT outputsdewklops statistical summaries, and the acceptmitors SUT
observables making decisions about continuatideronination of the experiment [18]. Since the $8omposed

of system components, the EF is distributed amar§y &mponents, as illustrated in Figure Bach component
may be coupled to an EF consisting of some subGeaeperator, acceptor, and transducer componergs. A
mentioned, in addition an observer couples thedethe component using an interface provided byintegration
infrastructure. We refer to the DEVS model thatgists of the observer and EF agst agent

Net-centric Service Oriented Architecture (SOA)vides a currently relevant technologically feasitgalization of
the concept. As discussed earlier, the DEVS/SOrastfucture enables DEVS models, and test agem@riicular,
to be deployed to the network nodes of interestillAstrated in Figure 31, in this incarnation, thetwork inputs
sent by EF generators are SOAP messages sentdp Bfs as destinations; transducers record theahrof
messages and extract the data in their fields, ewhdceptors decide on whether the gathered dateafied
continuation or termination is in order [31].

Since EFs are implemented as DEVS models, distib&t-s are implemented as DEVS models, or agenig as
have called them, residing on network nodes. Sudedaration, illustrated in Figure 32, consists REVS
simulators executing on web servers on the nodekagging messages and obeying time relationshigeruhe
rules contained within their hosted DEVS models.
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Figure 31: Deploying Experimental Frame Agents and Observers
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Figure 32: DEVS Test Federation in GIG/SOA Environment

The linguistic levels of interoperability [37] priole a basis for further structuring the test insientation system.
In the following sections, we discuss the impleraéioh of test federations that simultaneously ojgeaathe
syntactic, semantic, and pragmatic levels (Fig@e 3
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Figure 33: Simultaneous testing at multiple levels

7.2.1 Syntactic Level — Network Health Monitoring

From the syntactic perspective, testing involveseasing whether the infrastructure can supportspgeed and
accuracy needed for higher level exchange of inftion carried by multimedia data types, individyadind in

combination. We now consider this as a requirententontinually assess whether the network is geffity

“healthy” to support the ongoing collaboration.gifie 34 illustrates the architecture that is ingpli®y the use of
subordinate probes. Nodal generator agents actpratees to meet the health monitoring Quality afvige (QOS)
thresholds determined from information suppliedtiy higher layer test agents, viz., the objectivethe higher
layer tests.

Probes return statistics and alarm informationh transducers/acceptors at the DEVS health lapérhwin turn
may recommend termination of the experiment atékelayer when QOS thresholds are violated. IERtior real-
time evaluation of network health, the SUT is thework infrastructure (OSI layers 1-5) that supgdrigher
session and application layers. QOS measures #ne lvels required for meaningful testing athigher layers to
gather transit time and other statistics, providinglity of service measurements.

For messages expressed in XML and carried by SOARIeware such messages are directly generatetheby t
DEVS generators and consumed by the DEVS transsfaceeptors. Such messages experience the network
latencies and congestion conditions experiencethbgsages exchanged by the higher level web serienss.
Under certain QOS conditions however, video strehmed other data typed packets may experienceretlitfe
conditions than the SOAP-borne messages. For theseed to execute lower layer monitoring underctiv@rol of

the nodal EFs.

The collection of agent EFs has the objective skasing the health of the network relative to tli@SQhat it is
providing for the concurrent higher level tests.uShsuch a distributed EF is informed by the naffrehe

concurrent test for which it monitoring network hbaFor example, if a higher level test involvesleganges of a
limited subset of media data types (e.g., text amtio), then the lower layer distributed EF neely omonitor the

subset of types.
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Figure 34: Multi-layer testing with Network Health Monitoring

7.2.2 Semantic Level — Information Exchange in Coll  aborations

Mission threads consist of sequences of discretnration exchanges. A collaboration service sugspsuch
exchanges by enabling collaborators to employ &taiof media, such as text, audio, and video, amious
combinations. For example, a drawing accompanied Wyice explanation involves both graphical andi@media
data. Further, the service supports establishingymer/consumer relationships. For example, thphical/audio
combination might be directed to one or more pigdiats interested in that particular item. From altilevel
perspective, testing of such exchanges involvegrpatic, semantic, and syntactic aspects. From thgnpatic
point-of-view, the ultimate worth of an exchangéd@v well it contributes to the successful and tinmmpletion
of a mission thread. From the semantic perspectiveemeasures of performance involve the speedaaadracy
with which an information item, such as a grapH@adio combination, is sent from producer to consum
Accuracy may be measured by comparing the recéigadto the sent item using appropriate metrics.éxample,
is the received graphic/audio combination withinageeptable “distance” from the transmitted comitodma where
distance might be measured by pixel matching incise of graphics and frequency matching in the oswudio.
To automate this kind of comparison, metrics mwestichosen that are both discriminative and quickampute.
Further, if translation is involved, the “meaningf’'the item must be preserved as discussed abdse, the delay
involved in sending an item from sender to receiwarst be within limits set by human psychology ahgisiology.
Such limits are more stringent where exchangescantingent on immediately prior ones as in a cosaton.
Instrumentation of such tests is similar to thahatsyntactic level to be discussed next, withuthéerstanding that
the complexity of testing for accuracy and speeaf & higher order at the semantic level.

7.2.3 Pragmatic Level — Mission Thread Testing

A test federation observes an orchestration of seiices to verify the message flow among partidipadheres to
information exchange requirements. A mission tlirsaa series of activities executed by operatiomales and
employing the information processing functions @baservices. Test agents watch messages senteided by
the services that host the participating operationges. Depending on the mode of testing, theaedtitecture
may, or may not, have knowledge of the driving misshread under test. If a mission thread is ¢peixecuted and
thread knowledge is available, testing can do anlote than if it does not.
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With knowledge of the thread being executed, DE¥St tagents can be aware of the current activitghef
operational nodes it is observing. This enableagent to focus more efficiently on a smaller seinessages that
are likely to provide test opportunities.

7.2.4 Measuring Success in Mission Thread Execution s

The ultimate test of effectiveness of an integratiiofrastructure is its ability to support successiutcomes of
mission thread executions. To measure such effsatss, the test instrumentation system must beniefd about
the events and messages to expect during an execincluding those that provide evidence of susagsfailure,
and must be able to detect and track these evadtsiassages throughout the execution.

8. Conclusions

We addressed the problem of net-centricity withdbeelopment of DEVS/SOA, which is the SOA implemagion

of DEVS simulation engine so that models can becaesl remotely as well as in a distributed manrsngu
Simulation as a Service within a SOA framework. TOEVS/SOA framework provides the capability to send
models to remote locations, run the simulation frattmer computers and partition the hierarchicalpted model
over a set of server farms that host Simulationiser

The integration of enhanced MVC, DEVSML and DEVS/@long with the automated model generation from
multifarious modes of requirement specificatiorsuitad in a unifying framework called DUNIP (Figu88).

In this development effort, two implementationsDEVS simulation protocol have been presented. énfitist, the
simulation process is centralized by means of ther@inator, which receives and propagates mesdag®sone
simulation service to others. There are no chatgéise DEVS simulation protocol in this implemerdatbut the
real-time Simulation service does require the satioih protocol to be tailored for SOA.

We also described the development of SOA client pinavides DEVS-based Services specifically to execthe
models as a running simulation. The primary ‘sirtiald service comprise of many helper services thate also
developed. We also went beyond the current SOAdramnk and proposed a symmetrical SOA that is intperéo
distributed execution.

We also demonstrated the DEVS/SOA framework witlea world application of network health monitoringd
illustrated the concepts with an example of Joitds€ Air Support. This research work has preseptedf of
concept for DEVS based M&S over SOA. With the emdeahDoDAF [32], automated generation of DEVS model
from DoDAF specifications can be executed and ttohitecture be simulated over a net-centric platfolhe
DUNIP [31] process also describes many other wayautogenerate DEVS models from various other tyges
mission-thread specifications, for example, BPMNERP and message-based restricted Natural Language
Progressing (NLP). A Sample demonstration of DUK#HR be seen at [33]. In order to 'execute (as aeljiadset
of scenario instructions over net-centric platfothg following capabilities must exist:

1. Transformation of the scenario specifications tael, which is a DEVS model in this case

2. Execution of model over SOA

3. Communication using XML as middleware.

The first step is described in [31] and step 2 a@rate presented in this paper. The next stage alf/sin of this
mission-thread statement is the development ofraatted test models and their execution over SOAowated
test-model generation is discussed in [18, 31]RBY¥S model execution can be performed by the wodsented
here.
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8.1 Future Work

The present research work has the following scop&ufure development:
Towards standardization of DEVS formalism [24]
The DEVSML framework developed the atomic and ced@dTDs as meta-models towards collaborative
DEVS model development. They are proposed withdaa towards their standardization where the DEVS
community can come to a common ground for modedeeand repository management.
Refine the DUNIP process
A Prototype was demonstrated as a final outcomthiefresearch effort. More features like, validatio
consistency checking, etc. should be added to dpvehs a COTS product.
Performance evaluation of distributed DEVS/SOA pcot
The DEVSV/SOA protocol required tailoring of DEV8nsilation protocol for SOA domain. Performance
evaluation of this version is required to comparevith performance of DEVS protocol with current
implementations like DEVS/RMI, DEVS/CORBA etc.
Make it easier for other DEVS groups to participateDEVSML and DEVSV/SOA development by
registering their simulators
DEVSML is developed as a framework for collaboratimodel development and portable model
specifications resulting from net-centric collakara using XML middleware. Remote simulation is one
capability that is also provided by DEVSML. Variosisnulator versions from different groups should be
gathered and worked upon towards standardized O®Dan efficient model-sharing system. Currently,
two simulator implementations, viz. GenDEVS-ACIM8daxDEVS-Spain have been used to provide
proof of concept. Better design of website offerD§EVSML service should be designed that would
facilitate various groups to submit their simulatoplementations.
Make prototype tool as an Educational aide
The demonstrated prototype should be enhancedefmhing DEVS-based Modeling and Simulation
courses. Various manuals and GUI enhancements woeléddded that facilitate learning and future
development.
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