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Abstract 
Discrete EVent Specification (DEVS) environments are known to be implemented over middleware systems such as 

HLA, RMI, CORBA and others. DEVS exhibits concepts of systems theory and modeling and supports capturing the 

system behavior from the physical and behavioral perspectives. Further, they are implemented using Object-

oriented languages like Java and C++. This research work uses the Java platform to implement DEVS over a 

Service Oriented Architecture (SOA) framework. Called the DEVS/SOA, the framework supports a development and 

testing environment known as DEVS Unified Process that is built on a model-continuity-based life cycle 

methodology. DEVS Unified Process allows DEVS-based Modeling and Simulation (M&S) over net-centric 

platforms using DEVS/SOA. This framework also provides the crucial feature of run-time composability of coupled 

systems using SOA. We describe the architecture and designs of the both the server and the client. The client 

application communicates with multiple servers hosting DEVS simulation services. These Simulation services are 

developed using the proposed symmetrical services architecture wherein the server can act as both a service 

provider and a service consumer contrary to the unidirectional client-server paradigm. We also discuss how this 

Services based architecture provides solutions for cross-platform distributed M&S. We demonstrate DEVS/SOA 

framework with a scenario of Joint Close Air Support specified in Business Process Modeling Notation (BPMN). We 

also provide a real-world application of Network health monitoring using DEVS/SOA layered architectural 

framework. 

1. Introduction 

 
DEVS environments such as DEVSJAVA, DEVS-C++, and others [9] are embedded in object-oriented 

implementations, they support the goal of representing executable model architectures in an object-oriented 

representational language. As a mathematical formalism, DEVS is platform independent, and its implementations 

adhere to the DEVS protocol so that DEVS models easily translate from one form (e.g., C++) to another (e.g., Java) 

[10]. Moreover, DEVS environments, such as DEVSJAVA, execute on commercial, off-the-shelf desktops or 

workstations and employ state-of-the-art libraries to produce graphical output that complies with industry and 

international standards. DEVS environments are typically open architectures that have been extended to execute on 

various middleware such as the DoD’s HLA standard, CORBA, SOAP, and others and can be readily interfaced to 

other engineering and simulation and modeling tools [2, 9, 27, 28, 30]. Furthermore, DEVS operation over web 

middleware (SOAP) enables it to fully participate in the net-centric environment of the Global Information Grid/ 

Service Oriented Architecture (GIG/SOA) [8]. As a result of recent advances, DEVS can support model continuity 

through a simulation-based development and testing life cycle [2].  This means that the mapping of high-level 

requirement specifications into lower-level DEVS formalizations enables such specifications to be thoroughly tested 

in virtual simulation environments before being easily and consistently transitioned to operate in a real environment 

for further testing and fielding. 

 
DEVS formalism categorically separates the Model, the Simulator and the Experimental frame.  However, one of 

the major problems in this kind of mutually exclusively system is that the formalism implementation is itself limited 

by the underlying programming language. In other words, the model and the simulator exist in the same 

programming language. Consequently, legacy models as well as models that are available in one implementation are 
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hard to translate from one language to another even though both the implementations are object oriented. Other 

constraints like libraries inherent in C++ and Java are another source of bottleneck that prevents such 

interoperability.  

 

Brief Overview of Capabilities Provided by DEVS 

 

The prime motivation comes from an editorial by Carstairs [1] that demands a M&S framework at higher levels of 

system specifications where System of systems interact together using net-centric platform. At this level, model 

interoperability is one of the major concerns. The motivation for this work stems from this need of model 

interoperability between the disparate simulator implementations and provides a means to make the simulator 

transparent to model execution. DEVS, which is known to be component-based system, based on forma systems 

theoretical framework is the preferred means. Table 1 outlines how it could provide solutions to the challenges in 

net-centric design and evaluation. The net-centric DEVS framework requires enhancement to the basic DEVS 

capabilities, which are provided in later sections. 

 

Desired M&S Capability for T&E Solutions Provided by DEVS Technology 

Support of DoDAF need for executable 

architectures using  M&S such as 

mission based testing for GIG SOA 

DEVS Unified Process [31] provides methodology and SOA 

infrastructure for integrated development and testing, extending 

DoDAF views [32]. 

Interoperability and cross-platform 

M&S using GIG/SOA 

Simulation architecture is layered to accomplish the technology 

migration or run different technological scenarios [13, 17]. 

Provide net-centric composition and integration of DEVS 

‘validated’ models using Simulation Web Services [19] 

Automated test generation and 

deployment in distributed simulation 

Separate a model from the act of simulation itself, which can be 

executed on single or multiple distributed platforms [10]. With 

its bifurcated test and development process, automated test 

generation is integral to this methodology [18]. 

Test artifact continuity and traceability 

through phases of system development 

Provide rapid means of deployment using model-continuity 

principles and concepts like “simulation becomes the reality” 

[2]. 

Real time observation and control of 

test environment  

Provide dynamic variable-structure component modeling to 

enable control and reconfiguration of simulation on the fly [14-

17]. Provide dynamic simulation tuning, interoperability testing 

and benchmarking. 

Table 1: Solutions provided by DEVS technology to support of M&S for T&E 

 

Furthermore, this work aims to develop and evaluate distributed simulation using the web service technology. After 

the development of World Wide Web, many efforts in the distributed simulation field have been made for modeling, 

executing simulation and creating model libraries that can be assembled and executed over WWW. By means of 

XML and web services technology these efforts have entered upon a new phase. We proposed DEVS Modeling 

Language (DEVSML) [19] that is built on eXtensible Markup Language (XML) [29] as the preferred means to 

provide such transparent simulator implementation. A prototype simulation framework called DEVS/SOA has been 

implemented using web services technology. The central point resides in executing the simulator as a web service. 

The development of this kind of frameworks will help to solve large-scale problems and guarantees interoperability 

among different networked systems and specifically DEVS-validated models. This paper focuses on the overall 

approach, and the symmetrical SOA-Based architecture that allows for DEVS execution as a Simulation SOA. 

 

The paper is organized as follows. The next section provides information about the related work in distributed 

simulation and DEVS standardization efforts. Section 3 describes the underlying technologies such as DEVS, Web 

Services, XML, and DEVS Modeling Language (DEVSML). Section 4 introduces DEVS/SOA and presents its 

relationship with DEVS Unified Process (DUNIP) along with DEVSML. It also compares with Model Driven 

Architecture (MDA) with DUNIP. Section 5 presents the DEVS/SOA distributed simulation framework in detail. It 

provides the symmetrical web services architecture, the conceptual design, the implemented packages and the Web 
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Service design architecture. By symmetrical server we mean that it acts as both a service provider and a service 

consumer. This section presents both the server and client designs. Section 6 extends the DEVS/SOA framework 

towards cross-platform distributed simulation framework and provides theoretical basis to conduct cross-platform 

simulation on SOA. It discusses Interoperability. Section 7 provides one illustrative example that describes the 

complete life-cycle in DEVS Unified Process and how a model is made Net-centric executable using DEVS/SOA. It 

also provide two other applications that relate to Mission Thread modeling as applicable to DoDAF and a proactive 

network health monitoring system. Finally, Section 8 provides conclusions and open research lines. 

2. Related Work 
 

There have been a lot of efforts in the area of distributed simulation using parallelized DEVS formalism. Issues like 

‘causal dependency’ [10] and ‘synchronization problem’ [20] have been adequately dealt with solutions like: 1. 

restriction of global simulation clock until all the models are in sync, or 2. rolling back the simulation of the model 

that has resulted in the causality error. Our chosen method of web centric simulation does not address these 

problems as they fall in a different domain. In our proposed work, the simulation engine rests solely on the Server. 

Consequently, the coordinator and the model simulators are always in sync.  

 

Most of the existing web-centric simulation efforts consist of the following components: 

1. the Application: The top level coupled model with (optional) integrated visualization. 

2. Model partitioner: Element that partitions the model into various smaller coupled models to be executed at 

a different remote location 

3. Model deployer: Element that deployed the smaller partitioned models to different locations 

4. Model initializer: Element that initializes the partitioned model and make it ready for simulation  

5. Model Simulator: Element that coordinate with root coordinator about the execution of partitioned model 

execution. 

 

The Model Simulator design is almost same in all of the implementation and is derived directly from parallel DEVS 

formalism [10]. There are however, different methods to implement the former four elements. DEVS/Grid [21] uses 

all the components above. DEVS/P2P [22] implements step 2 using hierarchical model partitioning based on cost-

based metric. DEVS/RMI [30] has a configuring engine that integrates the functionality of step 1, 2 and 3 above. 

DEVS/Cluster [23] is a multi-threaded distributed DEVS simulator built on CORBA, which again, is focused 

towards development of simulation engine. 

 

As stated earlier, the efforts have been in the area of using the parallel DEVS and implementing the simulator engine 

in the same language as that of the model.  

 

These efforts are in no means similar to what we had proposed in our paper [19]. Our work is focused towards 

interoperability at the application level, specifically, at the model level and hiding the simulator engine as a whole. 

We are focused towards taking XML just as a communication middleware, as used in SOAP, for existing DEVS 

models, but not as complete solution in itself.  We would like the user or designer to code the behavior in any of the 

programming languages and let the DEVSML SOA architecture be responsible to create a coupled model, 

integrating code in either of the languages and delivering us with an executable model that can be simulated. The 

user need not learn any new syntax, any new language; however, what he must use is the standardized version of P-

DEVS implementation such as DEVSJAVA Version 3.0 [9] (maintained at www.acims.arizona.edu).   

 

This kind of capability where the user can integrate his model from models stored in any web repository, whether it 

contained public models of legacy systems or proprietary standardized models will provide more benefit to the 

industry as well as to the user, thereby truly realizing the model-reuse paradigm. 

 

In further sections we will provide details about the DEVS/SOA server and client, design of DEVS Simulator 

interface and standardized libraries that are used in our implementation. 
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3. Underlying Technologies 

3.1 DEVS 
DEVS formalism consists of models, the simulator and the Experimental Frame. We will focus our attention to the 

two types of models i.e. atomic and coupled models. The atomic model is the irreducible model definitions that 

specify the behavior for any modeled entity. The coupled model is the aggregation/composition of two or more 

atomic models connected by explicit couplings. The coupled model N can itself be a part of component in a larger 

coupled model system giving rise to a hierarchical DEVS model construction. Detailed descriptions about DEVS 

Simulator, Experimental Frame and of both atomic and coupled models can be found in [10].  Next we review some 

of the background required for discussion on the usage of DEVS foundation. 

3.1.1 DEVS Specification 

The DEVS formalism was introduced by Bernard Zeigler [10] to provide a mean of modeling discrete event systems 

in a hierarchical and modular way.  DEVS exhibits the concepts of system theory and modeling, and supports 

capturing the system behavior in the physical and behavioral perspectives.  A DEVS model can be either an atomic 

or coupled model.  In the DEVS formalism, a large system can be modeled by both atomic and coupled models.  

The atomic model is the basic model that describes the behavior of a component.  A Discrete Event System 

specification (DEVS) atomic model is defined by the structure in Figure 1. 

 
Figure 1: Classic DEVS Specification 

 

Atomic and coupled models can be simulated using sequential computation or various forms of parallelism.  The 

basic parallel DEVS formalism extends the classic DEVS by allowing bags of inputs to the external transition 

function, and it introduces the confluent transition function to control the collision behavior when receiving external 

events at the time of the internal transition.  The parallel DEVS atomic model is defined by the structure in Figure 2. 

 

 
Figure 2: Parallel DEVS Specification 

 

M = <= <= <= <X, S, Y,    δδδδint,    δδδδext, λλλλ,  ta>>>>    
where 

X is the set of input values 

S is the set of state 

Y is the set of output values 

δδδδint: S →  S is the internal transition function 

δδδδext: Q x X →  S is the external transition function, where 

Q = {(s,e)|s εS, 0 ≦ e ≦ ta(s)} is the total state set, and 

e is the time elapsed since last transition 

λλλλ: S → Y is the output function 

ta: S → R0
+

,inf is the time advance function 

M = <= <= <= <X, S, Y,    δδδδint,    δδδδext, δδδδcon, λλλλ,  ta>>>>    
where 

X is the set of input values 

S is the set of state 

Y is the set of output values 

δδδδint: S →  S is the internal transition function 

δδδδext: Q x Xb →  S is the external transition function, 

where Xb is a set of bags over elements in X, Q is the total state 

set. 

δδδδcon: S x Xb →  S is the confluent transition function, 

subject to δcon(s,Φ) = δint(s) 

λλλλ: S → Yb is the output function 

ta: S →  R0
+

,inf is the time advance function 
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A DEVS-coupled model designates how atomic models can be coupled together and how they interact with each 

other to form a complex model.  The coupled model can be employed as a component in a larger coupled model and 

can construct complex models in a hierarchical way.  The specification provides component and coupling 

information. The coupled DEVS model is defined as the structure in Figure 3. 

 
 

Figure 3: Coupled DEVS Specification 

 
Three different DEVS formalisms have been introduced.  The classic DEVS formalism treats components 

sequentially, and the parallel DEVS formalism treats components concurrently.  These formalisms also include the 

means to build coupled model from atomic models. 

3.1.2 Hierarchy of Systems specifications 

Systems theory deals with a hierarchy of system specifications which defines levels at which a system may be 

known or specified. Table 2 shows this Hierarchy of System Specifications (in simplified form, see [10]). 

 

• At level 0 we deal with the input and output interface of a system.  

• At level 1 we deal with purely observational recordings of the behavior of a system. This is an I/O relation 

which consists of a set of pairs of input behaviors and associated output behaviors.  

• At level 2 we have knowledge of the initial state when the input is applied. This allows partitioning the  

input/output pairs of level 1 into non-overlapping subsets, each subset associated with a different starting 

state. 

• At level 3 the system is described by state space and state transition functions. The transition function 

describes the state-to-state transitions caused by the inputs and the outputs generated thereupon.  

• At level 4 a system is specified by a set of components and a coupling structure. The components are 

systems on their own with their own state set and state transition functions. A coupling structure defines 

how those interact. A property of coupled system which is called “closure under coupling” guarantees that 

a coupled system at level 3 itself specifies a system. This property allows hierarchical construction of 

systems, i.e., that coupled systems can be used as components in larger coupled systems.  

 

Level Name What we specify  at this level 

4 Coupled 

Systems 

System built up by several component systems which 

are coupled together 

3 I/O System System with state and state transitions to generate the 

behavior 

2 I/O 

Function 

Collection of input/output pairs constituting the  

allowed behavior partitioned according to the initial 

state the system is in when the input is applied 

1 I/O 

Behavior 

Collection of input/output pairs constituting the  

allowed behavior of the system from an external 

Black Box view 

0 I/O Frame Input and output variables and ports together with 

allowed values 

 

Table 2: Hierarchy of System Specifications 

M = <= <= <= <X, Y, D, {Mij},{Ij}, {Zij}>>>>    
   Where 

    X is a set of inputs 

    Y is a set of outputs 

    D is a set of DEVS component names 

    For each i ∈  D,  

     Mi is a DEVS component model 

     Ii is the set of influences for I 

    For each j ∈  Ii, 

     Zij is the i-to-j output translation function. 
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As we shall see in a moment, the system specification hierarchy provides a mathematical underpinning to define a 

framework for modeling and simulation. Each of the entities (e.g., real world, model, simulation, and experimental 

frame) will be described as a system known or specified at some level of specification. The essence of modeling and 

simulation lies in establishing relations between pairs of system descriptions. These relations pertain to the validity 

of a system description at one level of specification relative to another system description at a different (higher, 

lower, or equal) level of specification.  

 

Based on the arrangement of system levels as shown in Table 2, we distinguish between vertical and horizontal 

relations. A vertical relation is called an association mapping and takes a system at one level of specification and 

generates its counterpart at another level of specification. The downward motion in the structure-to-behavior 

direction, formally represents the process by which the behavior of a model is generated. This is relevant in 

simulation and testing when the model generates the behavior which then can be compared with the desired 

behavior.   

 
The opposite upward mapping relates a system description at a lower level with one at a higher level of 

specification. While the downward association of specifications is straightforward, the upward association is much 

less so. This is because in the upward direction information is introduced while in the downward direction 

information is reduced. Many structures exhibit the same behavior and recovering a unique structure from a given 

behavior is not possible. The upward direction, however, is fundamental in the design process where a structure 

(system at level 3) has to be found which is capable to generate the desired behavior (system at Level 1). 

3.1.3 Framework for Modeling & Simulation 

The Framework for M&S as described in [10], establishes entities and their relationships that are central to the M&S 

enterprise (see Figure 2).  The entities of the framework are source system, experimental frame, model, and 

simulator; they are linked by the modeling and the simulation relationships.  Each entity is formally characterized as 

a system at an appropriate level of specification within a generic dynamic system. See [10] for detailed discussion. 

 

Source 

System

Simulator

Model

Experimental Frame

Simulation

Relation
Modeling

Relation

 
 

Figure 4:  Framework Entities and Relationships 

3.1.4 Model Continuity 

Model continuity refers to the ability to transition as much as possible of a model specification through the stages of 

a development process. This is opposite to the discontinuity problem where artifacts of different design stages are 

disjointed and thus cannot be effectively consumed by each other. This discontinuity between the artifacts of 

different design stages is a common deficiency of most design methods and results in inherent inconsistency among 

analysis, design, test, and implementation artifacts [11]. Model continuity allows component models of a distributed 

real-time system to be tested incrementally, and then deployed to a distributed environment for execution. It 

supports a design and test process having 4 steps (see [11]), 

1) Conventional simulation to analyze the system under test within a model of the environment linked by 

abstract sensor/actuator interfaces.  
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2) Real-time simulation, in which simulators are replaced by a real-time execution engines while leaving the 

models unchanged.  

3) Hardware-in-the-loop (HIL) simulation in which the environment model is simulated by a DEVS real-time 

simulator on one computer while the model under test is executed by a DEVS real-time execution engine 

on the real hardware.  

4) Real execution, in which DEVS models interact with the real environment through the earlier established 

sensor/actuator interfaces that have been appropriately instantiated under DEVS real-time execution. 

 
Model continuity reduces the occurrence of design discrepancies along the development process, thus increasing the 

confidence that the final system realizes the specification as desired. Furthermore, it makes the design process easier 

to manage since continuity between models of different design stages is retained. 

 

3.2 Web Services and Interoperability using XML 
Service oriented Architecture (SOA) framework is a framework consisting of various W3C standards, in which 

various computational components are made available as ‘services’ interacting in an automated manner towards 

achieving machine-to-machine interoperable interaction over the network. The interface is specified using Web 

Service Description language (WSDL) [25] that contains information about ports, message types, port types, and 

other relating information for binding two interactions. It is essentially a client server framework, wherein client 

request a ‘service’ using SOAP message that is transmitted via HTTP in XML format. A Web service is published 

by any commercial vendor at a specific URL to be consumed/requested by another commercial application on the 

Internet. It is designed specifically for machine-to-machine interaction. Both the client and the server encapsulate 

their message in a SOAP wrapper. 

3.3 DEVSML 
DEVSML is a way of representing DEVS models in XML language. This DEVSML is built on JAVAML [7], 

which is XML implementation of JAVA. The current development effort of DEVSML takes its power from the 

underlying JAVAML that is needed to specify the ‘behavior’ logic of atomic and coupled models. The DEVSML 

models are transformable back'n forth to java and to DEVSML. It is an attempt to provide interoperability between 

various models and create dynamic scenarios. The layered architecture of the said capability is shown in Figure 5.  

 

 
 

Figure 5: DEVS Transparency and Net-centric model interoperability using DEVSML. 

Client and Server categorization is done for DEVS/SOA implementation 
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At the top is the application layer that contains model in DEVS/JAVA or DEVSML. The second layer is the 

DEVSML layer itself that provides seamless integration, composition and dynamic scenario construction resulting 

in portable models in DEVSML that are complete in every respect. These DEVSML models can be ported to any 

remote location using the net-centric infrastructure and be executed at any remote location. Another major 

advantage of such capability is total simulator ‘transparency’. The simulation engine is totally transparent to model 

execution over the net-centric infrastructure. The DEVSML model description files in XML contains meta-data 

information about its compliance with various simulation ‘builds’ or versions to provide true interoperability 

between various simulator engine implementations. This has been achieved for at least two independent simulation 

engines as they have an underlying DEVS protocol to adhere to. This has been made possible with the 

implementation of a single atomic DTD and a single coupled DTD that validates the DEVSML descriptions 

generated from these two implementations. Such run-time interoperability provides great advantage when models 

from different repositories are used to compose bigger coupled models using DEVSML seamless integration 

capabilities. More details about the implementation can be seen at [MIT07e] 

 

4. Overarching DEVS Unified Process 
 

This section describes the refined bifurcated Model-Continuity process and how various elements like automated 

DEVS model generation, automated test-model generation (and net-centric simulation over SOA are put together in 

the process, resulting in DEVS Unified Process (DUNIP) [31]. The DEVS Unified Process (DUNIP) is built on the 

bifurcated Model-continuity based life-cycle methodology. The design of simulation-test framework occurs in 

parallel with the simulation-model of the system under design. The DUNIP process consists of the following 

elements: 

• Automated DEVS Model Generation from various requirement specification formats  

• Collaborative model development using DEVS Modeling Language (DEVSML) 

• Automated Generation of Test-suite from DEVS simulation model 

• Net-centric execution of model as well as test-suite over SOA 

 

Considerable amount of effort has been spent in analyzing various forms of requirement specifications, viz, state-

based, Natural Language based, Rule-based, BPMN/BPEL-based and DoDAF-based, and the automated processes 

which each one should employ to deliver DEVS hierarchical models and DEVS state machines [31]. Simulation 

execution today is more than just model execution on a single machine. With Grid applications and collaborative 

computing the norm in industry as well as in scientific community, a net-centric platform using XML as middleware 

results in an infrastructure that supports distributed collaboration and model reuse. The infrastructure provides for a 

platform-free specification language DEVS Modeling Language (DEVSML) [MIT07e] and its net-centric execution 

using Service-Oriented Architecture called DEVS/SOA [31,33]. Both the DEVSML and DEVSV/SOA provide 

novel approaches to integrate, collaborate and remotely execute models on SOA. This infrastructure supports 

automated procedures is the area of test-case generation leading to test-models. Using XML as the system 

specifications in rule-based format, a tool known as Automated Test Case Generator (ATC-Gen) was developed 

which facilitated the automated development of test models[6,18]. The integration of DEVSML and DEVS/SOA is 

performed with the layout as shown below in Figure 6.  

 

Various model specification formalisms are supported and mapped into DEVSML  models including UML state 

charts [5], a table driven state-based approach[31],  Business Process Modeling Notation (BPMN) [34.35] or 

DoDAF-based[32]. A translated DEVSML model is fed to the DEVSML client that coordinates with the DEVSML 

server farm. Once the client has DEVSJAVA models, a DEVSML server can be used to integrate the client’s model 

with models that are available at other sites to get an enhanced integrated DEVSML file that can produce a coupled 

DEVSML model. The DEVS/SOA enabled server can use this integrated DEVSML file to deploy the component 

models to assigned DEVS web-server simulated engines. The result is a distributed simulation, or alternatively, a 

real-time distributed execution of the coupled model. 

 



Page 9 of 35 

X
M

L
-B

a
s
e
d
 D

a
ta

 E
x
tra

c
tio

n
 to

w
a
rd

s
 D

E
V

S
 E

le
m

e
n

ts

DEVS

Web-Service

Engine

DEVS

Web-Service

Engine

DEVS Atomic 

Skeletons with BPEL 

Web-port Hooks

DEVS Atomic 

Skeletons with BPEL 

Web-port Hooks

DEVS Atomic 
in DEVSML

DEVS
Model

Generator in
DEVSML

DEVS Coupled

in DEVSML

DEVS

Web-Service

Engines

Simulation-

Based

Testing

DEVSML 
Composition

DEVSML 

Integration

Automated DEVS 
Atomic behavior 

Automated DEVS 

Coupled Scenario

1

2

3

4a

4b

6

6

DEVSML

Server

Distributed

DEVS Execution
Over SOA 

SIMULATION
SERVICES

5

State-based
Specs

Message-Based

Scenario
Specs with
Restricted

NLP

BPMN/BPEL
Based

Scenario

Specs

DoDAF
based

Scenario
Specs

 
 

Figure 6: Net-centric collaboration and execution using DEVSML and DEVS/SOA 

4.1 MDA and DUNIP 
DUNIP is built on the paradigm of Model-Based Engineering, or Model-Driven Architecture (MDA). However, the 

scope of DUNIP goes beyond the MDA objectives. Potential concerns with the current MDA state of art include: 

• MDA approach is underpinned by a variety of technical standards, some of which are yet to be specified 

(e.g. executable UML) 

• Tools developed my many vendors are not interoperable 

• MDA approach is considered too-idealistic lacking iterative nature of Software Engineering process 

• MDA practice requires skilled practitioners and design requires engineering discipline not commonly 

available to code developers. 

 

Further, MDA does not have any underlying Systems theory and groups like INCOSE1 are working with OMG to 

adapt UML to systems engineering. Various other effort like Wegmann [3] have recommended MDA to be utilized 

using an underlying common systems modeling ontology. Testing is included only as an extension of UML, known 

as executable UML [Mel02], for which there is no current standard. Consequently, there is no testing framework 

that binds executable UML and simulation-based testing. Despite these shortcomings, MDA has been adopted by 

Joint Single Integrated Air Picture (SIAP) Systems Engineering Organization (JSSEO) and various 

recommendations have come forth to enhance the MDA process. JSSEO is applying MDA approach toward 

development of aerospace Command and Control (C2) capabilities, for which a single integrated air picture is 

foundational. The data-driven nature of C2 System of Systems (SoS) means that powerful MDA concepts adapt well 

to collaborative SoS challenges.  

 

Current DoD enterprise-level approaches for managing SoS interoperability, like the Net Centric Operations and 

Warfare Reference Model (NCOW/RM), DoD Architecture Framework (DoDAF) and the Joint Technical 

Architecture (JTA), simply do not have the technical strength to deal with the extremely complex engineering 

challenges. We proposed enhanced DoDAF [32] to provide DEVS-based Model engineering. MDA as implemented 

by industry and adapted by JSSEO, does have the requisite technical power, but requires innovative engineering 

practices.   

 

                                                 
1 International Council on Systems Engineering 
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Realizing the importance of MDA concepts and the executable profile of UML, the basic objective of which is to 

simulate the model, JSSEO is indirectly looking at the Modeling & Simulation domain as applicable to SoS 

engineering. Table 3 brings out the shortcomings of MDA in its current state and the capabilities provided by DEVS 

technology and in turn, DUNIP process. 

 

Desired M&S Capability  MDA DUNIP 

Need for executable 

architectures using  M&S  

Yes, although not a 

standard yet 

Yes, underlying DEVS theory  

Applicable to GIG SOA Not reported yet Yes 

Interoperability and cross-

platform M&S using 

GIG/SOA 

-- Yes, DEVSML and DEVSV/SOA provides 

cross-platform M&S using Simulation Web 

Services 

Automated test generation 

and deployment in 

distributed simulation 

-- Yes, based on formal Systems theory and 

test-models autogeneration at various levels 

of System specifications  

Test artifact continuity 

and traceability through 

phases of system 

development 

To some extent, 

model becomes the 

application itself 

Yes 

Real time observation and 

control of test 

environment  

-- Dynamic Model Reconfiguration and run-

time simulation control integral to DEVS 

M&S. Enhanced MVC framework is 

designed to provide this capability 

 

Table 3: Comparison of MDA and DUNIP 

 

MDA as applied to Integration of Process-Driven SOA Models 

In an independent study [36], Model Driven Software Development (MDSD) was applied to the integration of 

process-driven SOA models. UML2 was used as the basis towards integration. Their approach is based on the notion 

of domain-specific languages (DSL) for modeling various types of models. Once DSL has been identified, its meta-

model is created that represents this particular modeling domain. Meta-models are defined in terms of meta-meta-

model. In UML, this is the meta object facility (MOF). They created a meta-meta-model that would define both the 

UML2 meta-model and their selected DSL extensions. The whole objective is to find a common ground and a way 

to express the relationship between a meta-model and the implementation code. This kind of capability where a 

single meta-meta-model can be used to integrate two different DSLs towards a common model allowing specific 

constraints of each meta-model is very much needed in SOA domain as multiple tools and standards exist preventing 

such integration. To integrate two models with different DSLs, the models are first decomposed at the meta-model 

level, required information extracted and supplemented (on the basis of meta-meta-model), which results in an 

integrated model. 

 

In our DUNIP process, such collaboration comes naturally due to the proposed DEVS atomic and coupled 

Document Type Definitions (DTDs) that specify any DEVS model in any domain specific language 

implementations. The underlying DEVS Modeling Language (DEVSML) meta-model that defines these atomic and 

coupled DTDs is used for validating any DEVS model. The current DEVSML implementation has successfully 

integrated two DSL implementations (GenDEVS-ACIMS [9] and xDEVS-Spain[4]) on common DEVSML atomic 

and coupled DTDs.  

 

5. Distributed Simulation using DEVS/SOA 
 

Web-based simulation requires the convergence of simulation methodology and WWW technology (mainly Web 

Service technology). The fundamental concept of web services is to integrate software application as services. Web 

services allow the applications to communicate with other applications using open standards. We are offering 

DEVS-based simulators as a web service, and they must have these standard technologies: communication protocol 
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(Simple Object Access Protocol, SOAP), service description (Web Service Description Language, WSDL), and 

service discovery (Universal Description Discovery and Integration, UDDI). 

 

Figure 7 shows the framework of the proposed distributed simulation using SOA. The complete setup requires one 

or more servers that are capable of running DEVS Simulation Service. The capability to run the simulation service is 

provided by the server side design of DEVS Simulation protocol supported by the latest DEVSJAVA Version 3.1. d 

 

The Simulation Service framework is two layered framework. The top-layer is the user coordination layer that 

oversees the lower layer. The lower layer is the true simulation service layer that executes the DEVS simulation 

protocol as a Service. The lower layer is transparent to the modeler and only the top-level is provided to the user.  

 

The top-level has four main services: 

• Upload DEVS model 

• Compile DEVS model 

• Simulate DEVS model (centralized) 

• Simulate DEVS model (distributed) 

 

The second lower layer provides the DEVS Simulation protocol services: 

• Initialize simulator i 

• Run transition in simulator i 

• Run lambda function in simulator i 

• Inject message to simulator i 

• Get time of next event from simulator i 

• Get time advance from simulator i 

• Get console log from all the simulators 

• Finalize simulation service 

 

Figure 7: DEVS/SOA distributed architecture 

 

The explicit transition functions, namely, the internal transition function, the external transition function, and the 

confluent transition function, are abstracted to a single transition function that is made available as a Service. The 

transition function that needs to be executed depends on the simulator implementation and is decided at the run-

time. For example, if the simulator implements the Parallel DEVS (P-DEVS) formalism, it will choose among 

internal transition, external transition or confluent transition2.  

                                                 
2 The difference between P-DEVS and classic DEVS is the handling of confluent function. The DEVS/SOA 

framework could have been built using other simulation formalisms. In fact, our simulation services could store any 
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The client is provided a list of servers hosting DEVS Service. He selects some servers to distribute the simulation of 

his model. Then, the model is uploaded and compiled in all the servers. The main server selected creates a 

coordinator that creates simulators in the server where the coordinator resides and/or over the other servers selected. 

 

Summarizing from a user’s perspective, the simulation process is done through three steps (Figure 8): 

1. Write a DEVS model (currently DEVSJAVA is only supported). 

2. Provide a list of DEVS servers (through UDDI, for example). Since we are testing the application, these 

services have not been published using UDDI by now. Select N number of servers from the list available. 

3. Run the simulation (upload, compile and simulate) and wait for the results. 

 

 

Figure 8: Execution of DEVS SOA-Based M&S 

5.1 Symmetrical Services Architecture 
The Web Service framework is essentially a client-server framework wherein a Server on requested by a client 

provides services. These services are nothing but computational code that is executed at the server’s end with a valid 

return value. The mode of communication between the client and the server is done using standards like XML, 

HTTP, and SOAP. This standardized mode of communication provides interoperability between various services as 

the data, expressed in XML, is machine-readable.  

 

In order to implement our DEVS/SOA framework, we have to beyond this client-server paradigm for this paradigm 

is not distributed in nature. Even though it operates on a Network (Internet), it is not distributed. We needed to 

implement a distributed framework to have the capability of distributed modeling and simulation. The distributed 

DEVS protocol has two types of components i.e. Coordinator and the Simulator that corresponds to a coupled model 

and an atomic model respectively. These components need to deploy at remote nodes so that distributed execution 

can take place. 

 

In the current SOA framework, the Server can only acts as a provider of service and the Client only acts as a 

consumer of service. Contrary to this functionality, the DEVS simulation components mentioned above can be 

placed anywhere on the network. It is unavoidable that the same Server can act as a provider and a consumer while 

executing DEVS simulation protocol. Consequently, the SOA that executes the DEVS simulation protocol is 

constructed such that the servers that provide DEVS Service can play the role of both the Coordinator and the 

                                                                                                                                                             
kind of simulator -as long as the service updates the simulation cycle according to the simulator engine selected. The 

service is independent in the sense of transition functions. 
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Simulator. As shown in Figure 8, Step 2 provides a list of resources (servers) available on the Internet that provides 

DEVS simulation services. Once the list of servers is available to the User, he assigns the role of Coordinator to one 

of the servers and rests of them become Simulators.  More details on this assignment is provided in Section 5.3. 

 

During the execution of DEVS simulation protocol, each of the Simulators makes calls to other Simulator. Such 

calls are executed using the SOA framework. These Simulators also coordinate with the Coordinator using the same 

transport mechanism. As a result, the same Simulator is invoking services from other Simulators while providing 

services to other Simulators or Coordinator. This has resulted in an architecture that is symmetrical by default i.e. it 

acts as both a service provider and a service consumer. The temporal role of a remote node is guided by the DEVS 

simulation protocol.  

 

The DEVS simulation layer services are defined in a separate WSDL that implements this symmetrical execution. 

Further, in addition to the roles of Simulator consumer and provider, the architecture allows the remote node to act 

as either Coordinator or Simulator. This assignment is made at Step 3 in Figure 8, and is elaborated in Section 5.3. 

 

The next few sections give detailed account of the symmetrical server and client designs that implements 

symmetrical services architecture. 

5.2 Server Design 

5.2.1 Conceptual Design  

 
5.2.1.1 Abstraction of a Coupled Model with an Atomic Model with DEVS State Machine 

One of the significant development steps we undertook in this effort is the masking of coupled model as an atomic 

model. Due to closure under coupling of the DEVS formalism, we have an abstraction mechanism by which a 

coupled model can be executed like an atomic model. In contrast to the DEVS hierarchical modeling, where a 

coupled model is merely a container and has corresponding coupled-simulators (Figure 9), now it is considered an 

atomic model with lowest level atomic simulator (Figure 10). This has been accomplished by implementing an 

adapter as shown in Figure 10. The adapter Digraph2Atomic takes each coupled component of the model and uses it 

as an atomic model. 

 

The number of simulators created depends on the number of components of the model at the top-level and the 

number of servers selected by the user. If the model contains 10 top-level components (including the contained 

digraphs) and the user select 5 servers, then 2 simulators are created in each server. After the whole simulation 

process, each simulation service sends a report back to the user containing information related to IP addresses and 

simulator assignment. 

 

 

Figure 9: Hierarchical simulator assignment for a 

hierarchical model 

 

Figure 10: Hierarchical simulator assignment with 

Digraph2Atomic adapter 

 

5.2.1.2 Message Serialization 

The issue of message passing and models upload is done through serialization and SOA technologies. Figure 7 

illustrates the message serialization process. When a component makes an external transition or executes the output 
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function, the message received or emitted is serialized and then sent to the coordinator through the simulation 

service. The coordinator stores the location of each simulation service, so he is able to request all the messages after 

each iteration.  

 

All the communication between the coordinator and simulation services is done through SOA protocol. The 

serialization is done through Java serialization utilities. In a newly developed real-time version, each simulator 

knows each simulation service at its end (from coupling information). So the communication can be solved by 

passing messages from simulation services to simulation services directly, without using the coordinator. 

 

5.2.1.3 Centralized Simulation 

The centralized simulation is done through a central coordinator which is located at the main server. The coordinator 

creates n simulation services over Internet. Each simulation service creates m simulators in order to simulation 

components of the model. Figure 11 shows the process. Once the simulation starts, the coordinator executes the 

output function of the simulation services (in Figure 11: point 0 and 1). After that, the output is propagated and 

internal transitions occur. Propagating an output means that once the coordinator takes the serialized output from the 

simulation services (2 and 3), it is sent to other simulation services by means of coupling information (4 and 5). This 

information is known by the coordinator and no others as all messages must flow through the coordinator.  

 

 

 
 

 

Figure 11: Centralized communication among services 

 

 

 
 

Figure 12: Real-time communication among services 

 

 

As it appears, the coordinator participates in all message-passing and is the bottleneck.  We designed distributed 

DEVS SOA protocol where the coupling information is downloaded to each of the models and coordinator is 

relieved of message-passing. It is described as follows. 

 

5.2.1.4 Real-time Simulation 

Real-time (RT) DEVS simulation is defined as the execution of DEVS simulation protocol in wall-clock time rather 

than logical time. For the real-time (RT) simulation we have incorporated one additional service to our SOA 

framework: the RT simulation service. This service extends the previous simulation service by means of two 

functions: 

• Modify external output function 

• Start simulation 

 

The design is similar in many aspects, but instead of a central coordinator, all the simulation is observed by an RT 

coordinator without any intervention. Furthermore, the RT simulation service creates RT simulators. Each RT 

simulation service knows the coupling information, so the message passing is made directly from simulation service 

to simulation service at the other end. The RT coordinator is located at the main server. This coordinator creates n 

RT simulation services over the Internet. Each simulation service creates m RT simulators in order to simulate the 

components of the model. After that the coupling information is broken down (on a per-model basis) and sent to the 
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corresponding RT simulation service. Figure 12 illustrates the process. Once the simulation starts, the coordinator 

executes the simulate service and nothing else. The simulate service waits for internal or external transitions using 

real time (0). If an internal transition happens (1), the output is generated and propagated using the coupling 

information serializing and de-serializing messages (2,3 and 4). 

5.2.2 Package Design 

The global design of the whole architecture at server’s end is as follows, as shown in Figure . The modeling 

package constitutes the DEVS modeling library. Once a DEVS model is received by the servers, it is rebuilt using an 

adapter pattern. Presently, only DEVSJAVA models are allowed. But, since this framework follows an adapter 

pattern, other Java-based models will be allowed in future. Figure 14 depicts the classes contained in this package, 

such as Digraph2Atomic, RTCoupling for real-time simulation purposes and Message and Atomic classes. Both 

Message and Atomic classes are inherited from Entity which allows serialization and deserialization. Atomic 

encapsulates a DEVS atomic model and Message encapsulates a DEVS message or event. 

 

 
Figure 13: Server’s package structure for DEVS SOA 

 

 

 
 

Figure 14: Modeling package for DEVS SOA 

 

The simulation.api package contains the interface for our DEVS/SOA simulators. The simulation package contains 

simulators and coordinators, that is, Simulator, Coordinator, RTSimulator and RTCoordinator classes as shown in  

Figure . The RT prefix indicates that the class is designed for real-time simulation. The main difference with other 

simulators platforms starts here. In both centralized and real-time simulations, the Coordinator is executed at the 

first server selected by the user. This coordinator is called through a MainService class published as a Web service. 

The Coordinator receives the user IP, the name of the root coupled model, and a list of IPs. Such list of IPs is used to 

invoke simulation services in other remote servers. In this way, the components of the model are shared among N 

servers, where N is the length of that list. The Coordinator also stores the user IP, the DEVSJAVA model and a list 

of simulation services activated. In the case of centralized simulation, this list is used to propagate and to receive 
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messages through the coupling protocol stored in the root coupled model. In addition, the Coordinator stores the last 

event time and the next event time. In the case of real-time simulations, instead of event times, the RTCoordinator 

only knows the time in which the simulation must be stopped. 

 

 
 

Figure 15: Simulation package in DEVS SOA 

 

The service package contains the services offered. It contains MainService, Simulation and RTSimulation classes as 

shown in 

Figure 16. MainService is designed to allow upload, compile and start the simulation process creating the 

coordinator. Simulation services are used to store the simulators used and to establish a communication between the 

DEVS simulators stored at this server and other coordinators, if any, hosted in other servers. One server could be 

executing more than one simulator. It depends on the number of components that the root coupled model contains 

and the number of servers selected by the user. This is the reason because there is not a unique relation between 

simulation service and simulator. The assignment of simulators corresponding to the models at the top-level is done 

by default through round-robin mechanism that takes care of model-simulator number mismatch. In certain 

applications, it is important that the user or a higher level program be able to direct any specific model to any 

particular IP server. For example, we are developing applications where DEVS models act as observers of co-hosted 

clients of other services. Clearly, ability to assign models to servers is critical in such an application. 
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Figure 16: Service package in DEVS SOA 

 

The proxy package (Figure 17) contains the proxies of the services. All these classes are automatically generated 

from the WSDL files that are generated from the service package using Apache Axis framework. The user only 

needs the MainService proxy. The server needs this service and other Simulation services. MainService acts like a 

coordinator for all the lower-level services through interfaces. It assigns and initializes the coordinator that starts 

other simulators, after distributing the simulators at respective IPs and initializing the simulator services. Once the 

simulators are active, the MainService waits for them to complete the execution to receive the logs and simulation 

outputs.  

5.2.3 Symmetrical Service Design 

The simulation engine is implemented in two different ways. The first is the centralized version with logical time 

execution and the other is a real-time version. The details below cater to the centralized version. The operations of 

real-time version are almost the same except that instead of just the coordinator controlling the simulation clock, 

each of the simulators maintains its own thread in real-time and exchange messages independently without the 

intervention from coordinator.  

 

As described earlier, this framework is a layered framework containing two layers: 

1. User Layer 

2. Simulation Layer 

 

The User layer is called as MainService layer and it interfaces with the Simulation layer underneath. The user can 

freely consider both the centralized and distributed version of the simulation algorithm. This facility is provided at 

the second layer of services described in later sections. However, the centralized mode performs much slower than 

the real-time distributed simulation due to obvious reasons of coordinator loading.  

 

In developing DEVS/SOA client, we considered real-time simulation as the default option.  Detailed performance 

analysis of both of these implementations is in process and will be reported in our forthcoming publication. 
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Figure 17: Proxy package in DEVS SOA 
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5.2.3.1 MainService composition: 

The MainService layer provides the set of services that are available to the user (as a client). The MainService.wsdl 

is provided in the appendix that the user can use to implement its own client. For better usability, we have 

implemented the Client as well and it is described in the following sections. The MainService layer provides the 

following services: 
• upload: It is used to upload the model to the different servers. This service enables the user to take their 

DEVS models and upload the code physically from their machines to the designated DEVS/SOA server 

farm. This service receives (1) the package name, which is the folder where the model is saved at the server 

side, (2) the content of the java files, which is in fact the DEVS model implementation, (3) the name of the 

java files, and (4) the list of IP addresses where the model is being uploaded. Once the model is uploaded to 

the first server of the list, the server application executes this service in the next server of the list. 

• compile: This service is used to compile the uploaded model files at the Servers and make them ready to 

execute the simulation. It receives (1) the package name, which is the folder where the model was 

previously uploaded, (2) the file names of the DEVS model implementation, and (3) the list of IP addresses 

that are selected by the user and where the model is simulated. In the client application we have developed, 

the first argument is dynamically generated at the client’s end and is important because if the model is 

uploaded with the same package name repeatedly, the server class loader does not instantiates the last one 

compiled. To overcome this issue, the model files do not contain any package declaration and a package 

name is assigned at run-time compilation. Once the model is compiled at the first server’s end, the server 

application executes this service in the next server of the list of IP addresses. 

• getTopComponentNames: This service is used to obtain the name of the top-level DEVS model. It receives 

the name of the root coordinator and returns the array of names. This service may be used to associate an IP 

server address with each of the top-level DEVS components. 

• simulate, simulateAssoc, simulateRT and simulateAssocRT: The simulation services create a Coordinator 

which runs its simulate function. The RT suffix indicates that a real-time simulation service is required by 

the user. The Assoc suffix indicates that the user is passing relations (IP address, model’s name), that is, in 

which server the corresponding model is executed. The non-Assoc functions apply a round-robin algorithm. 

The main difference among these functions is the coordinator created. A Coordinator in the case of 

centralized simulation and an RTCoordinator in the case of real-time simulations (see Figure 11,12). In all 

cases, such services receive: (1) the IP address of the client running the service, (2) the name of the root-

coordinator in the DEVS model, and (3) the relation between model names and IP addresses (if it is 

provided by the user). In the case of real-time simulation, the service also receives the time to observe the 

simulation. Finally, the service returns the simulation results. 

 

 

5.2.3.2 Simulation service composition: 

This is the bottom layer of the two-layer architecture and its functionalities are used by the MainSevice layer. Its 

operations are transparent to the user. Once the user demands a simulation via the MainService class, the coordinator 

(at the coordinator server or main server) requires as many simulation services as IP addresses provided by the user. 

After that, the DEVS model is partitioned and the coordinator sends every part to its corresponding service. Then the 

simulation starts, each simulation service creates a DEVS simulator for its models and executes the corresponding 

output and transition functions (see Figure 11). 

 

It is possible for one simulation service to store more than one simulator for different component of the same DEVS 

model, or to store more than one simulator for different components of different DEVS models. This issue is solved 

as follows. After the main coordinator obtains a simulation service at a certain IP address, a new simulator is created 

there, identified by the component name plus the IP address of the user’s machine and containing the DEVS 

component itself. For example, if the coordinator must send a DEVS component named Processor to a server 

located at 192.168.1.5 and coming from a user located at 192.168.1.2, then a simulation service is required from 

192.168.1.5 and a new simulator is created there, identified by Processor@192.168.1.2 and containing the model 

named Processor. 

 

Another issue is how to store the simulators created, because web services do not have memory. To this end, we are 

using the server’s memory by means of static variables or attributes. Hence, the simulation services include a static 
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table, which associates simulator names with simulator instances. Figure 15 shows this attribute in the Simulation 

service class, called simulators. 

 

There is other information stored by the Simulation services in the server memory, such as the IP address where the 

services reside and a reporter, which logs all the information while the simulation is running. 

 

The services provided by the Simulation service are enumerated below: 

• newSimulator: This service receives a DEVS component and a identifier. It creates a new DEVS simulator 

identified by the name described above and containing the DEVS component received. 

• initialize: This service receives the name of the simulator required and the current time. It takes the 

corresponding simulator from its table (using the name received) and initializes it. 

• receiveInput: This service receives four arguments: (1) the name of the simulator required, (2) the name of 

the port where the message is coming from, (3) the message and (4) the name of the port where the 

message is going to. The simulation service takes the simulator from its table and executes the same 

function called receiveInput, which stores the message received at the input of the model. 

• lambda: It receives the name of the simulator required and the current time. This service takes the 

simulator required and executes the output function (also called lambda) of the DEVS model 

• deltfnc: This service receives the name of the simulator required and the current simulation time. The 

service takes the simulator and executes an internal or external or confluent transition function. The 

abstracted deltfn is provides in Figure 18. This allows both the classical DEVS and P-DEVS models work 

seamlessly with DEVS/SOA simulation framework. 

• getOutput: This service receives the name of the simulator required and returns the output stored in its 

DEVS model. 

• getTN: It receives the name of the simulator for which the time of the next event is returned. 

• exit: It receives the name of the simulator to be removed from the table. 

• getConsole: This service receives the IP address of the user’s machine, and return the content of the log file 

related to this address. 

• getIp: It returns the IP address of the simulation service. 

 
function deltfcn(double t) { 

 Message x = input; 

 if(x==null) { 

  System.out.println( 

              "ERROR RECEIVED NULL INPUT " + model.toString()); 

  return; 

 } 

 if (x.isEmpty() && t!=tN) { 

  return; 

 } 

 else if((!x.isEmpty()) && t==tN) { 

  double e = t - tL; 

  model.deltcon(e,x); 

 } 

 else if(t==tN) { 

  model.deltint(); 

 } 

 else if(!x.isEmpty()) { 

  double e = t - tL; 

  model.deltext(e,x); 

 } 

 tL = t; 

 tN = tL + model.ta();  

 input = new Message();  

} 

Figure 18: Abstract deltfun in Simulation service 

 

Having described the services available in the DEVS/SOA architecture, following is the design of DEVS/SOA 

coordinator and simulator that utilize these DEVS services. The coordinator and the simulator are implemented in 

the devsoa.simulation package. This simulator is called as DEVSV/SOA simulator and it acts as an adapter for any 
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DEVS simulation engine that executes the DEVS simulation protocol. Currently, it adapts to the DEVSJAVA 

Version 3.0 as available from ACIMS. 

 

DEVSV/SOA Coordinator: 

 

Equivalent to the Simulation service storing the simulators in a static way, the coordinator also stores the simulators 

of the DEVS model in a static hash table, using the same nomenclature as was stated above (DEVS component 

name plus client IP address identifying the simulator). Therefore, such table contains pairs {simulator name, 

simulator service}, associating each simulator created with the simulation service where it resides. The task of the 

coordinator is to execute a typical DEVS loop over the distributed simulators. Figure 19 shows the algorithm 

executed by the simulate function. In such Table, iterations is the number of cycles of the simulation, t is the current 

time, tL is the last time event, tN is the next time event, simulationServices is the table of simulation services created 

by the coordinator and where the simulators are located. Then, for a number of cycles, the output function is called 

through each of the simulation services. It should be noted that the first argument of lambda function is a key, which 

is the simulator identifier, since different simulators could be located at the same simulation service, this key must 

be provided. After the output function is executed, the outputs of the components are ready to be propagated. To this 

end, the propagateOutput function is called, which propagates the messages generated from the outports to its 

corresponding inports. Next, the transition function is applied and finally the time is updated. 

 
function simulate(long iterations) 

  t = tN; 

  for (i=0; i<iterations; i++) 

    for each ({key,simService} in simulationServices) 

      simService.lambda(key, t); 

      propagateOutput(); 

    for each ({key,simService} in simulationServices) 

      simService.deltfcn(key, t); 

    tL = t; 

    tN = min(simulationServices.getTN()); 

    t = tN; 

Figure 19: DEVS simulation 

 

From the instant in which the coordinator is created, it stores at any moment the DEVS model (currently 

DEVSJAVA), the last timed event, the next time event and the IP address of the user’s machine. 

 

It should be noted that the Coordinator is not a service. It is a class, which is used by the MainService service. The 

functions implemented in the Coordinator are enumerated below: 

 

• getTopComponentNames: This function receives the name of the DEVS root-coupled model and returns a 

list containing the top-component names of the DEVS model. 

• Constructor: The constructor receives the client IP address, the name of the DEVS model, and the list of IP 

addresses where the model is going to be simulated. Hence, it creates as many simulators as top-level 

components, created by the simulation services located at the IP addresses given in the list. 

• initialize: This function receives the initial time of simulation. It initializes the simulators. 

• propagateOutput: As it was stated above, this function takes the output from the simulators and sends them 

to its corresponding inputs. 

• lamda: It receives the current time, and executes the output function in each of the simulators stored. 

• deltfcn: This function receives the current time and executes the internal or external transition functions in 

the simulators stored. 

• ta: It is the time advance function and receives the current time. It takes the minimum next time event from 

the simulators stored. 

• exit: This function calls the exit function of all the simulation services stored and clean the table of 

simulators. 

• simulate: This function receives the number of cycles of the simulation, and executes the simulation as was 

described before (Figure 19). 
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5.3 Client Application 
This Section provides the client application to execute DEVS model over an SOA framework using Simulation as a 

Service. From many-sided modes of DEVS model generation (Figure 7), the next step is the simulation of these 

models. The DEVSV/SOA client takes the DEVS models package and through the dedicated servers hosting 

simulation services, it performs the following operations: 

1. Upload the models to specific IP locations 

2. Run-time compile at respective sites 

3. Simulate the coupled-model 

4. Receive the simulation output at client’s end 

 

The DEVSV/SOA client as shown in Figure 20 operates in the following sequential manner: 

1. The user selects the DEVS package folder at his machine 

2. The top-level coupled model is selected as shown in Figure 21. 

3. Various available servers are selected (Figure 21). Any number of available servers can be selected (one at 

least). 

4. Clicking the button labelled “Assign Servers to Model Components” the user selects where is going to simulate 

each of the coupled models, including the top-level one, i.e., the main server where the coordinator will be 

created (Figure 21)  

5. The user then uploads the model by clicking the Upload button. The models are partitioned and distributed 

among the servers chosen in the previous point  

6. The user then compiles the models at the server’s end by clicking the Compile button 

 

 

 Figure 20: GUI snapshot of DEVSV/SOA client hosting distributed 

simulation 

 

 

 

 

 

 

 

 

Figure 21: Server Assignment to Models 
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6. Cross-Platform Execution over DEVS/SOA 

6.1 Introduction 
In terms of net-ready capability testing, what is required is the communication of live web services with those of 

test-models designed specifically for them. The approach we are working on has the following steps: 

1. Specify the scenario 

2. Develop the DEVS model 

3. Develop the test-model from DEVS models 

4. Run the model and test-model over SOA 

5. Execute as a real-time simulation 

6. Replace the model with actual web-service as intended in scenario. 

7. Execute the test-models with real-world web services  

8. Compare the results of steps 5 and 7. 

 

Of course, many issues of policy management and security considerations must be taken care of when test-models 

are communicating with live Web-Services. However, considering the fact that for any defense related mission-

thread reliability testing the test-models would have the necessary security provisions, the 8-step process listed 

above can be executed. This work would also involve generation of DEVS models from WSDLs specifications. A 

small portion of BPMN-to-DEVS transformation is described in [31].  

 

One other section that requires some description is the multi-platform simulation capability as provided by 

DEVSV/SOA framework. It consists of realizing distributed simulation among different DEVS platforms or 

simulator engines such as DEVSJAVA, DEVS-C++, etc. In order to accomplish that, the simulation services will be 

developed that are focused on specific platforms, however, managed by a coordinator. In this manner, the whole 

model will be naturally partitioned according to their respective implementation platform and executing the native 

simulation service. This kind of interoperability where multi-platform simulations can be executed with our 

DEVSML integration facilities. DEVSML will be used to describe the whole hybrid model. At this level, the 

problem consists of message passing, which has been solved in this work by means of an adapter pattern in the 

design of the “message” class (used in Figure 11 and 12). Figure 22 shows a first approximation. The platform 

specific simulator generates messages or events, but the simulation services will transform these platform-specific-

messages (PSMsg) to our current platform-independent-message (PIMsg) architecture developed in DEVS/SOA. 

 

 
 

Figure 22: Cross-platform execution. First approximation 
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Hence, we see that the described DEVS/SOA framework can be extended towards net-ready capability testing. The 

DEVS/SOA framework also needs to be extended towards multi-platform simulation capabilities that allow test-

models be written in any DEVS implementation (e.g. Java and C++) to interact with other as services. 

 

However, a major drawback of our current architecture is that the user must send the whole DEVS model 

implemented under all the platforms to use, which is not a good solution. Next, we propose a modification on the 

Coordinator creation process that in some manner, allows to the user to store each part of the model written in its 

corresponding platform. 

 

6.2 Multi-platform DEVS/SOA architecture 
Figure 23 depicts an example of a multi-platform DEVS model. Each atomic or coupled component may be 

implemented using different simulation engines, called platforms. In Figure 23, SUBMODEL A is implemented 

using DEVSJAVA [9], SUBMODEL B by means of aDEVS (C++) [38], and SUBMODEL C using xDEVS (Java) 

[4]. 

 

Let us suppose that the whole model is implemented using DEVSJAVA. In our current DEVS/SOA architecture, the 

application sends the whole model (root-coupled model included) to the servers by means of the upload service, 

where all the files get compiled and finally, it executes the model sending serialized messages among simulation 

services. This situation is not valid for the multi-platform model depicted in  

Figure , since the scenario cannot be compiled as a whole. 

 

In our proposed approach, we define the root coordinator by means of a Platform Independent Model (PIM), for 

example, DEVSML. We may use the structure description of DEVSML to compose the root coupled model, and 

send it to the main server, which will distribute the sub-models among its corresponding servers. 

 

 

Figure shows how a multi-platform DEVS model may be executed using our proposed architecture. We define the 

root-coupled model using DEVSML (top of the Figure 24). The coupled model is treated as an atomic model due to 

the inherent architecture of DEVS/SOA digraph2Atomic adapter. Consequently, it is immaterial if the sub-model is 

atomic or coupled (Section 5.2.1.1). 

 

 
 

Figure 23: Multi-platform DEVS model 

 
The DEVSML document in the Figure 23 states that the main server is located at 192.168.1.3. This server receives 

the DEVSML document and all the source code, distributes sub-models to respective servers and creates the 

coordinator. For example, the main server sends SubModelA.java to the server located at 192.168.1.7, where the 

DEVS/SOA java implemented server compiles it. The same happens with the corresponding SubModelB.cpp and 

SubModelC.java. After compiling all sub-models, the main server creates one simulation service for each sub-

model.  Figure 24 (right side) shows how coordinator, simulation services, and simulators are created. The main 

server creates a DEVSJAVA-based simulation service located at 192.168.1.7, which also creates a DEVSJAVA-



Page 25 of 35 

based simulator to store SubModelA. The same occurs with sub-models B and C, but at IP addresses 192.168.1.5 and 

192.168.1.9 respectively. 

 

The rest of the behavior of the application is the same that in our current architecture. Messages are passed by means 

of an adapter pattern, which as Figure  depicts, may be translated into different platforms. 

 

 
 

Figure 24: Multi-platform DEVSV/SOA proposed architecture 

7. Applications 
 

This section contains two sub-sections. Section 7.1 deals with an example in lab-setting through which various 

concepts laid out in earlier sections are demonstrated. Section 7.2 brings about a real-world application that could 

utilize the capabilities provided by DEVS/SOA framework.  

7.1 Joint Close Air Support Example 
The JCAS system requirements come in many formats and it served as a base example to test many of the DUNIP 

earlier processes for requirements-to-DEVS transformation. It was specified using the state-based approach, BPEL-

based approach and restricted natural language approach [31]. This case study describes all three of the approaches 

leading to an executable DEVS model with identical simulation results. Finally, the executable model is executed 

over a net-centric platform using DEVSML and DEVS/SOA architecture. 

 

The Joint Close Air Support Model is expressed in plain English as shown in Figure 25 below. It is a small example 

involving components exchanging messages towards a common objective. The requirements are then translated to 

various DEVS generating modes. We shall see the execution of JCAS for each of the approaches. The components 

of JCAS model are: 

1. JTAC 

2. UAV 

3. CAOC 

4. USMC Aircraft 

5. AWACS 

 



Page 26 of 35 

The scenario is as follows: 

 

JCAS JMT Operational Scenario #1 
A. Special Operations Force (SOF) (AFSOC and NSW) JTAC working 

with Operational Detachment-Alpha (ODA) is tasked to request 
Immediate CAS on a stationary mechanized target in mountainous 
terrain.  A Predator unmanned aerial vehicle (UAV) is on station for 
support. 

B. SOF JTAC contacts AWACS with request.  AWACS passes the 
request to Special Operations Liaison Element (SOLE) in the 
Combine Air Operations Center (CAOC).   

C. Joint Special Operations Task Force (JSOFT) approves the request 
and CAOC assigns a section of USMC F/A-18Ds, F-15Es, and a 
single B-1B.  Ordnance consists of 20mm, Joint Direct Attack 
Munitions (JDAMs), and Laser Guided Bombs (LGBs). 

D. Aircraft get situational brief from AWACS aircraft while in route, then 
switch to SOF JTAC for Terminal Attack Control and deconfliction       
from orbiting UAV.  A 9-Line brief will be given to each section/single 
aircraft.  JTAC will continue to execute CAS missions until all 
weapons are expended. 

Figure 25: JCAS Operational Scenario 

 

We approached the scenario using a BPMN diagram. The scenario in Figure 25 is expressed as a BPMN diagram 

shown in Figure 26 below. The BPMN diagram was created manually using the tool Borland Eclipse Together 2006. 

The Eclipse Together tool generated the corresponding .bpel and .wsdl files for the JCAS scenario. In total 10 files 

were generated (5 .bpel and 5 .wsdl files). The generated files are shown in Figure 27.  

 

 
Figure 26: JCAS BPMN scenario description 
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Figure 27: Snapshot of a BPMN-to-DEVS 

Transformation tool 

 

 
Figure 28: Coupled scenario for JCAS model 

 

 

We took these generated files to our BPEL-to-DEVS transformation tool [31] and generated the DEVS model out of 

these files. The transformation process generated the following .java files (which include additional files as well) 

shown in Figure 27 above. 

1. JCAS.java 

2. JTAC.java 

3. AWACS.java 

4. CAOC.java 

5. UAV.java 

6. USMCAircraft.java  

7. CASResources.java 

8. CASResourceSpec.java 

9. CASResSpec.java 

10. ceaseAttackUSMC.java 

11. CONST.java 

12. getReady.java 

13. initialAttack.java 

14. latLong.java 

15. requestDeconflict.java 

16. requestTAC.java 

17. sitBrief.java 

18. sitBriefRequest.java 

19. TimerMessage.java 

 

The additional files correspond to various messages that were exchanged in the scenario. The files in the bold 

(above) are the main component files that contain the DEVS state machine. 

 

Finally, using the BPMN-to-DEVS tool, the package was compiled run-time and simulation was executed. The 

Execute button brings up the DEVSJAVA Simulation Viewer (Figure 28) which executes the simulation. 

 

Net-centric Execution of JCAS 

 

Execution of JCAS DEVS models on net-centric SOA platform was done using the DEVS/SOA tool. The client 

application as described in Section 5.3 was used to execute the operation. Two servers were selected to demonstrate 

the concept (as shown in Figure 29). Both the servers are located at ACIMS lab, University of Arizona. However 

other server at Spain, University Computense de Madrid were also used in various testing sessions. Also shown in 

Figure 29 (in the console window) is the process of files being uploaded, compiled and the simulation-in-progress.  
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Figure 29: DEVSV/SOA client running the JCAS model using Simulation services on two hosts 

 

Finally, when the simulation is over, the console displays the following output. The simulation logs from both of the 

servers are categorically displayed. Figure 30 below shows the complete console log for all the operations done 

using DEVS/SOA client. 

 
Models assigned specifically to respective Server IP: 

--Component Model: JCASNum1 --> 150.135.220.240:8080 

--Component Model: USMCAircraft --> 150.135.220.240:8080 

--Component Model: CAOCobserver --> 150.135.220.240:8080 

--Component Model: UAV --> 150.135.218.205:8080 

--Component Model: CAOC --> 150.135.218.205:8080 

--Component Model: JTAC --> 150.135.218.205:8080 

--Component Model: AWACS --> 150.135.218.205:8080 

 

Uploading in progress... please wait... 

Initiating UPLOAD... 

Uploading files to server 150.135.218.205:8080 

Files uploaded. 

Uploading files to server 150.135.220.240:8080 

Files uploaded. 

 

Compilation in progress....please wait.... 

 

Starting compilation at remote servers..... 

Compiling project at 150.135.218.205:8080... 

Project compiled. 

Compiling project at 150.135.220.240:8080... 

Project compiled. 

 

Waiting to start SIMULATION.... 

 

Simulation in Progress....please wait... 

Running simulation ... 

11 iterations. 

Simulators output: 

 

150.135.218.205 output: 

 JTAC  sending message: << port: ImmediateCASOut value: CASResourcesSpec >> 
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State at: JTAC is: waitForAssignment 

 AWACS  sending message: << port: requestImmediateCASOut value: CASResourcesSpec 

>> 

State at: AWACS is: doSurveillance 

 CAOC  sending message: << port: readyOrderOut value: getReady port: 

YouCanUseUSMCAircraftOut value: CASResources >> 

State at: CAOC is: passive 

 JTAC  sending message: << port: TACCommandOut value: initialAttack >> 

State at: JTAC is: continueExecution 

 UAV  sending message: << port: targetLocationOut value: (Lat,Long) >> 

State at: UAV is: passive 

 AWACS  sending message: << port: sitBriefOut value: sitBrief >> 

State at: AWACS is: doSurveillance 

 JTAC  sending message: << port: TACCommandOut value: ceaseAttack >> 

State at: JTAC is: passive 

 

150.135.220.240 output: 

 USMCAircraft  sending message: << port: requestForTACOut value: requestTAC >> 

State at: USMCAircraft is: waitForTAC 

 USMCAircraft  sending message: << port: sitBriefRequestOut value: 

sitBriefRequest port: deconflictRequestOut value: requestDeconflict >> 

State at: USMCAircraft is: attack 

 USMCAircraft  sending message: << port: fireCommand value: fire >> 

State at: USMCAircraft is: attack 

 

SIMULATION over! 

 

 

Figure 30: Simulation output at client’s application using DEVS/SOA client 

 

7.2 Distributed Multi-level Test Federations 
A DEVS distributed federation is a DEVS coupled model whose components reside on different network nodes and 

whose coupling is implemented through middleware connectivity characteristic of the environment, e.g., SOAP for 

GIG/SOA.  The federation models are executed by DEVS simulator nodes that provide the time and data exchange 

coordination as specified in the DEVS abstract simulator protocol. 

 

As discussed earlier, in the general concept of experimental frame (EF), the generator sends inputs to the SoS under 

test (SUT), the transducer collects SUT outputs and develops statistical summaries, and the acceptor monitors SUT 

observables making decisions about continuation or termination of the experiment [18].  Since the SoS is composed 

of system components, the EF is distributed among SoS components, as illustrated in Figure 31. Each component 

may be coupled to an EF consisting of some subset of generator, acceptor, and transducer components. As 

mentioned, in addition an observer couples the EF to the component using an interface provided by the integration 

infrastructure. We refer to the DEVS model that consists of the observer and EF as a test agent.  

 

Net-centric Service Oriented Architecture (SOA) provides a currently relevant technologically feasible realization of 

the concept. As discussed earlier, the DEVS/SOA infrastructure enables DEVS models, and test agents in particular, 

to be deployed to the network nodes of interest. As illustrated in Figure 31, in this incarnation, the network inputs 

sent by EF generators are SOAP messages sent to other EFs as destinations; transducers record the arrival of 

messages and extract the data in their fields, while acceptors decide on whether the gathered data indicates 

continuation or termination is in order [31].   

 

Since EFs are implemented as DEVS models, distributed EFs are implemented as DEVS models, or agents as we 

have called them, residing on network nodes. Such a federation, illustrated in Figure 32, consists of DEVS 

simulators executing on web servers on the nodes exchanging messages and obeying time relationships under the 

rules contained within their hosted DEVS models.  
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Figure 31:  Deploying Experimental Frame Agents and Observers 
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Figure 32: DEVS Test Federation in GIG/SOA Environment 

 
The linguistic levels of interoperability [37] provide a basis for further structuring the test instrumentation system.  

In the following sections, we discuss the implementation of test federations that simultaneously operate at the 

syntactic, semantic, and pragmatic levels (Figure 33). 
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Figure 33: Simultaneous testing at multiple levels 

 

7.2.1 Syntactic Level – Network Health Monitoring  

From the syntactic perspective, testing involves assessing whether the infrastructure can support the speed and 

accuracy needed for higher level exchange of information carried by multimedia data types, individually and in 

combination. We now consider this as a requirement to continually assess whether the network is sufficiently 

“healthy” to support the ongoing collaboration.  Figure 34 illustrates the architecture that is implied by the use of 

subordinate probes. Nodal generator agents activate probes to meet the health monitoring Quality of Service (QOS) 

thresholds determined from information supplied by the higher layer test agents, viz., the objectives of the higher 

layer tests.   

 

Probes return statistics and alarm information to the transducers/acceptors at the DEVS health layer which in turn 

may recommend termination of the experiment at the test layer when QOS thresholds are violated. In an EF for real-

time evaluation of network health, the SUT is the network infrastructure (OSI layers 1-5) that supports higher 

session and application layers. QOS measures are at the levels required for meaningful testing at the higher layers to 

gather transit time and other statistics, providing quality of service measurements. 

 

For messages expressed in XML and carried by SOAP middleware such messages are directly generated by the 

DEVS generators and consumed by the DEVS transducers/acceptors. Such messages experience the network 

latencies and congestion conditions experienced by messages exchanged by the higher level web servers/clients. 

Under certain QOS conditions however, video streamed and other data typed packets may experience different 

conditions than the SOAP-borne messages. For these we need to execute lower layer monitoring under the control of 

the nodal EFs.  

 

The collection of agent EFs has the objective of assessing the health of the network relative to the QOS that it is 

providing for the concurrent higher level tests. Thus such a distributed EF is informed by the nature of the 

concurrent test for which it monitoring network health. For example, if a higher level test involves exchanges of a 

limited subset of media data types (e.g., text and audio), then the lower layer distributed EF need only monitor the 

subset of types. 
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Figure 34: Multi-layer testing with Network Health Monitoring 

 

7.2.2 Semantic Level – Information Exchange in Collaborations 

Mission threads consist of sequences of discrete information exchanges. A collaboration service supports such 

exchanges by enabling collaborators to employ a variety of media, such as text, audio, and video, in various 

combinations. For example, a drawing accompanied by a voice explanation involves both graphical and audio media 

data. Further, the service supports establishing producer/consumer relationships. For example, the graphical/audio 

combination might be directed to one or more participants interested in that particular item. From a multilevel 

perspective, testing of such exchanges involves pragmatic, semantic, and syntactic aspects. From the pragmatic 

point-of-view, the ultimate worth of an exchange is how well it contributes to the successful and timely completion 

of a mission thread. From the semantic perspective, the measures of performance involve the speed and accuracy 

with which an information item, such as a graphical/audio combination, is sent from producer to consumer. 

Accuracy may be measured by comparing the received item to the sent item using appropriate metrics. For example, 

is the received graphic/audio combination within an acceptable “distance” from the transmitted combination, where 

distance might be measured by pixel matching in the case of graphics and frequency matching in the case of audio. 

To automate this kind of comparison, metrics must be chosen that are both discriminative and quick to compute.  

Further, if translation is involved, the “meaning” of the item must be preserved as discussed above. Also, the delay 

involved in sending an item from sender to receiver, must be within limits set by human psychology and physiology. 

Such limits are more stringent where exchanges are contingent on immediately prior ones as in a conversation. 

Instrumentation of such tests is similar to that at the syntactic level to be discussed next, with the understanding that 

the complexity of testing for accuracy and speed is of a higher order at the semantic level. 

7.2.3 Pragmatic Level – Mission Thread Testing 

A test federation observes an orchestration of web-services to verify the message flow among participants adheres to 

information exchange requirements.  A mission thread is a series of activities executed by operational nodes and 

employing the information processing functions of web-services.  Test agents watch messages sent and received by 

the services that host the participating operational nodes. Depending on the mode of testing, the test architecture 

may, or may not, have knowledge of the driving mission thread under test.  If a mission thread is being executed and 

thread knowledge is available, testing can do a lot more than if it does not. 
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With knowledge of the thread being executed, DEVS test agents can be aware of the current activity of the 

operational nodes it is observing. This enables an agent to focus more efficiently on a smaller set of messages that 

are likely to provide test opportunities.  

7.2.4 Measuring Success in Mission Thread Executions 

The ultimate test of effectiveness of an integration infrastructure is its ability to support successful outcomes of 

mission thread executions.  To measure such effectiveness, the test instrumentation system must be informed about 

the events and messages to expect during an execution, including those that provide evidence of success or failure, 

and must be able to detect and track these events and messages throughout the execution.  

 

8. Conclusions  

 
We addressed the problem of net-centricity with the development of DEVS/SOA, which is the SOA implementation 

of DEVS simulation engine so that models can be executed remotely as well as in a distributed manner using 

Simulation as a Service within a SOA framework. The DEVS/SOA framework provides the capability to send 

models to remote locations, run the simulation from other computers and partition the hierarchical coupled model 

over a set of server farms that host Simulation service. 

 

The integration of enhanced MVC, DEVSML and DEVS/SOA along with the automated model generation from 

multifarious modes of requirement specifications resulted in a unifying framework called DUNIP (Figure 35).  

 

In this development effort, two implementations of DEVS simulation protocol have been presented. In the first, the 

simulation process is centralized by means of the Coordinator, which receives and propagates messages from one 

simulation service to others. There are no changes to the DEVS simulation protocol in this implementation but the 

real-time Simulation service does require the simulation protocol to be tailored for SOA.  

 

We also described the development of SOA client that provides DEVS-based Services specifically to execute the 

models as a running simulation. The primary ‘simulation’ service comprise of many helper services that were also 

developed. We also went beyond the current SOA framework and proposed a symmetrical SOA that is imperative to 

distributed execution. 

 

We also demonstrated the DEVS/SOA framework with a real world application of network health monitoring and 

illustrated the concepts with an example of Joint Close Air Support. This research work has presented proof of 

concept for DEVS based M&S over SOA. With the enhanced DoDAF [32], automated generation of DEVS model 

from DoDAF specifications can be executed and the architecture be simulated over a net-centric platform. The 

DUNIP [31] process also describes many other ways to autogenerate DEVS models from various other types of 

mission-thread specifications, for example, BPMN/BPEL and message-based restricted Natural Language 

Progressing (NLP). A Sample demonstration of DUNIP can be seen at [33]. In order to 'execute (as a model)' a set 

of scenario instructions over net-centric platform, the following capabilities must exist: 

1. Transformation of the scenario specifications to a model, which is a DEVS model in this case 

2. Execution of model over SOA 

3. Communication using XML as middleware. 

 

The first step is described in [31] and step 2 and 3 are presented in this paper. The next stage of analysis of this 

mission-thread statement is the development of automated test models and their execution over SOA. Automated 

test-model generation is discussed in [18, 31] and DEVS model execution can be performed by the work presented 

here. 
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Figure 35: The Complete DEVS Unified Process 

8.1 Future Work 
The present research work has the following scope for future development: 

• Towards standardization of DEVS formalism [24] 

The DEVSML framework developed the atomic and coupled DTDs as meta-models towards collaborative 

DEVS model development. They are proposed with an idea towards their standardization where the DEVS 

community can come to a common ground for model reuse and repository management. 

• Refine the DUNIP process 

A Prototype was demonstrated as a final outcome of this research effort. More features like, validation, 

consistency checking, etc. should be added to develop it as a COTS product. 

• Performance evaluation of distributed DEVS/SOA protocol 

The DEVSV/SOA protocol required tailoring of DEVS simulation protocol for SOA domain. Performance 

evaluation of this version is required to compare it with performance of DEVS protocol with current 

implementations like DEVS/RMI, DEVS/CORBA etc. 

• Make it easier for other DEVS groups to participate in DEVSML and DEVSV/SOA development by 

registering their simulators 

DEVSML is developed as a framework for collaborative model development and portable model 

specifications resulting from net-centric collaboration using XML middleware. Remote simulation is one 

capability that is also provided by DEVSML. Various simulator versions from different groups should be 

gathered and worked upon towards standardized DTDs for an efficient model-sharing system. Currently, 

two simulator implementations, viz. GenDEVS-ACIMS and xDEVS-Spain have been used to provide 

proof of concept. Better design of website offering DEVSML service should be designed that would 

facilitate various groups to submit their simulator implementations. 

• Make prototype tool as an Educational aide 

The demonstrated prototype should be enhanced for teaching DEVS-based Modeling and Simulation 

courses. Various manuals and GUI enhancements would be added that facilitate learning and future 

development. 
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