
DEVS-Based Simulation Web Services for Net-Centric T&E

Saurabh Mittal, José L. Risco*, Bernard P. Zeigler
{saurabh, zeigler}@ece.arizona.edu, *jlrisco@dacya.ucm.es

Arizona Center for Integrative M&S

ECE Department, University of Arizona
Tucson, AZ 85721

*Departamento de Arquitectura de Computadores
y Automática

Universidad Complutense de Madrid
28040 Madrid, Spain

Keywords:
DEVS, DEVSML, SOADEVS, Web services, XML, T&E

Abstract
Current test and evaluation (T&E) systems are not
sufficiently well integrated with defined net-centric
architectures to support system-of-systems and enterprise
level testing. This paper discusses a test and development
environment using Discrete Event System Specification
Modeling Language (DEVSML) and the Service Oriented
Architecture (SOA) framework. The underlying DEVS
Modeling Language is built on XML and provides model
interoperability among DEVS models hosted at remote
network addresses. We describe the client application that
communicates with multiple servers hosting DEVS
Simulation services and the underlying SOADEVS
framework. We show how SOADEVS is positioned to
address the need for a DoD Architecture Framework,
DoDAF-based net-centric paradigm for test and evaluation
at the system-of-systems and enterprise systems levels. The
SOADEVS framework provides the needed feature of run-
time composability of coupled systems using the SOA
framework.

1. Introduction
In an editorial [1], Carstairs asserts an acute need for a new
testing paradigm that could provide answers to several
challenges described in a three-tier structure. The lowest
level, containing the individual systems or programs, does
not present a problem. The second tier, consisting of
systems of systems in which interoperability is critical, has
not been addressed in a systematic manner. The third tier,
the enterprise level, where joint and coalition operations are
conducted, is even more problematic. Although current test
and evaluation (T&E) systems are approaching adequacy for
tier-two challenges, they are not sufficiently well integrated
with defined architectures focusing on interoperability to
meet those of tier three. To address mission thread testing at
the second and third tiers, Carstairs advocates a
collaborative distributed environment (CDE), which is a
federation of new and existing facilities from commercial,
military, and not-for-profit organizations. In such an

environment, modeling and simulation (M&S) technologies
can be exploited to support model-continuity [2] and model-
driven design development [3], making test and evaluation
an integral part of the design and operations life-cycle.

The development of such a distributed testing environment
would have to comply with recent Department of Defense
(DoD) mandates requiring that the DoD Architectural
Framework (DoDAF) be adopted to express high-level
system and operational requirements and architectures [4, 5,
6, 7]. Unfortunately, DoDAF and DoD net-centric [8]
mandates pose significant challenges to testing and
evaluation since DoDAF specifications must be evaluated to
see if they meet requirements and objectives, yet they are
not expressed in a form that is amenable to such evaluation.
This Section begins by providing an overview of the current
DEVS technology and the way in which DEVS is
positioned to address the need for a DoDAF-based net-
centric paradigm for test and evaluation at the system-of-
systems and enterprise systems levels.

DEVS environments such as DEVSJAVA, DEVS-C++, and
others [9] are embedded in object-oriented implementations,
they support the goal of representing executable model
architectures in an object-oriented representational
language. As a mathematical formalism, DEVS is platform
independent, and its implementations adhere to the DEVS
protocol so that DEVS models easily translate from one
form (e.g., C++) to another (e.g., Java) [10]. Moreover,
DEVS environments, such as DEVSJAVA, execute on
commercial, off-the-shelf desktops or workstations and
employ state-of-the-art libraries to produce graphical output
that complies with industry and international standards.
DEVS environments are typically open architectures that
have been extended to execute on various middleware such
as the DoD’s HLA standard, CORBA, SOAP, and others
and can be readily interfaced to other engineering and
simulation and modeling tools [2, 9, 27, 28, 30].
Furthermore, DEVS operation over web middleware
(SOAP) enables it to fully participate in the net-centric
environment of the Global Information Grid/ Service
Oriented Architecture (GIG/SOA) [8]. As a result of recent
advances, DEVS can support model continuity through a

simulation-based development and testing life cycle [2].
This means that the mapping of high-level requirement
specifications into lower-level DEVS formalizations enables
such specifications to be thoroughly tested in virtual
simulation environments before being easily and
consistently transitioned to operate in a real environment for
further testing and fielding.

DEVS formalism categorically separates the Model, the
Simulator and the Experimental frame. However, one of the
major problems in this kind of mutually exclusively system
is that the formalism implementation is itself limited by the
underlying programming language. In other words, the
model and the simulator exist in the same programming

language. Consequently, legacy models as well as models
that are available in one implementation are hard to translate
from one language to another even though both the
implementations are object oriented. Other constraints like
libraries inherent in C++ and Java are another source of
bottleneck that prevents such interoperability.

Brief Overview of Capabilities Provided by DEVS
To provide a brief overview of the current capabilities,
Table 1 outlines how it could provide solutions to the
challenges in net-centric design and evaluation. The net-
centric DEVS framework requires enhancement to the basic
DEVS capabilities, which are provided in later sections.

Desired M&S Capability for T&E Solutions Provided by DEVS Technology
Support of DoDAF need for executable
architectures using M&S such as
mission based testing for GIG SOA

DEVS Unified Process [31] provides methodology and SOA
infrastructure for integrated development and testing, extending
DoDAF views [32].

Interoperability and cross-platform
M&S using GIG/SOA

Simulation architecture is layered to accomplish the technology
migration or run different technological scenarios [13, 17].
Provide net-centric composition and integration of DEVS
‘validated’ models using Simulation Web Services [19]

Automated test generation and
deployment in distributed simulation

Separate a model from the act of simulation itself, which can be
executed on single or multiple distributed platforms [10]. With
its bifurcated test and development process, automated test
generation is integral to this methodology [18].

Test artifact continuity and traceability
through phases of system development

Provide rapid means of deployment using model-continuity
principles and concepts like “simulation becomes the reality”
[2].

Real time observation and control of
test environment

Provide dynamic variable-structure component modeling to
enable control and reconfiguration of simulation on the fly [14-
17]. Provide dynamic simulation tuning, interoperability testing
and benchmarking.

Table 1: Solutions provided by DEVS technology to support of M&S for T&E

The motivation for this work stems from this need of model
interoperability between the disparate simulator
implementations and provides a means to make the
simulator transparent to model execution. We proposed
DEVS Modeling Language (DEVSML) [19] that is built on
eXtensible Markup Language (XML) [34] as the preferred
means to provide such transparent simulator
implementation.

Furthermore, this work aims to develop and evaluate
distributed simulation using the web service technology.
After the development of World Wide Web, many efforts in
the distributed simulation field have been made for
modeling, executing simulation and creating model libraries
that can be assembled and executed over WWW. By means

of XML and web services technology these efforts have
entered upon a new phase. A prototype simulation
framework has been implemented using web services
technology. The central point resides in executing the
simulator as a web service. The development of this kind of
frameworks will help to solve large-scale problems and
guarantees interoperability among different networked
systems and specifically DEVS-validated models. Providing
server side design is outside the scope of this paper. This
paper focuses on the overall approach, and specifically the
client that communicates with the server.

The paper is organized as follows. The next section provides
information about the related work in distributed simulation
and DEVS standardization efforts. Section 3 deals with our

earlier work on DEVSML and introduces the concept of
SOADEVS. Section 4 provides basic information about the
underlying technologies for the development of DEVSML
SOA framework. Section 5 provides detailed look at the
architecture of SOADEVS. Section 6 presents the
SOADEVS client with an illustrated example. Finally,
Section 7 provides conclusion and the ongoing work.

2. Related Work
There have been a lot of efforts in the area of distributed
simulation using parallelized DEVS formalism. Issues like
‘causal dependency’ [10] and ‘synchronization problem’
[20] have been adequately dealt with solutions like: 1.
restriction of global simulation clock until all the models are
in sync, or 2. rolling back the simulation of the model that
has resulted in the causality error. Our chosen method of
web centric simulation does not address these problems as
they fall in a different domain. In our proposed work, the
simulation engine rests solely on the Server. Consequently,
the coordinator and the model simulators are always in sync.

Most of the existing web-centric simulation efforts consist
of the following components:

1. the Application: the top level coupled model with
(optional) integrated visualization.

2. Model partitioner: Element that partitions the
model into various smaller coupled models to be
executed at a different remote location

3. Model deployer: Element that deployed the smaller
partitioned models to different locations

4. Model initializer: Element that initializes the
partitioned model and make it ready for simulation

5. Model Simulator: Element that coordinate with
root coordinator about the execution of partitioned
model execution.

The Model Simulator design is almost same in all of the
implementation and is derived directly from parallel DEVS
formalism [10]. There are however, different methods to
implement the former four elements. DEVS/Grid [21] uses
all the components above. DEVS/P2P [22] implements step
2 using hierarchical model partitioning based on cost-based
metric. DEVS/RMI [30] has a configuring engine that
integrates the functionality of step 1, 2 and 3 above.
DEVS/Cluster [23] is a multi-threaded distributed DEVS
simulator built on CORBA, which again, is focused towards
development of simulation engine.

As stated earlier, the efforts have been in the area of using
the parallel DEVS and implementing the simulator engine in
the same language as that of the model.

These efforts are in no means similar to what we had
proposed in our paper [19]. Our work is focused towards

interoperability at the application level, specifically, at the
model level and hiding the simulator engine as a whole. We
are focused towards taking XML just as a communication
middleware, as used in SOAP, for existing DEVS models,
but not as complete solution in itself. We would like the
user or designer to code the behavior in any of the
programming languages and let the DEVSML SOA
architecture be responsible to create a coupled model,
integrating code in either of the languages and delivering us
with an executable model that can be simulated. The user
need not learn any new syntax, any new language; however,
what he must use is the standardized version of P-DEVS
implementation such as DEVSJAVA Version 3.0 [9]
(maintained at www.acims.arizona.edu).

This kind of capability where the user can integrate his
model from models stored in any web repository, whether it
contained public models of legacy systems or proprietary
standardized models will provide more benefit to the
industry as well as to the user, thereby truly realizing the
model-reuse paradigm.

In further sections we will provide details about the
SOADEVS server and client, design of DEVS Simulator
interface and standardized libraries that are used in our
implementation.

3. Underlying Technologies
3.1 DEVS
DEVS formalism consists of models, the simulator and the
Experimental Frame. We will focus our attention to the two
types of models i.e. atomic and coupled models. The atomic
model is the irreducible model definitions that specify the
behavior for any modeled entity. The coupled model is the
aggregation/composition of two or more atomic models
connected by explicit couplings. The coupled model N can
itself be a part of component in a larger coupled model
system giving rise to a hierarchical DEVS model
construction. Detailed descriptions about DEVS Simulator,
Experimental Frame and of both atomic and coupled models
can be found in [10].

3.2 Web Services and Interoperability using XML
Service oriented Architecture (SOA) framework is a
framework consisting of various W3C standards, in which
various computational components are made available as
‘services’ interacting in an automated manner towards
achieving machine-to-machine interoperable interaction
over the network. The interface is specified using Web
Service Description language (WSDL) [25] that contains
information about ports, message types, port types, and
other relating information for binding two interactions. It is
essentially a client server framework, wherein client request
a ‘service’ using SOAP message that is transmitted via

HTTP in XML format. A Web service is published by any
commercial vendor at a specific URL to be
consumed/requested by another commercial application on
the Internet. It is designed specifically for machine-to-
machine interaction. Both the client and the server
encapsulate their message in a SOAP wrapper.

3.3 DEVSML
DEVSML is a novel way of writing DEVS models in XML
language. This DEVSML is built on JAVAML, which is in
fact, XML implementation of JAVA. The current
development effort of DEVSML takes its power from the
underlying JAVAML that is needed to specify the
‘behavior’ logic of atomic and coupled models. The
DEVSML models are transformable back'n forth to java and
to DEVSML. It is an attempt to provide interoperability
between various models and create dynamic scenarios.

The layered architecture of the said capability is shown in
Figure 1. At the top is the application layer that contains
model in DEVSJAVA or DEVSML. The second layer is the
DEVSML layer itself that provides seamless integration,
composition and dynamic scenario construction resulting in
portable models in DEVSML that are complete in every
respect. These DEVSML models can be ported to any
remote location using the net-centric infrastructure and be
executed at any remote location. Another major advantage

of such capability is total simulator ‘transparency’. The
simulation engine is totally transparent to model execution
over the net-centric infrastructure. The DEVSML model
description files in XML contains meta-data information
about its compliance with various simulation ‘builds’ or
versions to provide true interoperability between various
simulator engine implementations. This has been achieved
for at least two independent simulation engines as they have
an underlying DEVS protocol to adhere to. This has been
made possible with the implementation of a single atomic
DTD and a single coupled DTD that validates the DEVSML
descriptions generated from these two implementations.
Such run-time interoperability provides great advantage
when models from different repositories are used to
compose bigger coupled models using DEVSML seamless
integration capabilities.

4. DEVSML and SOADEVS
In Section 3.3 we described DEVSML as a means to
develop net-centric collaborative models resulting in a
composite XML portable file that can be executed by the
validated DEVS simulator. In this section we will illustrate
how the DEVSML architecture aides the distributed
execution over net-centric platform thereby offering
simulator transparency using Simulation Services.

Figure 2: DEVSML and SOADEVS integrated

The DEVSML architecture is now divided in Client and
Servers functionalities as shown below in Figure 1. The
client provides model in DEVSJAVA or DEVSML, wherein
they are transformable into each other and the Server end
takes care of executing the simulation in a distributed
manner using SOADEVS architecture.

Figure 1: DEVSML implementation over SOADEVS.

Looking it in another perspective, the integration of
DEVSML and SOADEVS is performed with the layout as
shown in Figure 2. The manner in which DEVSJAVA
models could be attained or developed by client can be
manifold. The models can be created through Natural
Language Processing (NLP) methods, raw .java format, or
BPMN1/BPEL2 files. Work is ongoing in the area of NLP
and BPMN at ACIMS Center and will be reported in near
future. The models rest with the client (Step 3, Figure 2).
Once the client has DEVSJAVA models, DEVSML server
can be used to integrate the client’s model with model
available at some other place on the web to get an enhanced
integrated DEVSML file that can reproduce DEVSJAVA
model in .java format (Step 4 and 5). The SOADEVS
enabled server can either take this integrated DEVSML file
directly or can ask user to provide the top-level coupled
model through the SOADEVS client application. More
details on this phase are provided in Section 6. Finally the
remote simulation is conducted at various DEVS Simulation
engines located over the web (Step 6) and be used for
simulation-based testing in a distributed environment.

5. Distributed Simulation using SOADEVS
Web-based simulation requires the convergence of
simulation methodology and WWW technology (mainly
web service technology). The fundamental concept of web
services is to integrate software application as services. Web
services allow the applications to communicate with other
applications using open standards. We are offering DEVS-

1 BPMN: Business Process Modeling Notation
2 BPEL: Business Process Execution Language

based simulators as a web service, and they must have these
standard technologies: communication protocol (Simple
Object Access Protocol, SOAP), service description (Web
Service Description Language, WSDL), and service
discovery (Universal Description Discovery and Integration,
UDDI).

Figure 3 shows the framework of the proposed distributed
simulation using SOA. The complete setup requires one or
more servers that are capable of running DEVS Simulation
Service. The capability to run the simulation service is
provided by the server side design of DEVS Simulation
protocol supported by the latest DEVSJAVA Version 3.1.

The Simulation Service framework is two layered
framework. The top-layer is the user coordination layer that
oversees the lower layer. The lower layer is the true
simulation service layer that executes the DEVS simulation
protocol as a Service. The lower layer is transparent to the
modeler and only the top-level is provided to the user. The
top-level has four main services:

• Upload DEVS model
• Compile DEVS model
• Simulate DEVS model (centralized)
• Simulate DEVS model (distributed)

The second lower layer provides the DEVS Simulation
protocol services:

• Initialize simulator i
• Run transition in simulator i
• Run lambda function in simulator i
• Inject message to simulator i
• Get time of next event from simulator i
• Get time advance from simulator i
• Get console log from all the simulators
• Finalize simulation service

Figure 3: DEVS/SOA distributed architecture

The explicit transition functions, namely, the internal
transition function, the external transition function, and the
confluent transition function, are abstracted to a single
transition function that is made available as a Service. The
transition function that needs to be executed depends on the
simulator implementation and is decided at the run-time. For
example, if the simulator implements the Parallel DEVS (P-
DEVS) formalism, it will choose among internal transition,
external transition or confluent transition. Providing details
about the abstracted transition function is outside the scope
of this paper.

The client is provided a list of servers hosting DEVS
Service. He selects some servers to distribute the simulation
of his model. Then, the model is uploaded and compiled in
all the servers. The main server selected creates a
coordinator that creates simulators in the server where the
coordinator resides and/or over the other servers selected.

Figure 4: Execution of DEVS SOA-Based M&S

Summarizing from a user’s perspective, the simulation
process is done through three steps (Figure 4):
1. Write a DEVS model (currently DEVSJAVA is only

supported).
2. Provide a list of DEVS servers (through UDDI, for

example). Since we are testing the application, these
services have not been published using UDDI by now.
Select N number of servers from the list available.

3. Run the simulation (upload, compile and simulate) and
wait for the results.

5.1 Abstraction of a Coupled Model with an Atomic
Model with DEVS State Machine
One of the significant development steps we undertook in
this effort is the masking of coupled model as an atomic
model. Due to closure under coupling of the DEVS
formalism we have an abstraction mechanism by which a
coupled model can be executed like an atomic model. In
contrast to the DEVS hierarchical modeling, where a
coupled model is merely a container and has corresponding
coupled-simulators (Figure 5), now it is considered an
atomic model with lowest level atomic simulator (Figure 6).
This has been accomplished by implementing an adapter as
shown in Figure 6 above. The adapter Digraph2Atomic
takes each coupled component of the model and uses it as an
atomic model.

The number of simulators created depends on the number of
components of the model at the top-level and the number of
servers selected by the user. If the model contains 10 top-
level components (including the contained digraphs) and the
user select 5 servers, then 2 simulators are created in each
server. After the whole simulation process, each simulation
service sends a report back to the user containing
information related to IP addresses and simulator
assignment.

Figure 5: Hierarchical simulator assignment for a
hierarchical model

Figure 6: Hierarchical simulator assignment with
Digraph2Atomic adapter

5.2. Message Serialization
The issue of message passing and models upload is done
through serialization and SOA technologies. Figure 7
illustrates the message serialization process. When a
component makes an external transition or executes the
output function, the message received or emitted is
serialized and then sent to the coordinator through the
simulation service. The coordinator stores the location of
each simulation service, so he is able to request all the
messages after each iteration.
All the communication between the coordinator and
simulation services is done through SOA protocol. The
serialization is done through Java serialization utilities. In a
newly developed real-time version, each simulator knows
each simulation service at its end (from coupling
information). So the communication can be solved by
passing messages from simulation services to simulation
services directly, without using the coordinator.

5.3 Centralized Simulation
The centralized simulation is done through a central
coordinator which is located at the main server. The
coordinator creates n simulation services over Internet. Each
simulation service creates m simulators in order to
simulation components of the model.

Figure 7 shows the process. Once the simulation starts, the
coordinator executes the output function of the simulation
services (in Figure 7: point 0 and 1). After that, the output is
propagated and internal transitions occur. Propagating an
output means that once the coordinator takes the serialized
output from the simulation services (2 and 3), it is sent to
other simulation services by means of coupling information
(4 and 5). This information is known by the coordinator and
no others as all messages must flow through the coordinator.

Figure 7: Centralized communication among services

As it appears, the coordinator participates in all message-
passing and is the bottleneck. We designed distributed
DEVS SOA protocol where the coupling information is
downloaded to each of the models and coordinator is
relieved of message-passing. It is described as follows.

5.4 Real-time Simulation
Real-time (RT) DEVS simulation is defined as the
execution of DEVS simulation protocol in wall-clock time
rather than logical time. For the real-time (RT) simulation
we have incorporated one additional service to our SOA
framework: the RT simulation service. This service extends
the previous simulation service by means of two functions:

• Add external output function
• Start simulation

The design is similar in many aspects, but instead of a
central coordinator, all the simulation is observed by an RT
coordinator without any intervention. Furthermore, the RT
simulation service creates RT simulators. Each RT
simulation service knows the coupling information, so the
message passing is made directly from simulation service to
simulation service at the other end. The RT coordinator is
located at the main server. This coordinator creates n RT
simulation services over the Internet. Each simulation
service creates m RT simulators in order to simulate the
components of the model. After that the coupling
information is broken down (on a per-model basis) and sent
to the corresponding RT simulation service. Figure 8
illustrates the process. Once the simulation starts, the
coordinator executes the simulate service and nothing else.
The simulate service waits for internal or external
transitions using real time (0). If an internal transition
happens (1), the output is generated and propagated using
the coupling information serializing and de-serializing
messages (2,3 and 4).

RT
COORDINATOR

(Waiting)

RT SIMULATION

SERVICE

RT SIMULATION

SERVICE

RT-SIMULATOR RT-SIMULATOR

0.- nextTN

1.- nextTN 2.- Message

3.- Message
serialized

4.- Message
Deserialized

Internal
Transition

External
Transition

Output
Propagation

0.- nextTN

Figure 8: Real-time Communication among Services

5.5 Discussion
The difference between P-DEVS and classic DEVS is the
handling of confluent function. The SOADEVS framework
could have been built using other simulation formalisms. In
fact, our simulation services could store any kind of
simulator -as long as the service updates the simulation
cycle according to the simulator engine selected. In the case
of P-DEVS or DEVS, we have shown in Section 5, in the
description of the simulation protocol services, that the
service is independent in the sense of transition functions.

The user can freely consider both the centralized and
distributed version of the simulation algorithm. This facility
is provided at the second layer of services described in
Section 5. However, the centralized mode performs much
slower than the real-time distributed simulation due to
obvious reasons of coordinator unloading. In development
of SOADEVS client, we considered the real-time simulation
as default option. Detailed performance analysis of both of
these implementations is under progress and will be
reported in our forthcoming publication.

6. SOADEVS Client
This Section provides the client application to execute
DEVS model over an SOA framework using Simulation as
a Service. From many-sided modes of DEVS model
generation (Figure 2), the next step is the simulation of these
models. The SOADEVS client takes the DEVS models
package and through the dedicated servers hosting
simulation services, it performs the following operations:

1. Upload the models to specific IP locations
2. Run-time compile at respective sites
3. Simulate the coupled-model
4. Receive the simulation output at client’s end

The SOADEVS client as shown in Figure 9 operates in the
following sequential manner:
1. The user selects the DEVS package folder at his

machine
2. The top-level coupled model is selected as shown in

Figure 9.
3. Various available servers are selected (Figure 10). Any

number of available servers can be selected (one at
least).

4. Clicking the button labelled “Assign Servers to Model
Components” the user selects where is going to
simulate each of the coupled models, including the top-
level one, i.e., the main server where the coordinator
will be created (Figure 10)

5. The user then uploads the model by clicking the Upload
button. The models are partitioned and distributed
among the servers chosen in the previous point

6. The user then compiles the models at the server’s end
by clicking the Compile button

 Figure 9: GUI snapshot of SOADEVS client hosting
distributed simulation

Figure 10: Server Assignment to Models

7. Conclusions and Future Work
We have addressed DEVSML as a medium towards
composability and dynamic scenario construction.
Furthermore, we have developed a Service Oriented
Architecture framework for test and evaluation of DEVS
models, called SOADEVS.

In this development effort, two implementations of DEVS
simulation protocol have been presented. In the first, the
simulation process is centralized by means of the
Coordinator, which receives and propagates messages from
one simulation service to others. There are no changes to the
DEVS simulation protocol in this implementation but the

real-time Simulation service does require the simulation
protocol to be tailored for SOA.

We also described the development of SOA client that
provides DEVS-based Services specifically to execute the
models as a running simulation. The primary ‘simulation’
service comprise of many helper services that were also
developed. The server design or the back-end of SOADEVS
is not the focus of this paper and will be reported in our
forthcoming publication that will describe the WSDLs and
their implementation.

This research work has presented proof of concept for
DEVS based M&S over SOA. With the enhanced DoDAF
[32], automated generation of DEVS model from DoDAF
specifications can be executed and the architecture be
simulated over a net-centric platform. The DUNIP [31]
process also describes many other ways to autogenerate
DEVS models from various other types of mission-thread
specifications, for example, BPMN/BPEL and message-
based restricted Natural Language Progressing (NLP). A
Sample demonstration of DUNIP can be seen at [33]. In
order to 'execute (as a model)' a set of scenario instructions
over net-centric platform, the following capabilities must
exist:

1. Transformation of the scenario specifications to a
model, which is a DEVS model in this case

2. Execution of model over SOA
3. Communication using XML as middleware.

The first step is described in [31] and step 2 and 3 are
presented in this paper. The next stage of analysis of this
mission-thread statement is the development of automated
test models and their execution over SOA. Automated test-
model generation is discussed in [18, 31] and DEVS model
execution can be performed by the work presented here.

Future Work
In terms of net-ready capability testing, what is required is
the communication of live web services with those of test-
models designed specifically for them. The approach we are
working on has the following steps:

1. Specify the scenario
2. Develop the DEVS model
3. Develop the test-model from DEVS models
4. Run the model and test-model over SOA
5. Execute as a real-time simulation
6. Replace the model with actual web-service as

intended in scenario.
7. Execute the test-models with real-world web

services
8. Compare the results of steps 5 and 7.

Of course, there are many issues of policy management and
security considerations that must be taken care of when test-
models are communicating with live Web-Services.
However, considering the fact that for any defense related
mission-thread reliability testing the test-models would have
the necessary security provisions, the 8-step process listed
above can be executed. This work would also involve
generation of DEVS models from WSDLs specifications. A
small portion of BPMN-to-DEVS transformation is
described in [31].

One other section that requires some description is the
multi-platform simulation capability as provided by
SOADEVS framework. It consists of realizing distributed
simulation among different DEVS platforms or simulator
engines such as DEVSJAVA, DEVS-C++, etc. In order to
accomplish that, the simulation services will be developed
that are focused on specific platforms, however, managed
by a coordinator. In this manner, the whole model will be
naturally partitioned according to their respective
implementation platform and executing the native
simulation service. This kind of interoperability where
multi-platform simulations can be executed with our
DEVSML integration facilities. DEVSML will be used to
describe the whole hybrid model. At this level, the problem
consists of message passing, which has been solved in this
work by means of an adapter pattern in the design of the
“message” class (used in Figures 7 and 8). Figure 11 shows
a first approximation. The platform specific simulator
generates messages or events, but the simulation services
will transform these platform-specific-messages (PSMsg) to
our current platform-independent-message (PIMsg)
architecture developed in SOADEVS.

COORDINATOR
(Waiting)

SIMULATION
SERVICE

DEVSJAVA

SIMULATION
SERVICE
DEVS-C++

SIMULATOR
DEVSJAVA

SIMULATOR
DEVS-C++

0.- nextTN

1.- nextTN 2.- PSMsg

3.- PIMsg
serialized

4.- PSMsg’Internal
Transition

External
Transition

Output
Propagation

0.- nextTN

Figure 11: Future work

Hence, we see that the described SOADEVS framework can
be extended towards net-ready capability testing. The
SOADEVS framework also needs to be extended towards
multi-platform simulation capabilities that allow test-models
be written in any DEVS implementation (e.g. Java and C++)
to interact with other as services.

References:
[1] D.J. Carstairs, Wanted: A New Test Approach for Military Net-Centric
Operations, Guest Editorial, ITEA Journal, Volume 26, Number 3, October
2005
[2] X. Hu, and B.P. Zeigler, Model Continuity in the Design of Dynamic
Distributed Real-Time Systems, IEEE Transactions on Systems, Man And
Cybernetics— Part A, Volume 35, Issue 6, pp. 867-878, November 2005
[3] A. Wegmann, Strengthening MDA by Drawing from the Living Systems
Theory, Workshop in Software Model Engineering, 2002
[4] DoD Architecture Framework, Software Productivity Consortium,
http://www.software.org/pub/architecture/dodaf.asp, last accessed Jan 9,
2005.
[5] DOD Instruction 5000.2 Operation of the Defense Acquisition System,
12 May 2003.
[6] Chairman, JCS Instruction 3170.01D Joint Capabilities Integration and
Development System, 12 March 2004.
[7] Chairman, JCS Instruction 6212.01C Interoperability and
Supportability of Information Technology and National Security Systems,
20 November 2003
[8] K. Atkinson, Modeling and Simulation Foundation for Capabilities
Based Planning, Simulation Interoperability Workshop Spring 2004
[9] ACIMS software site:
http://www.acims.arizona.edu/SOFTWARE/software.shtml
[10] B. P Zeigler, H. Praehofer, T. G. Kim, Theory of Modeling and
Simulation, Academic Press, 2000
[11] Discrete Event Modeling and Simulation Technologies: A Tapestry of
Systems and AI-Based Theories and Methodologies. Editors: Hessam
Sarjoughian, François E. Cellier. Spring-Verlag, Berlin, 2001.
[12] B. P.Zeigler, DEVS Today: Recent Advances in Discrete Event-based
Information Technology, MASCOTS Conference, 2003
[13] H. Sarjoughian, B. Zeigler, and S. Hall, A Layered Modeling and
Simulation Architecture for Agent-Based System Development, Proceedings
of the IEEE 89 (2); 201-213, 2001
[14] S. Mittal, B. P. Zeigler, “Dynamic Simulation Control with Queue
Visualization”, Summer Computer Simulation Conference, SCSC’05,
Philadelphia, July 2005
[15] S. Mittal, B. P. Zeigler, P. Hammonds, M. Veena, “Network
Simulation Environment for Evaluation and Benchmarking HLA/RTI
Experiments”, JITC Report, Fort Huachuca, December 2004.
[16] X. Hu, B.P. Zeigler, S. Mittal, “Dynamic Configuration in DEVS
Component-based Modeling and Simulation”, SIMULATION:
Transactions of the Society of Modeling and Simulation International,
November 2003
[17] S. Mittal, B.P. Zeigler, “Modeling/Simulation Architecture for
Autonomous Computing”, Autonomic Computing Workshop: The Next
Era of Computing, Tucson, January 2003.
[18] B.P. Zeigler, D. Fulton, P. Hammonds, J. Nutaro, “Framework for
M&S Based System Development and Testing in Net-centric
Environment”, ITEA Journal, Vol. 26, No. 3, October 2005
[19] S. Mittal, J.L. Risco. DEVSML: Automating DEVS Execution over
SOA Towards Transparent Simulators. In Special Session on DEVS
Collaborative Execution and Systems Modeling over SOA, DEVS
Integrative M&S Symposium DEVS'07, March 2007.
[20] R. M.. Fujimoto, Parallel and Distribution Simulation Systems, Wiley,
1999
[21] C. Seo, S. Park, B. Kim, S. Cheon, B.P. Zeigler, Implementation of
Distributed High-performance DEVS Simulation Framework in the Grid
Computing Environment, Advanced Simulation Technologies conference
(ASTC), Arlington, VA, 2004

[22] S. Cheon, C. Seo, S. Park, B.P. Zeigler,, Design and Implementation
of Distributed DEVS Simulation in a Peer to Peer Networked System,
Advanced Simulation Technologies Conference, Arlington, VA, 2004
[23] K. Kim, W. Kang, CORBA-Based, Multi-threaded Distributed
Simulation of Hierarchical DEVS Models: Transforming Model Structure
into a Non-hierarchical One, International Conference on Computational
Science and Its Applications, ICCSA, Italy 2004
[24] H. Vangheluwe, L. Bolduc, E. Posse, DEVS Standardization: some
thoughts, Winter Simulation Conference 2001
[25] WSDL http://www.w3.org/TR/wsdl
[26] H. Sarjoughian, B.P. Zeigler, "DEVS and HLA: Complimentary
Paradigms for M&S?" Transactions of the SCS, (17), 4, pp. 187-197, 2000
[27] Y. Cho, B.P. Zeigler, H. Sarjoughian, Design and Implementation of
Distributed Real-Time DEVS/CORBA, IEEE Sys. Man. Cyber. Conf.,
Tucson, Oct. 2001.
[28] G. Wainer, N. Giambiasi, Timed Cell-DEVS: modeling and
simulation of cell-spaces”. Invited paper for the book Discrete Event
Modeling & Simulation: Enabling Future Technologies, Springer-Verlag
2001
[29] XML: http://www.w3.org/XML/
[30] M. Zhang, B.P. Zeigler, P. Hammonds, DEVS/RMI-An Auto-
Adaptive and Reconfigurable Distributed Simulation Environment for
Engineering Studies, ITEA Journal, July 2005
[31] S. Mittal, “DEVS Unified Process for Integrated Development and
Testing of Service Oriented Architectures”, PhD Dissertation, University of
Arizona, 2007
[32] S. Mittal, “Extending DoDAF to Allow DEVS-Based Modeling and
Simulation”, Special Issue on DoDAF, Journal of Defense Modeling and
Simulation, Vol III, No. 2, 2006
[33] DUNIP: A Prototype demonstration:
http://www.acims.arizona.edu/dunip/dunip.avi

Biography

Saurabh Mittal
He is currently working as a research engineer at ACIMS
lab, University of Arizona. He received his PhD in
Computer Engineering from University of Arizona in 2007.
His interests include DEVS Modeling theory, DoDAF
applications, Net-centric computing and SOA. He can be
reached at saumitt@gmail.com

José L. Risco-Martin
He is an assistant professor in Universidad Complutense de
Madrid. He received his PhD from Complutense University
of Madrid in 2004. His research interests are computational
theory of modeling and simulation, with emphasis on
DEVS, Dynamic memory management of embedded
systems, and net-centric computing. He can be reached at
jlrisco@gmail.com

Bernard P. Zeigler
He is a professor at Electrical and Computer Engineering
department at University of Arizona. He is an IEEE fellow
and is best known for his formulation of DEVS theory. He
can be reached at zeigler@ece.arizona.edu

