
 1

A W3C XML Schema for DEVS Scenarios

J. L. Risco Martín1, Saurabh Mittal2, M. A. López-Peña3 and J. M. de la Cruz1

1Departamento de Arquitectura de
Computadores y Automática

Universidad Complutense de Madrid,
28040 Madrid, Spain

{jlrisco , jmcruz}@dacya.ucm.es

2Arizona Center of Integrative Modeling and
Simulation

Electrical and Computer Engineering Department
The University of Arizona, Tucson, AZ 85721, USA

saurabh@ece.arizona.edu

3Sistemas Avanzados de Tecnología, S.A.
Av. Europa 34ª, 28023 Madrid, Spain

malopez@satec.es

Abstract
There are numerous DEVS-based simulators to
configure DEVS systems and run them. Current
programs or libraries are based in programming
languages such as JAVA, C++, etc. The existence of
these different implementations has resulted in the
formation of various groups that are not able to share
models and cannot capitalize on model reuse. To
encourage system modeling and simulator compatibility
we propose a standard representation for such models.
Such a standard must be simple to manipulate and
validate, and promote the integration of DEVS M&S
software on different platforms. In this paper we
present an XML Schema for representing the structure
and the behavior of DEVS coupled scenarios. In
addition, we developed a simulator (xDEVS) that can
execute these XML-based scenarios over DEVS
protocol. We also demonstrate how an Atomic DEVS
behavior can be represented using XML by proposing
the XML Schema of an atomic model as well. This
paper is one of the first papers in the ongoing research
on M&S using XML as the communication platform.

Keywords: DEVS (Discrete EVent System
Specification), XML (eXtensible Markup Language),
XML-Schema, Meta-Language, Meta-Model.

1 Introduction

The DEVS formalism (Discrete Event Systems
Specification) [1] provides a way to specify discrete
event systems as well as a base for distributed
simulation environments. DEVS is a universal
formalism for the discrete event dynamic systems and
has been used to represent varied classes of dynamic
systems. DEVS environments, such as DEVSJAVA,
DEVS.C++, and others [2,4,5] are embedded in object-
oriented implementations and they support the goal of
representing executable model architectures in an
object-oriented representational language. As a
mathematical formalism, DEVS, is platform
independent, and its implementations adhere to the
DEVS protocol so that DEVS models easily translate
from one form (e.g., C++) to another (e.g., Java) [3,4,5]
With its recent advances like variable structure
modeling, dynamic model reconfiguration, real-time
simulation control and model continuity [6], DEVS is
emerging today as the chosen way to employ M&S in
design phases of any dynamic system.

There are varied libraries for expressing DEVS models
across the globe, and all of them have efficient
implementations for executing the DEVS protocol.
However, this proliferation of libraries presents a
difficulty for the modelers, in sharing models, who have
to learn the programming language of the simulator and
sometimes they remain tied to it. In the present work we
aim to bridge this gap by employing XML as a means
to share model information and a step towards model
interoperability and reuse.

Section 2 describes an overview of our proposed
solution. Section 3 describes the DEVS representation
of scenarios. Section 4 explains why XML is an
appropriate technology and a preferred choice for
DEVS-XML representation among others, such as
SESM/CM. Section 5 provides the DEVS-XML
Schema definitions. Section 6 shows an example of a
DEVS-XML atomic model generated from an XDEVS-
Java atomic model. Finally, we present the conclusions
and future work.

2 Proposed Solution

One way to increase modeler-simulator compatibility is
to adopt a standard representation of a scenario. Here it
is important to make a distinction between models and
scenarios. A model is an abstract, symbolic
representation of a DEVS system – also named
behavior, that contains the finite state machine of a
closed system. Specifically speaking, a model here is
refered as an atomic model in DEVS terms. A scenario
is an explicit description of this system that contains
many of such atomic models and is called a coupled
model in DEVS terms. A scenario does not contain the
behavior of the modeled system but it contains
information about the connectivity relationships of the
various atomic models contained therein.

Using a standard representation of a scenario, using
XML, the modeler may use this representation which
does not require a lot of programming knowledge,
making automatic transformations from the XML
representation to a particular simulator representation.
To facilitate such automated conversion, we developed
a simulator called XDEVS [7], which executes XML
coupled scenarios and translates our implementation of
DEVS simulator. In order to accomplish this, we also
developed a parser that allows transformation of the
XDEVS-Java scenario into a DEVS-XML scenario.

 2

Our proposed representation allows the behavior of the
scenario to be specified in XML [8]. The behavior
Schema for an atomic model is not yet completed, but
in its current state we still can represent basic types of
atomic models, for example, a generator.
Consequently, we are looking for a 20-80 rule (20% of
the effort, 80% of the models) which amounts to putting
the effort in reusing the existing models Figure 1 shows
the modeling process.

DEVS-XML
Schema

DEVS-XML
Scenario

DEVS-XML
Transformations

DEVSJAVA

JDEVS

DEVS/C++

XDEVS

Results

Results

Results

Results
Valid DEVS-XML

Scenario

Figure 1: Modeling process of coupled scenarios

Earlier work by Vladimir [9] has also proposed XML
representations for DEVS models, but they used
JavaML [10] for the behavior specification, so the user
cannot write a DEVS-XML scenario without the help of
a graphical tool. In contrast to this, our proposal
provides a way to:

1. Write DEVS-XML scenarios without any
support from a programming language

2. Validate the DEVS-XML scenarios created
3. Transform a XDEVS-Java scenario into a

DEVS-XML scenario.

3 The DEVS representation

The Discrete EVent System specification formalism
(DEVS) was pioneered by Bernard Zeigler in the mid–
seventies [1]. DEVS allows representation of all
systems whose input/output behavior can be described
by a sequence of events with the caveat that the state
has a finite number of changes in any finite interval of
time.

A DEVS model processes an input event trajectory
along with its own initial conditions, provokes an
output event trajectory.

Formally, a DEVS atomic model is defined by the
following structure:

()taYSXM ext ,,,,,, int λδδ=
Where:

• X is the set of input event values, i.e., the set
of all the values that an input event can take.

• S is the set of state values.
• Y is the set of output event values.

• δint, δext, λ and ta are functions which define the
system dynamics.

Atomic models may be coupled in the DEVS formalism
to form a coupled model. A coupled model provides a
way to couple (connect) several component models
together to form a new model. This latter model can
itself be employed as a component in a larger coupled
model, thereby giving rise to hierarchical construction
(see Figure 2).

pipeSimple

P0

P1

P2

in in

in

in

out

out

out out

EIC

IC
EOC

Figure 2: A Coupled model

The mathematical formulation that describes this
process is as follows:

{ } }{ ICEOCEICDdMDYXN d ,,,,,, ∈=
 where:

• X is the set of input event values.
• Y is the set of output event values.
• D is the set of the components.
• Md is the model of the d-component.
• EIC is the set of the external input

connections.
• EOC is the set of the external output

connections.
• IC is the set of the internal connections.

A DEVS scenario can be defined using mathematical
formulation. Consider the simple processor example
showed in Figure 3 [9]:

()
{ }

(){ }
{ }

(){ }

{ }
() () ()()()

()
()

() ()
()

()() ()()
()
() σσ

σλ
δδδ

σδ

σ

σδ

λδδδ

=
=

=
⎩
⎨
⎧ Λ=∞

=

⎩
⎨
⎧

−
=

=

=
×ℜ×=

∈∈=
==

∈∈=
==

=

+

jphaseta
jqjbussy

xOsxstaS
coiqj_timeprocessingpassive
qqbusy

qjphase

coijephase
activephase_time,jnprocessingbusy
jninjinjinejphase

JbusypassiveS

YpvOPortspvpY
JYoutoutOPorts

XpvIPortspvpX
JXininIPorts

taSYXDEVS

extcon

ext

M

M

conextMM

,,
.,,""

,,,,
....,,""

 if,,""
.,,

...,,
"" if,""

,"",...,2,"",1,"",,,,
"",""

 values;and portsoutput ofset theis
 ,|,
. where,""

,|,
),identifies job ofset (a where,""

 where,,,,,,,,

int

int

0

int

Figure 3: Simple processor expressed in DEVS

 3

Figure 4 shows the deltext behavior expressed in Java
within the DEVSJAVA simulator context.

public void deltext(
 double e,message x) {
 Continue(e);
 if (phaseIs("passive"))
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"in",i)) {
 job = x.getValOnPort("in",i);
 holdIn("busy",processing_time);
 }
}

Figure 4: deltext() model (behaviour) in DEVSJAVA

An XML modeling vocabulary could take its place
alongside the other modeling languages, but this is not
the goal of the research we report here. Creating a
standard for scenarios is fundamentally different from
creating a standard for atomic models. The
mathematical components are different, the efficiency
and representational considerations are different, and
the contexts in which the designs are to be applied are
different. Modeling languages and atomic systems are
intended to be used by people, and so have a variety of
designs reflecting personal preferences and usages. for
the communication of scenarios between modeling
systems, which are largely hidden from people, are
much more readily standardized. Thus a standard for
scenarios has much better prospects for being widely
adopted and reused.

4 The case for XML

There are other approaches to represent DEVS models,
such as SESM/CM [17]. SESM/CM is suitable for
developing component-based hierarchical models. It
offers a basis for modeling behavioral aspect of atomic
models by providing the structural specification and
storage of the model. However, a XML representation
offers several advantages and is increasingly being
adopted as a standard for the interchange of information
in diverse fields of science [15] and operations research
[16].

An XML vocabulary is formally defined by an XML
Schema [12, 13, 14] against which every file written in
the vocabulary can be automatically validated. This
arrangement gives an XML vocabulary several
important advantages over PSMs (Platform Specific
Models):

• Validation against a schema promotes stability
of the standard.

• The schema can restrict data types.
• The schema can define key data to insure, for

example, that one atomic name is not used
more than once.

• The schema can be extended to include
constraint types or simulator directives. Files

that validated under the original schema
continue to validate under the extended one
(though of course, the reverse is not
guaranteed).

This broader relevance has benefits for DEVS systems:

• When scenarios are stored in XML format,
DEVS technology results are more readily
integrated into broader information technology
infrastructures.

• XML is the data interchange language of Web
services.

• XML lends itself very well to compression.
• XML-based Extensible Stylesheet Language

Transformations (XSLT) offers a convenient
way to specify translations of XML
documents. If a DEVS scenario (with perhaps
corresponding results) is stored in XML, then
XSLT is easily applied to the scenario to
produce a Web browser document that
displays the results data in reports that are
suitable for people to read.

• Encryption standards such as XML Encryption
are emerging for XML data. This encryption is
important to commercial DEVS applications
where the scenarios contain confidential data.

Libraries for these purposes - validating files, defining
keys, compressing files, and the like, are provided by
numerous XML tools designed for manipulating and
parsing XML data. It suffices to define our XML
vocabulary in the form of a schema that these tools can
work with. This contrasts to ad hoc formats that require
writing, debugging, and maintaining routines equivalent
to these tools.

5 DEVS-XML Schema definitions

5.1 Atomic DEVS Meta-Language

The XML-Schema which defines atomic DEVS models
is called Atomic DEVS-XML Schema. It is organized in
a structure based on the same elements as DEVS
formalism. These are the inputs, outputs, states set,
transition functions, output function and time-advance
function. Figure 5 shows the general structure of the
Atomic DEVS-XML Schema.

The input and output specification of DEVS-XML is
made by means of the ports definition (see Figure 6).
These ports have an internal structure formed by a
group of signals: the ports may be simple (only one
signal or message) or composed (a set of signals).

The DEVS-XML Schema incorporates the definition of
signal types. These types are divided in two categories:
elementary (integer, real, positive integer, etc.) and
enumerated. This set of types can be extended within
the DEVS-XML Schema to cover specific types
needed.

 4

The states specification is made by means of two
structures: one for the state of the system and other for
the set of state variables (see Figure 7). The state of the
system is defined as a set of possible states, whereas the
state variables are defined one by one specifying their
type. These data types are the same explained for the
case of signals.

The transition functions are similar. In the case of the
external transition function it is necessary to specify the
port by which the events arrive. The specification of the
transition functions consists of the description of the
new state where the system will be as well as the new
values for state variables. This work contributes some
behavior structures, such as expressions, that allow us
to define different types of transitions based on logic
expressions. Figure 8 shows the schema of the
transition functions.

We have defined a grammar based on regular
expressions in order to specify the logic of the state
transitions. This grammar facilitates a homogeneous
definition of the model behavior. In addition, it
facilitates automatic processing and conversion from
DEVS-XML models to other PSMs and vice versa.
Actually, the transformation from PSMs to DEVS-
XML is developed only in the case of XDEVS
scenarios.

The output function is specified by means of the
description of “SEND” clauses (see Figure 9). These
clauses provide the mechanism to define the path that
the output signals must follow. As in the case of the
transition functions, DEVS-XML Schema incorporates
the definition of conditional clauses in order to define

the logic of the output decisions. It offers the possibility
of incorporating multiple signals by multiple ports.

Figure 5. DEVS-XML Schema: Atomic model

structure

DEVS-XML Schema also provides a structure to define
the time advance function (Figure 10). As in previous
cases the XML-Schema permits the possibility of
including conditional logic.

Figure 6: DEVS-XML Schema: Port specification

Figure 7: DEVS-XML Schema: State specification

 5

Figure 8: DEVS-XML Schema: Transition functions specification

Figure 9: DEVS-XML Schema: Output function specification

Figure 10: DEVS-XML Schema: Time advance function specification

Figure 11: DEVS-XML Schema: Type specification

DEVS-XML Schema incorporates the definition of a set
of types giving support to main and internal structure of
elements. The main types defined in DEVS-XML
Schema are listed in Figure 11. The most important
characteristics for such XML type specification are the
following ones:

• Definition of simple ports with a single signal
or compound ports (formed by a set of
different signals).

• Definition of different type of signals: integer,
real, enumerated type, natural, etc.

• Definition of state variables.
• Definition of model behavior by means of

expressions related to the state of the system
and the set of state variables.

• Multiple output, in the sense of that an atomic
model can emit a signal or a set of signals
through several ports at once.

Finally, an important feature of XML is that it supports
encryption standards such as XML Encryption. This
standard has the flexibility to specify encryption of
specific elements, for example, a user could encrypt the
data in an atomic component by adding child elements
to the sate variable initialization.

5.2 Coupled DEVS Meta-Language

 6

The definition of coupled models is simple once the
DEVS-XML Schema for atomic models has been
defined. This schema structure, as is defined in DEVS
formalism, is formed by the following elements:

• A set of inputs and outputs of the coupled
system -with the same structure of signals and
ports defined in the schema of the atomic
model.

• A list of atomic models that forms the coupled
model -a list of identifiers corresponding to the
names of the internal atomic models.

• The atomic models participating into the
coupled model.

• The set of external input connections: like a set
of pairs (port/signal, atomic/port/signal). This
set of pairs defines the connections between
the input to the coupled model and the input of
the elements within the coupled model.

• The set of external output connections, like a
set of pairs (atomic/port/signal, port/signal).
This set defines the connections between the
output of the atomic models inside of the
coupled model and the output of the coupled
model.

• The set of internal connections between atomic
models, like a set of pairs (atomic/port/signal,
atomic/port/signal). This set defines the
connections among elements inside of the
coupled model.

Figure 12 shows the XML Schema for coupled DEVS
models with the elements described above.

Figure 12: DEVS-XML Schema for coupled models

5.3 Transformations

DEVS-XML scenarios can be considered as PIMs
(Platform Independent Models). Likewise, DEVS
simulator implementations like DEVSJAVA,
DEVS/C++, etc, can be considered PSMs (Platform
Specific Models). The development of DEVS-XML
scenarios provides of abstraction to the implementation
details, allowing the user to be centered only on the
problem solving.

DEVS-XML Schema facilitates the development of
DEVS-XML scenarios because there are several tools
that, in addition to XML editing, allow the user to
validate and verify the XML scenario respect to the
Schema. These kinds of tools provide a good support to
the development of PIM models.

The next problem is the automatic conversion between
DEVS-XML scenarios and the Simulator
implementations on different platforms i.e.
transformations from PIM scenarios to PSM scenarios
and vice versa.

One proposed methodology for automated conversion
of DEVS-XML scenarios to Simulator implementation
is to use JAXP (Java API for XML Processing) and
XSL (eXtensible Stylesheet Language). JAXP is an
abstraction layer to work with SAX interface (Simple
API for XML), trees and DOM classes (Document
Object Model). XSL is a family of languages which
allows one to describe how files encoded in the XML
standard are to be formatted or transformed. With these
tools the conversion becomes the two part process.
First, we have to analyze the DEVS-XML structure in
order to verify that it is well-formed and is valid. The
second stage is the transformation.

DEVS-XML Schema includes a well defined structure
for mathematical expressions in the form of regular
expressions. This definition provides additional support
that facilitates the analysis of these expressions (used in
the transition functions, output function and time-
advance function) and the code generation into any
simulation platform. The conversion from a language
specific model implementation to DEVS-XML
Scenarios is similar to the previous one. In this case,
the language dependency of the original models (Java,
C++, etc) requires starting with a good specification of
the grammar of the underlying language, i.e., a direct
relation between the programming structures and XML.
There are several tools for analysis (for example Flex,
Bison, etc.). In our case, we use the XML
representation of JAVA, know as JAVAML[7].

We developed a translator, which gets Java XML from
XDEVS-Java and transforms it into DEVS-XML
Scenarios. The simulator also implements the DEVS
simulation protocol (in Java) so that the generated files
can be readily tested for their verification.

 7

6 DEVS-XML Generation Example

In this section, we present an example of an atomic
model developed in Java to a DEVS-XML model. The
atomic model shown here is a simple processor

proposed by Zeigler [1]. Figure 13 shows the DEVSML
description of this atomic model. The generation of a
coupled model is easier since it only contains
components and coupling information, not behavior.

<?xml version="1.0" encoding="UTF-8"?>
<ATOMIC_DEVS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="C:\MLP\Doctorado\Linea
de Tiempo Real\Especificacion_DEVSML\Atomic_DEVSML.xsd">
 <ATOMIC_MODEL_NAME>processor</ATOMIC_MODEL_NAME>
 <INPUTS>
 <PORT_NAME>in</PORT_NAME>
 <PORT_SIGNAL_SPEC>
 <SIGNAL_NAME>job_id</SIGNAL_NAME>
 <SIGNAL_TYPE_ELEMENTARY>Integer</SIGNAL_TYPE_ELEMENTARY>
 </PORT_SIGNAL_SPEC>
 </INPUTS>
 <OUTPUTS>
 <PORT_NAME>out</PORT_NAME>
 <PORT_SIGNAL_SPEC>
 <SIGNAL_NAME>job_id</SIGNAL_NAME>
 <SIGNAL_TYPE_ELEMENTARY>Integer</SIGNAL_TYPE_ELEMENTARY>
 </PORT_SIGNAL_SPEC>
 </OUTPUTS>
 <STATES>
 <STATE_SET>
 <STATE_SET_NAME>phase</STATE_SET_NAME>
 <STATE_SET_VALUES>busy passive</STATE_SET_VALUES>
 </STATE_SET>
 <STATE_VARIABLES>
 <STATE_VARIABLE_NAME>processing_time</STATE_VARIABLE_NAME>
 <STATE_VARIABLE_TYPE_ELEMENTARY>Real</STATE_VARIABLE_TYPE_ELEMENTARY>
 <STATE_VARIABLE_NAME>job</STATE_VARIABLE_NAME>
 <STATE_VARIABLE_TYPE_ELEMENTARY>Integer</STATE_VARIABLE_TYPE_ELEMENTARY>
 </STATE_VARIABLES>
 </STATES>
 <INTERNAL_TRANSITION_FUNCTION>
 <NO_CONDITIONAL_FUNCTION>
 <NEW_STATE>passive</NEW_STATE>
 <STATE_VARIABLE_UPDATE State_Variable_Name="processing_time"
 State_Variable_Value="5"/>
 </NO_CONDITIONAL_FUNCTION>
 </INTERNAL_TRANSITION_FUNCTION>
 <EXTERNAL_TRANSITION_FUNCTION>
 <EVENT>
 <PORT Port_Name="in"/>
 <CONDITIONAL_FUNCTION>
 <STATE_CONDITION>phase==passive</STATE_CONDITION>
 <TRANSITION_FUNCTION>
 <NEW_STATE>busy</NEW_STATE>
 <STATE_VARIABLE_UPDATE State_Variable_Name="processing_time"
 State_Variable_Value="5"/>
 </TRANSITION_FUNCTION>
 </CONDITIONAL_FUNCTION>
 <CONDITIONAL_FUNCTION>
 <STATE_CONDITION>phase==busy</STATE_CONDITION>
 <TRANSITION_FUNCTION>

 8

 <NEW_STATE>busy</NEW_STATE>

 <STATE_VARIABLE_UPDATE State_Variable_Name="processing_time"

 State_Variable_Value="sigma-_e"/>
 <STATE_VARIABLE_UPDATE State_Variable_Name="job"
 State_Variable_Value="_xSignalValue(“in”,”job_id”/>
 </TRANSITION_FUNCTION>
 </CONDITIONAL_FUNCTION>
 </EVENT>
 </EXTERNAL_TRANSITION_FUNCTION>
 <OUTPUT_FUNCTION>
 <NO_CONDITIONAL_OUTPUT_FUNCTION>
 <SEND Port_Name="out" Signal_Name="job_id" Signal_Value="job"/>
 </NO_CONDITIONAL_OUTPUT_FUNCTION>
 </OUTPUT_FUNCTION>
 <TIME_ADVANCE_FUNCTION>
 <TIME_ADVANCE>Sigma</TIME_ADVANCE>
 </TIME_ADVANCE_FUNCTION>
</ATOMIC_DEVS>

Figure 13: DEVS-XML description of the Atomic model

7 Conclusions and Future work

The DEVS-XML Schema development can be
considered a suitable base for the generation of
platform-independent DEVS models. A W3C XML
Schema has been introduced, first for DEVS atomic
models and then for DEVS coupled scenarios. The use
of XML with an XML Schema has been the preferred
mechanism in order to generate transformations from
DEVS-XML scenarios to PSM scenarios and vice
versa. Henceforth, a transformer from platform-specific
model to DEVS-XML has been developed
demonstrating the proof of concept. We are in the
process of developing transformations from DEVS-
XML scenarios to platform-specific scenarios for ex, in
Java and C++.

Presently, DEVS-XML Schema is applicable to a very
small subset of DEVS models as the behavior grammar
is not complete and suffers from absence of
programming logic into XML for example, loops and
if-else constructs. Representing scenarios of such kind
is very important and is required to exploit the true
power of DEVS modeling. An existing XML
vocabulary, JavaML [7], can be used to represent Java
code, thereby, building on the power of Java. One
direction of research we are now following is to
develop a schema that uses the JavaML namespace in
order to describe the behavior along with the rules and
XML-Schema developed herein to describe the
structure.

References

[1] Zeigler, B. P.; Praehofer, H. and Kim, T. 2000. “Theory of
modeling and simulation”, 2nd Edition, Academic press 2000, ISBN
0-12-778455-1.
[2] http://www.acims.arizona.edu/SOFTWARE/software.shtml, last
accessed Jan 12, 2005

[3] H. Sarjoughian, B. Zeigler, and S. Hall, “A Layered Modeling
and Simulation Architecture for Agent-Based System Development”,
Proceedings of the IEEE 89 (2); 201-213, 2001
[4] Zeigler, B.P. 1997. “DEVS-JAVA User’s Guide.”
TechnicalReport. AI & Simulation Lab., Department of Electrical and
Computer Engineering, University of Arizona, Tucson, AZ.
[5] Zeigler, B. P.; Moon, Y.; Kim, D. and Kim, J.G. 1996.
“DEVS/C++ A High Performance Modeling and simulation
environment“, Hawaii international conference on system sciences -
HICSS, pages 350 – 359.
[6] Mittal, S., Mak E., Nutaro, J.J., "DEVS-Based Dynamic Model
Reconfiguration and Simulation Control in the Enhanced DoDAF
Design Process", submitted to special issue on DoDAF, Journal of
Defense Modeling and Simulation (JDMS).
[7] XDEVS web page:
 http://itis.cesfelipesegundo.com/~jlrisco/xdevs.html
[8] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
François Yergeau. 2004. “Extensible Markup Language (XML) 1.0
(Third Edition). W3C Recommendation”. World Wide Web
Consortium (W3C).
[9] Vladimír Janousek, Petr Polásek and Pavel Slavícek. “Towards
DEVS Meta Language”. In: ISC 2006 Proceedings, Zwijnaarde, BE,
2006, p. 69-73, ISBN 90-77381-26-0
[10] Badros, G., “JavaML: a markup language for Java source code”.
In Proceedings of the 9th International World Wide Web conference
on Computer networks: the international journal of computer and
telecommunications networking¸ pages 159-177.
 [11] Zeigler B, Sarjoughian H., (2005) “Introduction to DEVS
Modeling and Simulation with Java: Developing Component-Based
Simulation Models”. Arizona Center for Integrative Modeling and
Simulation.
[12] David C. Fallside, Priscilla Walmsley .2004. “XML Schema Part
[0]: Primer Second Edition”. World Wide Web Consortium (W3C).
[13] Henry S. Thompson, David Beech, Murray Maloney, Noah
Mendelsohn. 2004. “XML Schema Part [1]: Structures Second
Edition”. World Wide Web Consortium (W3C).
[14] Paul V. Biron, Kaiser Permanente, Ashok Malhotra. 2004.
“XML Schema Part [2]: Datatypes Second Edition”. World Wide
Web Consortium (W3C).
[15] O’Reilly, Science XML vocabularies.
http://www.xml.com/pub/rg/Science, 1999
[16] Bradley, G., “Introduction to extensible markup language (XML)
with operations research examples”. Newsletter of the INFORMS
Computing Society, 24:1-20, 2003.
[17] Bendre, S., Sarjoughian, H.S., “Discrete-Event Behavioral
Modeling in SESM: Software Design and Implementation”,
Advanced Simulation Technology Conf., pp. 23-28, Apr., San Diego,
CA., 2005.

