
Extending DoDAF to Allow Integrated
DEVS-Based Modeling and Simulation

Saurabh Mittal
Arizona Center of Integrative Modeling
and Simulation (ACIMS)
ECE Department, University of Arizona
Tucson, AZ 85721
saurabh@ece.arizona.edu

JDMS, Volume 3, Issue 2, April 2006 Pages 95–123
© 2006 The Society for Modeling and Simulation International

A recent DoD mandate requires that the DoD Architecture Framework (DoDAF) be adopted to express high-level system
and operational requirements and architectures. DoDAF is the basis for integrated architectures and provides broad levels
of specification related to operational, system, and technical views. The combination of DoDAF operational views, which
capture the requirements of the architecture, and systems views, which provide its technical attributes, forms the basis
for semi-automated construction of the needed simulation models. Unfortunately, DoDAF doesn’t mandate any simulation
methodology to analyze the system or perform any pre-design feasibility studies. In this paper, we describe an approach
to support specification of DoDAF architectures within a development environment based on DEVS (Discrete Event
System Specification). The result is an enhanced system life cycle development process that includes both development
and testing in an integral manner. We introduce two new operational views (OVs) in the current DoDAF making way for
modeling and simulation as a part of the design process. We illustrate the process to build these new OVs from the existing
OVs and their impact on the overall DoDAF system development process. We discuss automated model generation using
XML through the introduced OVs, which paves the way for OVs to become service-providing components in the web
services architecture.

Keywords: DoDAF, simulation-based design, DEVS, bifurcated development process, operational view, model continuity,
SOA

1. Introduction

A recent DoD mandate requires that the DoD
Architecture Framework (DoDAF) be adopted to
express high-level system and operational requirements
and architectures [1]. DoDAF is the basis for the
integrated architectures mandated in DoD Instruction
5000.2 [2] and provides broad levels of specification
related to operational, system, and technical views.
Integrated architectures are the foundation for
interoperability in the Joint Capabilities Integration
and Development System (JCIDS) prescribed in CJCSI
3170.01D and further described in CJCSI 6212.01D [3,
4]. DoDAF and other DoD mandates pose significant
challenges to the DoD system and operational
architecture development and testing communities
since DoDAF specifications must be evaluated to
see if they meet requirements and objectives, yet

they are not expressed in a form that is amenable to
such evaluation. However, DoDAF-compliant system
and operational architectures do have the necessary
information to construct high-fidelity simulations.
Such simulations become, in effect, the executable
architectures referred to in the DoDAF document.
DoDAF is mandated for large procurement projects
in the Command and Control domain but its use in
relation to modeling and Simulation (M&S) is not
explicitly mentioned in the documentation [5, 8]. Thus
an opportunity has emerged to support the translation
of DoDAF-compliant architectures into models that
are of sufficient fidelity to support architectural
evaluation in capable simulation environments.
Operational views capture the requirements of the
architecture being evaluated and system views
provide its technical attributes. Together these views
form the basis for semi-automated construction of the
needed simulation models.
 DoDAF is a framework prescribing high-level design

Volume 3, Number 296 JDMS

Mittal

artifacts, but leaves open the form in which the views
are expressed. A large number of representational
languages are candidates for such expression. For
example, the Unified Modeling Language (UML)
and colored Petri nets (CPN) are widely employed in
software development and in systems engineering.
Each popular representation has strengths that
support specific kinds of objectives and cater to its
user community needs. By going to a higher level of
abstraction, DoDAF seeks to overcome the plethora
of “stove-piped” design models that have emerged.
Integration of such legacy models is necessary for
two reasons. Firstly, as systems, families of systems,
and systems-of-systems become more broad and
heterogeneous in their capabilities, the problems of
integrating design models developed in languages
with different syntax and semantics has become a
serious bottleneck to progress. Secondly, another
recent DoD mandate also intended to break down
this “stove-piped” culture requires the adoption of
the Service Oriented Architecture (SOA) paradigm
as supported in the development of Network Centric
Enterprise Services (NCES) [6]. However, anecdotal
evidence suggests that a major revision of the DoDAF
to support net-centricity is widely considered to
be needed. Indeed, under DoD direction, several
contractors have begun to design and implement
the NCES to support this strategy on the Global
Information Grid (GIG). The result is that system
development and testing must align with this mandate
(requiring that all systems interoperate in a net-centric
environment), a goal that can best be done by having
the design languages be subsumed within a more
abstract framework that can offer common concepts
to relate to. However, as stated before, DoDAF does
not provide a formal algorithmically-enabled process
to support such integration at higher resolutions.
Lacking such processes, DoDAF is inapplicable to
the SOA domain, and GIG in particular. There have
been efforts, such as those by Dandashi et al. [7], that
have tried to map DoDAF products to SOA, but as it
stands there is no clear-cut methodology to develop an
SOA directly from DoDAF, let alone their testing and
evaluation.
 Our earlier work [8] and that of Zeigler et al. [9]
described the bifurcated model continuity–based
system lifecycle process. In this paper we will explore
it in more detail with respect to technologies like XML
and UML with their application to DoDAF. Our earlier
work [8] also explored the possibility of application of
DEVS to the DoDAF design process and developed
a mapping between various UML elements and the
DEVS formalism. It considered all three elements of
the DoDAF, viz., operational view (OV), system view
(SV), and technical view (TV), and their mapping with

DEVS components. In this paper we will establish
that enhancing DoDAF would require extending
the DoDAF with more information. We will focus
on the proposed extension of DoDAF and examine
the information needed to execute the development
process. We will demonstrate the procedure and the
way in which M&S can be applied with the help of an
example. We will also discuss the application of the
proposed views. This discussion will show how the
enhanced DoDAF can effectively support development
of services in SOA environments.
 Sections 2 and 3 provide some background on
DoDAF views and DEVS specifications, respectively.
Section 3 also discusses the key component technologies
inherent in DEVS and principles of model continuity.
Section 4 describes the idea behind mapping DoDAF
into DEVS framework. Section 5 throws light on the
prior efforts to employ M&S as an integrated solution
to evaluate architectures, and highlights some problem
areas encountered. It also discusses the current M&S
situation and how DEVS provide solutions to these
problems. Section 6 describes the bifurcated model
continuity process, the basis for our approach. Section
7 discusses some gaps in DoDAF and proposes
solutions on how to fill them. Sections 8 and 9 present
the detailed methodology on how to transition from
UML description to DEVS specifications. Section 9
also provides the justification of this mapping process.
Section 10 provides a full example on how the proposed
views are constructed and their significance to M&S
areas. Section 11 leads the present discussion toward
the benefits of this work in immediate future, followed
by conclusions in section 12.

2. DoDAF Specifications

The Department of Defense (DoD) Architectural
Framework (DoDAF), Version 1.0 (2003), defines a
common approach for DoD architecture description
development, presentation, and integration. The
framework enables architecture descriptions to
be compared and related across organizational
boundaries, including joint and multinational
boundaries.
 DoDAF is an architecture description, and it
does not define a process to obtain or build the
description. The Deskbook [1] provides one method
for development of IT architectures that meet DoDAF
requirements, focusing on gathering information
and building models required to conduct design and
evaluation of an architecture. The DoDAF defines
three elements for any architecture description:

Operational View (OV) - The OV is a description
of the tasks and activities, operational
elements, and information exchanges required

1)

Volume 3, Number 2 JDMS 97

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

to accomplish DoD missions. DoD missions
include both war-fighting missions and business
processes. The OV contains graphical and
textual products that comprise an identification
of the operational nodes1 and elements,
assigned tasks and activities, and information
flows required between nodes. It defines the
types of information exchanged, the frequency
of exchange, which tasks and activities are
supported by the information exchanges, and
the nature of information exchanges.
System View (SV) - The SV is a set of graphical
and textual products that describes systems and
interconnections providing for, or supporting,
DoD functions. DoD functions include both
war-fighting and business functions. The SV
associates systems resources to the OV. These
systems resources support the operational
activities and facilitate the exchange of
information among operational nodes. Within
this view, how the functionalities specified in OV
will be met is elaborated.
Technical View (TV) - The TV is the minimal set
of rules governing the arrangement, interaction,
and interdependence of system parts or elements,
whose purpose is to ensure that a conformant
system satisfies a specified set of requirements.
Within this view, the delivery of systems and
functionalities is ensured along with their
migration strategies toward future standards.

 These views provide three different perspectives for
looking at an architecture. The emphasis of DoDAF
1. Operational node: A node specified in OV that performs one

or more operations; a functional entity that communicates with
other functional entities to implement a collective functionality or
a capability.

2)

3)

lies in establishing the relationship between these three
elements ensuring entity relationships and supporting
analysis; see Figure 1. The DoDAF approach is
essentially data-centric rather than product-centric.
The OV, SV, and TV are further broken down into
specialized views whose brief description can be seen
in column 3 in Table 3 ahead, as well as in the appendix.
A complete description can be see in [1, 14].

3. DEVS System Specifications

In this section, we review some of the background
required for discussion DEVS support of DoDAF.

3.1 Hierarchy of System Specifications

Systems theory deals with a hierarchy of system
specifications, which define levels at which a system
may be known or specified. Table 1 shows this
hierarchy of system specifications (in simplified form,
see [10]).

At level 0 we deal with the input and output
interface of a system.
At level 1 we deal with purely observational
recordings of the behavior of a system. This is an
I/O relation that consists of a set of pairs of input
behaviors and associated output behaviors.
At level 2 we have knowledge of the initial state
when the input is applied. This allows partitioning
the I/O pairs of level 1 into non-overlapping
subsets, each subset associated with a different
starting state.
At level 3 the system is described by state space
and state transition functions. The transition

•

•

•

•

Figure 1. Linkages among views

Volume 3, Number 298 JDMS

Mittal

function describes the state-to-state transitions
caused by the inputs and the outputs generated
thereupon.
At level 4 a system is specified by a set of
components and a coupling structure. The
components are systems on their own with their
own state set and state transition functions. A
coupling structure defines how those interact.
A property of a coupled system, which is called
“closure under coupling,” guarantees that a
coupled system at level 3 itself specifies a system.
This property allows hierarchical construction
of systems, i.e., that coupled systems can be
used as components in larger coupled systems.

Table 1. Hierarchy of system specifications

Level Name What we specify at this level

4 Coupled
Systems

System built up by several
component systems that are
coupled together

3 I/O System
System with state and state
transitions to generate the
behavior

2 I/O
Function

Collection of I/O pairs constituting
the allowed behavior partitioned
according to the initial state the
system is in when the input is
applied

1 I/O
Behavior

Collection of I/O pairs constituting
the allowed behavior of the system
from an external black-box view

0 I/O Frame Input and output variables and
ports together with allowed values

As we shall see in a moment, the system specification
hierarchy provides a mathematical underpinning to
define a framework for modeling and simulation. Each
of the entities (e.g., real world, model, simulation, and
experimental frame) will be described as a system
known or specified at some level of specification. The
essence of modeling and simulation lies in establishing
relations between pairs of system descriptions. These
relations pertain to the validity of a system description
at one level of specification relative to another system
description at a different (higher, lower, or equal)
level of specification.
 Based on the arrangement of system levels as
shown in Table 1, we distinguish between vertical and
horizontal relations. A vertical relation is called an
association mapping and takes a system at one level of
specification and generates its counterpart at another
level of specification. The downward motion in the
structure-to-behavior direction formally represents

•

the process by which the behavior of a model is
generated. This is relevant in simulation and testing
when the model generates the behavior which then
can be compared with the desired behavior.
 The opposite upward mapping relates a system
description at a lower level with one at a higher level
of specification. While the downward association
of specifications is straightforward, the upward
association is much less so. This is because in the
upward direction information is introduced while
in the downward direction information is reduced.
Many structures exhibit the same behavior, and
recovering a unique structure from a given behavior
is not possible. The upward direction, however, is
fundamental in the design process where a structure
(system at level 3) has to be found that is capable of
generating the desired behavior (system at level 1).

3.2 Framework for Modeling & Simulation

The framework for M&S as described by Zeigler et al.
[10] establishes entities and their relationships that are
central to the M&S enterprise; see Figure 2. The entities
of the framework are source system, experimental frame,
model, and simulator; they are linked by the modeling
and the simulation relationships. Each entity is formally
characterized as a system at an appropriate level of
specification within a generic dynamic system. See
[10] for detailed discussion.

3.3 Model Continuity

Model continuity refers to the ability to transition as
much as possible of a model specification through
the stages of a development process. This is the
opposite of the discontinuity problem where artifacts
of different design stages are disjointed and thus
cannot be effectively consumed by each other. This
discontinuity between the artifacts of different design
stages is a common deficiency of most design methods
and results in inherent inconsistency among analysis,
design, test, and implementation artifacts [11]. Model

Figure 2. Framework entities and relationships

Volume 3, Number 2 JDMS 99

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

continuity allows component models of a distributed
real-time system to be tested incrementally, and then
deployed to a distributed environment for execution.
It supports a design and test process having four steps;
see [11]:

Conventional simulation to analyze the system
under test within a model of the environment
linked by abstract sensor/actuator interfaces;
Real-time simulation, in which simulators are
replaced by a real-time execution engines while
leaving the models unchanged;
Hardware-in-the-loop (HIL) simulation, in which
the environment model is simulated by a DEVS
real-time simulator on one computer while the
model under test is executed by a DEVS real-time
execution engine on the real hardware; and
Real execution, in which DEVS models interact
with the real environment through the earlier
established sensor/actuator interfaces that have
been appropriately instantiated under DEVS
real-time execution.

 Model continuity reduces the occurrence of design
discrepancies along the development process, thus
increasing the confidence that the final system will
realize the specification as desired. Furthermore,
it makes the design process easier to manage since
continuity between models of different design stages
is retained.

4. Motivation for DoDAF-to-DEVS Mapping

The DoDAF suffers from following shortcomings:
Although there is mention of “executable
architectures” in DoDAF, there is no methodology
recommended by DoDAF that would facilitate
the development of executable DoDAF models.
It has completely overlooked the model-driven
development approach. Consequently, there is
no formal M&S theory that DoDAF mandates.
DoDAF fails to address performance issues at the
OV level.
DoDAF fails to include measures of effectiveness
(MoEs) that can be evaluated at the OV stage. If
any performance measures are considered at all,
they are at the SV level. System parameters and
performance is at a totally different resolution
than MoEs.
There is no mechanism to perform verification
and validation (V&V) at the OV stage.
It fails to address M&S as a potent evaluation and
acquisition tool.

 We propose a mapping of DoDAF architectures

1)

2)

3)

4)

1)

2)

3)

4)

5)

6)

into a computational environment that incorporates
dynamical systems theory and an M&S framework.
The methodology will support complex information
systems specification and evaluation using advanced
simulation capabilities. Specifically, the Discrete Event
System Specification (DEVS) formalism will provide
the basis for the computational environment with
the systems theory and M&S attributes necessary for
design modeling and evaluation. We will see in the
forthcoming sections that the proposed mapping will
require augmentation of current DoDAF with more
information set that is far from any duplication of the
available DoDAF products.
 We will demonstrate how this information is
added and harnessed from the available DoDAF
products toward development of an extended DoDAF
integrated architecture that is “executable.” This kind
augmentation has been attempted earlier by Lee et al.
[12] using CORE of the Vitech Corporation as a tool to
develop the executable architecture. They developed
“architectural templates” that elicit information for
both the operational and system views that contained
additional information than the usual DoDAF
products. In another effort, Rosen et al. [13] proposed
a new model called the Rosen-Parenti model that adds
another layer of abstraction to the existing DoDAF,
augmenting the model with various user-oriented
perspectives. Going further, they developed the
executable architecture with their proposed model
and showed how V&V is applicable in their domain.
Their model unearthed a shortcoming of DoDAF:
it fails to address the performance issue at the OV
level, which the Rosen-Parenti model addressed in
one of their perspectives. In our attempt to augment
the current DoDAF, our focus shall remain on adding
minimal information that would enable DoDAF to
become an executable architecture. There are potential
advantages to making DoDAF a DEVS-compliant
system.
 An executable architecture is defined as the use of
dynamical simulation software to evaluate architecture
models [14]. Such executable architectures provide
many benefits [12]:

The architecture model itself can be verified for
internal self-consistency.
Operational concepts can be simulated, observed
dynamically, verified, and refined.
Operational plans can be examined, assessed
with their feasibility reports.
Trade-offs between systems can be assessed.
Architecture measures can be evaluated (if the
metrics have been defined), which can support
cost-benefit analysis and quantitative acquisition
decisions.

1)

2)

3)

4)
5)

Volume 3, Number 2100 JDMS

Mittal

 The focus of this effort is to make a DoDAF
architecture executable and provide V&V at the
operational level, i.e., OV level, as also indicated in
[15]. We chose to consider the development of an OV
executable model primarily for the reason that the
design is abstract at the OV level. There are many
tools that can put different system models together
and can conduct a simulation exercise. There is not
much breadth to explore at the SV level as things are
brought down to the implementation level with clearly
defined interfaces. We aim to provide the benefits of
being an executable architecture at the operational
level. DEVS, with its mathematical systems theoretical
foundation, serves as the ideal candidate to develop
an operational executable model, as the same model
can be extended to the systems level using model
composition and hierarchical construction leading to
multi-resolutional models, as discussed in Table 1.
 We seek to employ DoDAF-to-DEVS mapping to
unify multiple model representations by expressing
their high-level features within DoDAF and their
detailed features as subclasses of DEVS specifications.
DEVS has been shown to be a universal embedding
formalism, in the sense of being able to express any
subclass of discrete event systems, such as Petri nets,
cellular automata, and generalized Markov chains
[10]. DEVS has also been employed to express a
wide variety of more restricted formalisms, such as
state machines, workflow systems, fuzzy logics, and
others [16]. Moreover, DEVS environments have
a long history of development and are now seeing
ever increasing use in the simulation-based design
of commercial and military systems [17]. Providing
a DoDAF “front end” to a “back-end” DEVS
environment will appeal to military information
system designers facing the DoDAF and NCES
mandates. Such designers will be able to retain their
skills with representations familiar to them, while
complying with DoDAF abstractions. At the same
time, they can see the results of their specifications
evaluated via a simulation-based execution of the
model architecture. Moreover, since all mappings are
into subclasses of DEVS, the resulting models can be
coupled together and, therefore, can interoperate at
the systems dynamics level. Thus this approach to
the synthesis of system design formalisms leverages
design and execution methodologies that are already
used, or mandated for use, in commercial and military
applications.
 DEVS environments, such as DEVS JAVA, DEVS-
C++, and others [18], are embedded in object-
oriented implementations, thus supporting the
goal of representing executable model architectures
in an object-oriented representational language.
As a mathematical formalism, DEVS is platform

independent, and its implementations adhere to the
DEVS protocol so that DEVS models easily translate
from one form (e.g., C++) to another (e.g., Java) [19].
Moreover, DEVS environments, such as DEVS JAVA,
execute on commercial off-the-shelf desktops or
workstations and employ state-of-the-art libraries to
produce graphical output that complies with industry
and international standards. DEVS environments are
typically open architectures that have been extended
to execute on various middleware such as DoD’s
HLA standard, CORBA, SOAP, and others [20–23].
Therefore, the proposed design architecture supports
interfaces to other engineering and simulation and
modeling tools—an example of such networking
is provided by Lockheed’s satellite cluster mission
effectiveness simulator [24]. Furthermore, DEVS
operation over a web middleware (SOAP) enables
it to fully participate in the net-centric environment
of the NCES. As a result of recent advances, DEVS
can support model continuity through a simulation-
based development and testing life cycle [11]. This
means that the mapping of high-level DoDAF
specifications into lower-level DEVS formalizations
would enable such specifications to be thoroughly
tested in virtual simulation environments before
being easily and consistently transitioned to operate
in a real environment for further testing and fielding.

5. Earlier Work and Recommendations for
M&S Support in DoDAF

Reference architecture bridges the gap between
processes addressing the development of contingency
operations for future systems and the implementation
of domain-specific architectures that build on legacy
systems while incorporating new technologies and
capabilities. Modeling and Simulation is a key tool to
support evaluation of the effectiveness of the reference
architectures and the resulting domain-specific
architectures [25].

 The DoDAF is a mission-system reference
architecture where the goal is to provide an
architecture that can accomplish mission capabilities.
It is a domain-specific architecture that is actually
an instance of the parent reference architecture with
specified applicable domain rules [25]. In one of our
earlier works [26], we proposed a rule-based meta-
model structure that is applicable to such a reference
architecture with M&S as a part of the design cycle.
Even if the DoDAF architecture is the same for two
missions, it is the domain-specific rules that will
eventually decide if the developed architecture is
feasible and there are no rule incompatibilities.
 Dr. Alexander Levis acknowledges that M&S can
provide an integrated solution in evaluation of the

Volume 3, Number 2 JDMS 101

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

designed architectures [27], but there is no explicit
guidance on how to achieve this. Unfortunately, recent
attempts to relate M&S to architecture frameworks
such as C4ISR (a precursor to DoDAF) and model-
driven architecture [5, 28, 29] have established the
need for including M&S in it but have not provided
a rigorous methodology for doing so. However, there
have been efforts, such as NATO Active Layered
Theatre Ballistic Missile Defense (ALTBMD) studies,
that resulted in alignment of experimentation phases
[30]. Despite all the information specified in the
constructed OV, SV, and TV, this effort required the
generation of a new view, coping with which systems
and connections were simulated in which systems,
and based on which constraints, etc. The ALTBMD
study supports the view that DoDAF in its current
state requires the addition of some added/pruned
information set that is applicable to the M&S area.
 In an attempt to evaluate the completeness of
DoDAF document products in providing a sufficient
information set for an executable architecture, Zinn
[31] integrated the information contained in OV-5 and
OV-6a to come up with an intermediate document
that fed an agent-based simulation software called
SEAS. Agent technology used by Zinn mitigates the
solution as the independent agents (i.e., a plane,
tank, etc.) can now behave independently and can
modify behavior based on their decision rules. This
essentially leads to an executable state machine of a
component whose behavior is adaptive to the changing
environment. However, the problem arises in the
absence of interface specifications to port data from
these agent architectures into simulation software. In
his thesis [31], Zinn concludes that DoDAF contains
enough information to build an executable set but it
needs synthesis of intermediate documents. He also
acknowledges that the development of an executable
architecture must address the following:

The third order analysis, as mentioned in DoDAF,
is a critical step in acquisition strategy, but there
is no methodology to perform this analysis.
Legacy models are too monolithic to be
disassembled and recomposed to model
individual C4ISR effects [32].
Colored Petri nets (CPNs) [33] provide a means
to model and simulate the above-mentioned
activity. However, they fall short in modeling an
adaptive environment (both in the structure and
behavior), where the rules of engagement (ROE)
are constantly changing as the model learns and
evolves. Another area where the CPNs are lacking
as a technology itself is the inability to specify
timing between states. Consequently, temporal
effects cannot be considered in any executable

1)

2)

3)

architecture that bases its performance evaluation
on CPNs.

 In the sequel to our paper, we discuss an approach
to enhancing DoDAF with additional views that
enable the DEVS formalism and technology to provide
a fully capable simulation-based executable model for
DoDAF specifications.

5.1 Overview of the Role for DEVS-Based
Technology

The Air Force Chief Architect’s office (AFCAO)
website [34] lists three key impact areas where use of
architectures can provide real benefit:
 1) Operations enhancement
 1.1) Requirement coherence and prioritization
 1.2) Better utilization of fewer personnel
 1.3) Deliberate exploitation of innovation
 2) Programming and planning
 2.1) IT investment decisions (support for
 POM inputs)
 2.2) MIL-worth analysis (M&S
 executable architectures)
 2.3) AOA evaluation (trade study)
 3) Acquisition support
 3.1) Enhanced war-fighter/user capabilities ID
 3.2) Execution roadmaps
 3.3) Source selection
 3.4) Technology application/transition
 3.5) Test support (MOE/MOP)
 3.6) Interoperability and integration assurance
 Even though it has been realized that M&S is
necessary in performing evaluation and developing
acquisition strategy, there is more opportunity for
current simulation technology to help. Table 2, taken
from our earlier work [8], summarizes limitations of
current M&S methodologies to support DoDAF and
shows where DEVS-based technology can contribute.2

6. DoDAF-to-DEVS and Bifurcated
Model Continuity–Based System
Life Cycle Development Process

As suggested in Table 2, key to our proposal for
extending DoDAF to integrate DEVS-based modeling
and simulation into a process model that supports
both development and testing of military and other
software-intensive systems, the bifurcated model
continuity–based life cycle process combines the systems
theory, M&S framework, and model continuity

2. Although not all of the areas taken from the list above are
considered in Table 2, the ones omitted are at a higher level of
abstraction and will benefit indirectly from the application of
M&S in general.

Volume 3, Number 2102 JDMS

Mittal

Table 2. Comparison of current technologies in development with DEVS on addressing M&S issues in AFCAO

AFACO
Reference

Desired M&S
Capability

Current Working Tools
(Agent-Based or CPNs)

Solutions Provided by
DEVS Technology

1.1 Requirement coherence
and prioritization

No formal methodology exists in
defining architectures wherein the
data model can be put directly to use
for simulation modeling.

The present work aims to accomplish this
by injecting requirements quite early in
the design stage of DoDAF architectures,
specifically in the OV phase.

2.2 MIL-worth analysis (M&S
executable architectures)

Work is ongoing in this area. Due to
the limitations of the technologies
being used, the desired “execution” is
not possible.

DEVS provides the capability to:
1) Reconfigure simulations on-the-fly

[35];
2) Control simulations on-the-fly [36];
3) Provide dynamic variable-structure

component modeling [35, 37];
4) Separate the model from the act

of simulation itself, which can be
executed on single or multiple
platforms using DEVS/HLA [10]; and

5) Layer the simulation architecture to
accomplish the technology migration
or run different technological
scenarios [19, 38].

6) With its bifurcated process,
automated test generation is integral
to this methodology [9].

3.1 Enhanced war-fighter/
user capabilities

1) Deterministic CPNs
2) Stochastic SEAS, but too rigid to

reconfigure on the fly
3) Agent-based methodology again

falls short in variable structure
simulation model

3.2 Execution roadmaps There are no capabilities to control the
ongoing simulation to steer it in the
“right” direction.

3.3 Source selection

3.4 Technology application/
transition

No dynamic reconfiguration of
model and simulation reported. The
simulation architecture itself has to
be layered enough to accomplish
technology transition.

3.5 Test support Agent-based technology—Zinn’s work
is essentially in this direction;
CPNs are not capable of automated
test generation

3.6 Interoperability and
integration assurance

The methodology itself has limitations;
no mechanisms reported so far.

Figure 3. The bifurcated model continuity–based life cycle process

Volume 3, Number 2 JDMS 103

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

concepts reviewed earlier. As illustrated in Figure
3, the process bifurcates into two streams—system
development and test suite development—that
converge in the system testing phase. The process has
the following characteristics:

DoDAF specifications: As described in greater
detail below, DoDAF descriptions in the
operational, system, and technical views are created
by designers. Although initially ill-formulated,
as the process proceeds, iterative development
allows refinement of the requirements and
increasingly rigorous formulation resulting from
the formalization and subsequent phases.
Formalization by mapping into DEVS: Concurrent
with the formulation or capture of DoDAF
specifications, they are formalized as DEVS model
components that are coupled together to form an
overall reference master model.
Reference master model: The master DEVS model
serves as a reference model for any implementation
of the behavior requirements. This model can be
analyzed and simulated with the DEVS simulation
protocol to study logical and performance
attributes. Using model continuity, it can be
executed with the DEVS real-time execution
protocol and provides a proof-of-concept
prototype for an operational system.
Semi-automated test suite design: Branching in the
lower path from the formalized specification, we
can develop a test suite consisting of experimental
frames called test models that can interact with a
system under test (SUT) to test its behavior relative
to the specified requirements.
Simulation-based testing: The test suite
is implemented in a net-centric simulation
infrastructure and executed against the SUT. The
test suite provides explicit pass/fail/unresolved
results with leads as to components that might be
sources of failure.
Optimization and fielded execution: The
reference model provides a basis for correct
implementation of the requirements in a wide
variety of technologies. The test suite provides a
basis for testing such implementations in a suitable
test infrastructure. Test tools should carry into
the fielding and operational tests of the system,
and provide operationally realistic test cases and
scenarios.
Iterative nature of development: The process
is iterative allowing return to modify the
master DEVS-model and its DoDAF precursor
requirements specification. Model continuity
minimizes the artifacts that have to be modified

as the process proceeds. The design methodology
provides a process (see Figure 4) to transform
the DoDAF description of an architecture to a
DEVS representation supporting evaluation and
recommendations for a feasible design. Briefly
described, the steps are as follows:

The architecture specifications are presented
in DoDAF description format as OVs, SVs, and
TVs.
The system specifications are then mapped to
DEVS specifications, according to the translation
described in Table 3 (in section 9), which map
the DoDAF views to corresponding DEVS
elements. The mapping is illustrated with UML
elements and is expressed in XML [39]. Table 3 is
the updated and extended version of our earlier
work [8], focused specifically to OV. The SV is
presented in the appendix.
Test suites for implementations of the design are
developed in the test develop stream.
Simulation results and their analyses provide
the recommendations for a feasible design.
Components are developed from the models
using model continuity principles, and the
design is verified by the TV specifications
developed earlier as a part of the DoDAF
process.

 Creation of the DEVS model repository and DEVS
test suite occur in a concurrent manner. The DEVS
repository serves as a collection of models that are
used to develop scenarios and experimental frames,
and to conduct other simulation-oriented analysis.
The DEVS test suite is designed to ensure that the
required behavior as expressed in input-output
pairs is correctly implemented when integrated
in the system with timing constraints. One such
semiautomated test suite called Automated Test-
Case Generator (ATC-Gen) has been developed at
JITC by Zeigler [9], and has been applied for Link-
16 testing [40]. Analysis of the experimental frame
simulations and the system test results are compared
and evaluated to determine departure from required
behavior. This error margin is called the conformance
measure. Ideally, the designed model has a 100%
conformance with the test suite. If the departure
exceeds a given tolerance, the model is revised to
increase the model-test conformance. All this assumes
that the initial DoDAF specifications have been cast
in stone. Typically, however, the iterative process will
also suggest new or modified specifications at the
DoDAF level. The iterative loops can be seen in Figure
4. Finally, when the models conform to the system
test specifications, the test suite presents the design

1)

2)

3)

4)

5)

Volume 3, Number 2104 JDMS

Mittal

and performance recommendations as the outcome of
this data-centric process. The model repository serves
as the basis of design of components based on model
continuity principles, and the test suite serves as the
benchmark for performance evaluation and matching
the technical specifications as developed in the TV
DoDAF descriptions.
 In Section 8, we shall demonstrate how the
bifurcated model continuity–based life cycle process
can provide a framework in which to develop DEVS
technology support for DoDAF, leading to model
repositories and test suites. However, several gaps
in the DoDAF specification have to be bridged to
enable the infusion of DEVS to take place. We turn
toward these shortfalls and our proposals to address
them.

7. Filling Gaps in DoDAF

We address three gaps in the DoDAF as currently
formulated relating to a) message flow among
activities, b) transition from OV-5 to OV-6, c) temporal
specifications, and d) accountability for failure of
activity execution.

7.1 Message Flow Among Activities

AV-1 deals with the overall functionality of the system.
AV-2 deals with the data dictionary and terms used
in the DoDAF specification of the system. This leads
to the first “functional” document, OV-1, which
gives way to OV-5, which describes the intended
functionalities in fair amount of detail. It lays out the
functionalities in terms of capabilities and activities in
hierarchical as well as sequential manner. A capability
is defined as a functionality comprising of many
activities. These activities are linked by “messages”

Figure 4. Bifurcated DEVS-to-DoDAF system life cycle development process

Volume 3, Number 2 JDMS 105

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

that are apparently flowing between the defined
activities. What flows between these activities is not
exactly defined in DoDAF. The abstraction level of
“information” flow is not discussed in DoDAF. They
can be top-level operational information exchanges
(OIEs) or specific data messages. The first gap occurs
at this point. DoDAF does not define the interactions
between the activities. This is all the more ambiguous
since activities are not “entities” that can be physically
realized. However, these activities do exchange
messages. There is no entity structure developed
by this stage of functional development. An entity is
defined as a component that can be physically realized.
There is no mention of any entity taking responsibility
for any activity. Were an “activity” to be mapped to
the corresponding UML notation, it would map to use-
case diagrams. However, unlike the use-case diagram,
the OV-5 does not take into account the entities (actors
in UML) that take responsibility for this activity. Since
there is no apparent entity structure, the interfaces are
essentially absent.
 Structure in DoDAF does not appear until OV-2
and OV-7. The activities in OV-5 seem to exchange
messages or events for that matter but there is no
mechanism specified to send or receive events. In other
words, there is no specification of activity interface. If
activities are considered as potential components of the
operational views, there is ample reason to consider
them as “components” of a particular capability and
provide interfaces to enable and define the message
communication between activities.
 The advantages of considering an activity as a
component entity are manifold:

An activity is grounded in the design at the
DoDAF specification level.
It can be back-referenced to any particular
capability or it may serve to more than one
capability.
Activities with defined interfaces provide a
way to develop a test suite to test the capability
definition of the system.
An activity can be allotted to the defined entities
such that a real-world entity or a group of entities
can be held responsible for its execution.
It brings specificity to the component design
by ensuring the interfaces defined in activities
be mapped on a one-to-one basis in the target
component entity held responsible for this
activity.
It provides structure to the functional aspect of
DoDAF that can feed the entity structure of the
system, which then can be aggregated toward
the system views.

1)

2)

3)

4)

5)

6)

It paves the way for DoDAF-DEVS mapping
and how testing can be applied to the design
process (as described in the previous section) at
an operational stage.
It allows the designer and planner to define
the needed entities in the OV phase of DoDAF
specification of the system.
It provides the framework to incorporate M&S
at two different levels of resolution to conduct
feasibility studies:

a) At the capability level - At this level the system
can be modeled based on the “functionality”
of the system. Rules and doctrines can be
accounted for at this level of the model. This
provides a means to test the compatibility
of existing rules and doctrines when testing
the feasibility of any activity. There are no
means to test and validate the compatibility
and inter-operability of various rules and
doctrines that constrain any particular
capability in DoDAF. The need for such
consideration has been recognized by
Dickerson and Soules [42] in the proposed
CV-6 document (capability evolution
document).

b) At the entity level - At this level the
system can be modeled based on the entity
structure as developed from the capability
model. New supporting entities can be
introduced at this level that can support the
existing capabilities or that are needed by
specific capabilities such as fault-tolerance,
scalability, etc.

 Coming back to the discussion of current OV-5
in DoDAF, the activity diagrams are then detailed
further in OV-6. The OV-6 consists of three parts. Our
prime interest is in OV-6b (state chart diagrams) and
OV-6c (timing sequencing and event trace diagrams),
as OV-6a deals with the rules and doctrines, basically
a document to describe the constraints on different
activities mentioned in OV-5. OV-6b can be mapped
to the UML state chart diagrams and OV-6c can be
mapped to the UML timing sequence diagrams.

7.2 Transition from OV-5 to OV-6

The second gap comes during the transition from OV-5
to OV-6, specifically OV-6c, event trace diagrams. The
OV process adds further details to activity diagrams
in describing the sub-activities for OV-5 activities.
It associates the current activities with the known
operational nodes (which can be seen in OV-1).
However, the nodes in consideration here may be as
big as an organization itself, and abstraction level is

7)

8)

9)

Volume 3, Number 2106 JDMS

Mittal

fairly high. Even if the node is the lowest level entity
(an unlikely case), the complete behavioral life cycle
of this entity is overlooked, and only the activities
in consideration are assigned to the operational node
with a presumption that the node will execute this
activity. The life cycle with respect to the attended
activities is expressed in OV-6b; however, there
is no hierarchy of these nodes present that could
account for the hierarchical activities under question.
Consider a typical activity diagram in OV-5 and
imagine that in order to execute this activity, four
different nodes are performing in tandem through a
sequence of sub-activities and passing events to one
another. The current setup is depicted in the OV-6c
timing sequence diagram describing the execution
of an OV-5 activity. Similarly, the OV-6b diagram
depicts the sequencing of these sub-activities. The
problem of developing the life cycle of an operational
node is easier if all the sub-activities are happening
at one node, but that is usually not the case since
multiple nodes are performing and synchronizing to
execute the parent activity. The fragmented nature
of activities to compose and define a parent activity
or a capability makes the construction of an OV-6b
diagram for an operational node more difficult.
The other drawback of this methodology is the
possible occurrence of inconsistency between OV-
6b and OV-6c, as the statechart in OV-6b is bounded
by the activities called for in OV-5 and explored in
fragmented manner in OV-6c in specific event trace
diagrams. There is possible loss of information
here, and DoDAF provide no means to ensure
consistency.
 Although the development of OV-5 and OV-6 is
an iterative process, it does not ensure a foolproof
life cycle of an operational node. This problem does
not occur in the UML architecture as the approach
there is to start with use-case diagrams, then move
to the class diagrams, which leads on to the activity
diagrams, timing sequencing diagrams, and state
chart diagrams of individual classes, in this specific
order. This ensures consistency, as there are defined
classes before making the timing sequencing diagrams
or state charts. DoDAF has a reverse approach to this
design problem, where it groups and aggregates
activities and defines classes (in OV-6), then leads
on to the OV-2. OV-7 and the data exchanges are
simultaneously defined in OV-3. Developing state
chart diagrams without developing the class entity
structure is error prone. The solution to this problem
is to treat an activity as a component and develop
the activity-entity structure before OV-6b and after
OV-5.
 (It can be argued that the operational views are
concerned with the functional description of the
system that does not require any component structure

definition. Furthermore, it is in the system views
that the structure is made available and interfaces
are defined. The counterargument to this approach
is that there is no mechanism provided in DoDAF
to test the operational views’ development and to
conduct early feasibility studies3).
 In order to fill the second gap and maintain the
order of OV-5 and OV-6 iterative development
process, we suggest the following:

Consider the activities as components and place
them in a structure so that they are better
defined and managed.
Employ a methodology to transition from OV-6b
and OV-6c to the DEVS behavioral model for
operational nodes composition and incorporate
the activity components as constituent parts
with defined interfaces.
Incorporate the doctrines and rules of
engagement specified in OV-6a to be
implemented into the DEVS behavioral model
of an activity component; see the example in
section 10.

 The next section describes a methodology
to develop the DEVS state systems from OV-6c
descriptions, which are essentially time sequencing
diagrams. This, incorporated with the OV-6b
statechart, will provide much needed consistency
between the two documents. Ultimately, it will result
in a DEVS model repository of operational nodes for
modeling and simulation, testing, and control. The
integrated solution to the above two gaps result in the
introduction of two new OV documents:

OV-8, activity components document - This
document list the activities as components
with defined port interfaces that are essentially
logical in structure.
OV-9, activity interface specifications -
This document describes the interface
specifications between activities and entities.
It holds information about the mapping of a
subcomponent inside an operational node that
is responsible to execute any particular activity.
Again, this mapping requires augmentation
with logical port definitions.

 Details of the development of these two documents
can be seen in the next section. Figure 5 presents the
operational view setup in DoDAF and its extended
version.
3. When the system views are defined there can be many ways

to develop test models since every boundary and interface is
almost defined (though not designed in operational views since there
is no document that contains interface specifications except OV-3,
which is essentially data-exchange document). One can build a
simulation model easily as systems are already in place in the
system view.

1)

2)

3)

1)

2)

Volume 3, Number 2 JDMS 107

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

7.3 Temporal Information

One crucial piece missing in this existing toolset is
the timing information that is absent in OV-5. Our
proposal attempts to bridge this gap by giving
adequate consideration to interface structure and
involving other views, namely OV-6b and OV-6c in
conjunction with OV-5 and OV-6a. The communication
information is not available until SV-2 and SV-6 are
constructed, which is derived from OV-3, which is
constructed late in the OV phase itself. Introducing
timing well before in the design of operational views
equips the acquisition strategy with information
about those current systems that could meet these
“operational” delay requirements.
 A similar architecture called Air Operations Center
(AOC) Weapon System Block 10.1 Architecture, being
developed by MITRE for the Air Force, is under
development along the lines of DoDAF specifications.
It is considered an “integrated” architecture based on
the DoDAF standards. It contains the seven essential
products required, and data elements are consistent
across the views. Zinn developed a procedure wherein
information from different AOC DoDAF views were
handled manually and brought to a level where the
doctrines can be utilized to impact the simulation
model in question. This information is presented in if-
else constructs in the form of pseudo-code that can be
fed into any XML parser for further processing. More
details about the procedure can be seen in his thesis
[31].
 Our proposal can be seen as extending Zinn’s
procedures by giving more structure to the compiled
information, which includes temporal information
in activities as an important part of the information
exchange. Zinn used the IDEF process methodology
to depict various OVs and noted the inherent

inadequacy of the IDEF3 process [43] when being fed
to an agent-based simulation software, e.g., SEAS,
which has no rules defined in case of OR split that
dictate which path to take to resume the activity. We
believe that the problem stems from the fact that the
underlying architecture does not consider timing an
important concept. This problem would not have
arisen in the first place, and the situation would have
resulted in “timeout” (as can be easily expressed in
DEVS) in case of OR split. This is but one example
of the limitations of the modeling methodology that
does not lead to simulatable models.

7.4 Accountability for Failure of Activity Execution

The third and final gap that we found was the lack of
any accountability for failure of activity execution by
operational nodes over time. There is an absence of
accountability because there are no means provided
in DoDAF to test the design principles in operational
views. Since M&S is not systematically considered in
the current DoDAF specification, there is no means to
test the feasibility of the system. Furthermore, there
is no support for modeling technologies like model-
driven architectures (MDA) and model continuity
principles.
 Our effort is toward providing accountability to
the design process by introducing M&S at the correct
development stage, where it is possible to experiment
and modify the operational architecture in question.
This is very much needed, as it is not reaffirming
to presume the capabilities of operational nodes
(through COTS specifications) and then move on to
the system views without ensuring the functionality
of the system in operational views. The reason for
choosing the DEVS formalism as a means to M&S is
its expressive power and modularity support. The
concept of “elapsed time” is one of the key aspects of
DEVS formalism, and it provides a means to evaluate
the component behavior in a finite time frame. It
enables the component to attend, and respond, to
any external events in time intervals prescribed in
its DEVS specifications. Incorporation of DEVS in
DoDAF will make the design process more tractable
and controllable.

8. From OV-6 UML Diagrams to DEVS
Component Behavior Specifications

Figure 6 describes the development of a DEVS
description model from a simple time sequencing
thread in a time sequencing diagram.
 A simple time sequencing diagram is considered to
illustrate the DEVS activity component development
process and how it fits into the DEVS description of an

Figure 5. State of operational view documents in DoDAF

Volume 3, Number 2108 JDMS

Mittal

operational node. Consider that a hierarchical activity
is being addressed by three operational nodes, and
they are exchanging events between sub-activities in
order to perform this activity. In the first diagram in
Figure 6 (leftmost), we can see them interacting with
each other. The center part of the figure consists of the
thread for one operational node and is enlarged for
better analysis. The sequencing diagram is represented
in UML notation, and this node has a lifeline during
the course of which it receives events and sends
output messages or events to other nodes. In mapping
to a DEVS formalism we need to have information
about the internal transitions (when no events are
received) from one activity to another activity and
the external transitions (when an event is received at
this node sent by another node). The timeline of the
node consists of a sequence of activities that the node
will undergo in the event of external transition or
internal transition. The complete timeline is available
in OV-6b, so there is all the more reason to maintain
consistency and similar input and output trajectories
of sequential activities. Different markings on the
thread are self-explanatory. Striped boxes indicate the
port interfaces where an external event can be received
and dotted boxes indicate the port from which output
events can be sent to other nodes. Activity 1 receives
an external event and undergoes activity 2 after
generating an output message. Activity 2 undergoes

internal transition toward activity 3 in absence of any
external event. This particular thread displays only
a subset of activities performed by this node. Since
DEVS employs a port-based component structure
system we identify the input and output ports and
assign them to specific activity components at this
particular developmental stage. This results in the
introduction of a new OV document, OV-8, which
contains the mapping definitions of logical ports and
activity components. Finally, these activities, if not
present in OV-6b, are then introduced in OV-6b for
a comprehensive set of activities performed by this
operational node.
 Another byproduct of this stage is the mapping
of activity components with entity components that
constitute an operational node. This is specified in a new
OV document called OV-9. This contains information
about the activity ports, activity components, entity
components, and logical entity ports that are mapped
to logical activity ports in OV-8. Introduction of these
new OV documents modifies the overall DoDAF OV
specification structure illustrated in Figure 6.

9. DoDAF-to-DEVS Elements

Table 3 provides the mapping of various DoDAF OV
products into DEVS modeling constructs. UML is chosen
as the preferred method of DoDAF representation.

Figure 6. Development of DEVS description model from UML time sequencing thread

Volume 3, Number 2 JDMS 109

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

First the UML element is mapped with the DoDAF
product document, and then the same UML element
is mapped to the DEVS element(s). Representation of
DoDAF into corresponding UML has been presented
earlier by Telelogic [41].
 Their representation included SV products as
well.4 In Table 3 we have also incorporated the two
new OV products, OV-8 and OV-9. Since UML is
essentially an object-oriented methodology, work
has been attempted in the area of transforming UML
models to CPN executable architectures [15]. Our
work is similar in nature, where UML elements are
transformed to DEVS elements. The last column links
the DEVS elements to Figures 3 and 4 by categorizing

4. For SV mapping refer to the appendix.

them into model repository and semi-automated test
suite elements.

9.1 Justification for the DoDAF-DEVS Mapping
Process

This section discusses the effect of introducing two
new operational views in the current DoDAF and
their impact on the overall DoDAF design process.
Information technology–based systems of the future
will be increasingly complex with participants
across the globe communicating through disparate
channels. Interoperability is very much in question.
Scalability and fault-tolerance issues have to be
addressed. Capabilities have to be satisfied and

Table 3. DoDAF-DEVS extended translation table

DoDAF Elements
UML Elements DEVS Elements

(Generated Using XML)Name Description
Operational

View
OV-1 Top-level

operational view
• Use-case diagrams • Activity component identification

• Top-level entity structure

DEVS
model

repository

OV-5 Operational
activity model

• Use-case
• Activity sequencing

diagrams
• Data flow diagrams

• Activity component updating
• Hierarchical organization of

activities
• Input-output pairs
• Port identification

OV-6 Operational timing
and sequencing
diagrams

• Time sequencing
diagrams

• State machine diagrams

• DEVS atomic model creation
(initialize function, internal and
external, transition functions,
time advance, and output
functions) for activity components

• Entity identification
• Activity-entity component

mapping
OV-2 Operational node

connectivity
• Composite structure

diagrams
• Coupling information
• Hierarchical component

organization
OV-8 Activity component

description
• Composite structure

diagrams
• State charts

• Activity component update
• Activity port identification and

refinement
OV-3 Operational

information matrix
• Input-output transaction pairs
• Message formats
• Activity interface and coupling

information
DEVS

system
test suite

OV-9 Activity interface
specifications

• State charts
• Composite structure

diagrams

• Acitvity-entity interface
• Entity structure refinement
• Activity-entity port mapping and

refinement
OV-7 Logical data

model
• Packages (only for

xUML)
• Class diagrams

• Entity identification
• Hierarchical structure

OV-4 Organizational
relationship chart

• Class diagrams • Entity identification
• Hierarchical entity structure

DEVS
model

repository

Volume 3, Number 2110 JDMS

Mittal

reliability has to be ensured. Any large system that
DoDAF specification documents intend to build
has to realize these important facets of architecture
design. Modeling and simulation with its model
continuity principles is fast becoming an accepted
method of evaluating design principles ensuring
accountability to various components within the
system. DoDAF has completely overlooked M&S as a
possible means to evaluate design, capabilities, and
planned expansion of current architectures. There
is no provision for testing the constructed system,
either in OV or in SV. Ability to configure a system for
optimum performance is not allowed in the current

DoDAF specification document.
 We have introduced two new operational views, OV-
8 and OV-9, that add on features to enable M&S of the
system under design. We have also demonstrated how
these new documents will be created from the existing
operational views. A detailed example is presented in
the next section. We aim to provide structure to the OV
process by shifting the perspective from describing
functionality as an activity to an activity component with
definite interfaces to other activity components as well
as identified entities within an operational node. To
what extent an operational node is decomposable is a
subject requiring further research. We have developed

Table 4. Summarizing the contribution of OV-8 and OV-9 to DEVS M&S

Artifact SES Elements Current DoDAF Enhanced DoDAF Can DEVS Model
Be Created?

Tree 1
(Component
perspective)

Entities OV-2 (operational
nodes)
SV-4 (systems
identification)

 Too early!

Hierarchical entity
construction

OV-2, OV-7 OV-9
(no mechanism to provide
information of hierarchical
formation in current OVs)

YES
(only the skeleton with well-
formed coupled models)

Specified entity-
based constraints

SV-7 OV-9
(hierarchical node
descriptions help localize
contraints at OV design
phase)

NO
(information missing to
develop behavior models)

Tree 2
(Capability
perspective)

Capabilities OV1,5, 6b, SV-4 NO
(no activity components
defined)

Hierarchical
activities

OV-6, 6b, 6c, SV-5 NO
(no activity components
defined)

Activity-based
parameters

ABSENT OV-8
(activity as activity
components definitions
based on OV-5,6b)
(documenting procedure has
placeholders for parameters
and constraints identification)
See [44]

YES
(DEVS capability skeleton can
be created with hierarchical
activity composition with
defined interfaces)

Activity-based IE OV-5, 6b OV-8
(may be redundant here)

YES

Activity-based ROE OV-6a OV-8 YES
Tree 3
(Rule
perspective)

Rule hierarchy OV-6a YES
(ATC-Gen project [9, 40])

Rule-activity
mapping

ABSENT OV-8
(the whole purpose of OV-8
is realized here)

YES
(with full behavior for
capability testing)

Rule-entity mapping ABSENT (partially
in OV-6a)

OV-9
(the whole purpose of OV-9
is realized here)

YES
(with full behavior for system
testing)

Volume 3, Number 2 JDMS 111

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

a testing process for defined capabilities (that were
defined during the conceptual design process in OV-5)
and the way in which various rules and doctrines
(in OV-6a) can be evaluated for interoperability with
different capabilities. By purview of the information
contained in OV-9 we have introduced the model
repository as an important aspect of DoDAF system
specification that enhances the DoDAF by making way
for the M&S area.
 DEVS modeled systems are inherently object
oriented, and DoDAF at the OV stage does not have
full expressiveness to be transformed to an executable
model. In one of our other systems engineering
approaches using System Entity Structure (SES)

(see the appendix), we developed a hierarchical
perspective representation that would enable DEVS
to step in at various levels of resolutions. The
three main perspectives are 1) component based,
2) Capability based, and 3) rule based. The DEVS
bifurcated model continuity–based system requires
all three perspectives to be available in order for the
system model be deployable. As you can see in Table
4, the current DoDAF, if enhanced with the new OV
documents, does make the DoDAF a DEVS-compliant
system.
 In the next section we shall demonstrate how one

can construct a DEVS executable OV model from the
enhanced DoDAF. We will also show the sample OV-8
and OV-9 documents and their construction process.

10. Example: Implementation of an Activity
Component

Consider an activity as mentioned in Zinn [31, p. 65]
described in IDEF0 format; see Figure 7. This activity
is governed by the doctrines specified in OV-6a,
IDEF3 format, which are described in [43]. Figure 7
is a sample OV-5 diagram for “select contractor,” and
Figure 8 is the OV-6a description in IDEF3 format
where X represents an XOR split and O represents an
OR split. These are the critical decision-making points
that impact the outcome of the activity based on the
previous step. It is at this point that timing needs to be
specified so that “timeouts” can occur without leading
to any ambiguity. Zinn acknowledged this problem in
the process.
 The information from these two figures is compiled
manually to generate the pseudo-code in the following
format. This manual process amounts to the integration
of OV-5 and OV-6a into a single document. The pseudo-
code is provided in Figure 9.
 The graphical representation in Figure 7 is
represented textually through the Popkin System
Architect as shown in Figure 10. Consequently,
Figure 9 and Figure 10 gives us the comprehensive
information about the activity, its purpose, its input-
output information through ICOM5 lines, and pseudo-
code for operational rules (as defined in OV-6a).
Figures 7, 8, and 9 describe a general step approach
to arrive at this pseudo-code, which is then utilized
by an agent-based modeling software (e.g., SEAS) via
Tactical Programming Language (TPL). Once pseudo-
5. In IDEF0 diagrams, inputs, controls, outputs, and mechanisms

are collectively referred to as ICOM arrows.

Figure 7. OV-5 diagram for “select contractor” in IDEF0
notation (from [31])

Figure 8. OV-6a diagram for “select contractor” in IDEF3 notation, (from [31])

Evaluate
Proposal

Reject
Proposal

Accept
Proposal for

Core Contract

Accept
Proposal for

Options

Award
Contract

X

O O

Volume 3, Number 2112 JDMS

Mittal

code has been made available, any software developer
who is versed with TPL or any other language can
interpret it. This process is then followed for the
case study (for all the eleven activities) considered
in Zinn [31]. Zinn brought forward the information
expressed in graphical format in OV-5 diagrams and
OV-6a doctrines in the form of psedo-codes that are
realizable into software code. We utilize his efforts and
demonstrate how this information can be used to feed
the integrated DEVS methodology and development
of OV-8 and OV-9.

10.1 Activity Taken from Zinn [24] as an Example

Let us consider the same example that is described
in Zinn[31]. Let the activity that is being modeled
be defined as Activity 6: TCT - Determine target
significance/urgency. There are about eleven activities
that are being evaluated and pseudo-code provided in
[31]. Figure 10 provides the activity model report as
generated by Popkin System Architect.
 This activity report is nothing but the interface
descriptions for an activity in OV-5 diagram. It tells
us from which activities Activity 6 receives input and
to which activities it sends output. It also provides
us with the information about the “control” interfaces
that are needed to execute the doctrines and rules.
Figure 11 depicts the IDEF3 model that implements
the OV-6a doctrines and rules for Activity 6.
 The pseudo-code for Activity 6 is provided in Figure
12, which is compiled manually from the information

Figure 9. Pseudo-code as per Zinn’s interpretation and
integration procedure [31]

Activity 1: Select Contractor
 Description: The process used by the company to select the

contractor for a new project
 Inputs:
 Proposal: contains the cost, schedule, and technical
 information as proposed by the contractor
 Outputs:
 Contract: the awarded contract
 Controls:
 Policy: Company contracting policy
 Law: Federal, State and Local regulations

Pseudo-code for Activity 1
Evaluate Proposal
 IF (cost > budget) THEN
 Reject Proposal
 ELSE
 (Accept Proposal for Core Contract) OR
 (Accept Proposal for Options) OR
 ((Accept Proposal for Core Contract) AND (Accept
 Proposal for Options))

Operational Activity 6:
TCT - Determine target significance/
urgency (track)
[within OV-5 diagram “TCT - Level 1”]
Glossary Text: Utilizing track data and other target information,
C2 Warriors determine if the target/target set is threatening and/
or fleeting, and estimate target availability, i.e., how long the
target will remain susceptible to attack.

From 2005 C2 Constellation 3.2.5.2 and CAOC-4.5.2.7
ICOM line: Air Track (J3.2)

Output: going to TCT-Validate target/target set (Target)
as input
Glossary Text:

ICOM line: Current Intelligence - Dynamic Assessment/
Target Status

Input: coming from <offpage>
Glossary Text:

ICOM line: Current Intelligence - Target Classification
Input: coming from TCT-Define target/target set (Fix)
as output
Glossary Text:

ICOM line: Current Intelligence - Target Identification
Input: coming from <offpage>
Glossary Text:

ICOM line: line: Doctrine, Policy, LOAC, SROE, ROE
Control: coming from <offpage>
Glossary Text:

ICOM line: line: Dynamic Target Nomination
Output: going to <offpage>
Glossary Text:

ICOM line: line: Dynamic Targeting Execution Direction
and Guidance

Control: coming from <offpage>
Glossary Text:

ICOM line: JMSNSTAT
Input: coming from <offpage>
Glossary Text:

ICOM line: Land (Ground) Point/Track (J3.5)
Output: going to TCT-Validate target/target set (Target)
as input
Glossary Text:

ICOM line: Reattack Recommendation
Output: going to TCT-Nominate engagement option (Target)
as input
Glossary Text:

ICOM line: TRKREP
Output: going to TCT-Validate target/target set (Target)
as input

Figure 10. Activity report model for Activity 6 generated
through Popkin System Architect

Volume 3, Number 2 JDMS 113

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

contained in OV-6a. For a complete description of
Activity 6, refer to [31]. Briefly, the context of Activity
6 in TCT architecture is immediately after a target
(or target set) is found and fixed. The upper half of
Figure 11 shows an XOR junction that indicates only
one path is taken. The resulting “target update”
is then put through four simultaneous analyses
indicated by the AND junction. This results (after
integrated processing) in “Is the target time critical?”
If it passes this TCT test it is again presented with
a decision point: “Is the initial attack on the target?”
The answer to this question results in two different
modes of action, indicated by the XOR junction.
Zinn acknowledges the fact that even though there is
certain sequencing present, precise information about
the rules defined are left to the imagination [31].
 The next section demonstrates how the information
in Figure 10 and Figure 12 is transformed into DEVS
component modeling framework. It also shows how
OV-8 and OV-9 gets populated. However, it must be

Figure 11. IDEF3 representation of Activity 6 (“conduct dynamic assessment of target” TCT 2005 Architecture, 2003: OV-6a) [31]

Figure 12. Pseudo-code for Activity 6 – based on IDEF3
diagram in Figure 11, taken from [31]

IF Significant Movement of target
THEN Monitor Target/Target Status

Project Target Movement
Target Vector = ?

ELSE Monitor for Movement

Analyze Threat from Target (Is the target closing on Friendlies or
Fleeing?)
Analyze Dynamic Targeting Ex Direction and Guidance (Does this
agree with the commander’s requirements?)
Determine target window of vulnerability (urgency)
Determine target significance – partly based on above findings

IF it is determined to be a TCT based on the above info
THEN IF this is the first strike attempt on this target

THEN Goto Activity 7 (Validate Target/Target set)
ELSE Goto Activity 8 (Nominate engagement option)

ELSE Pass target to ATO Planners
Monitor Target of Interest for Status Change

Volume 3, Number 2114 JDMS

Mittal

realized that an “operational node” hasn’t been defined
with respect to the current example. Consequently, we
will assume an entity structure that will illustrate the
concept.

10.2 DEVS Interpretation of Activity 6

Based on the available information let us assume that
dynamic target assessment happens at a particular
node. Assume that Activity 6 and its sub-activities
are all happening at TCT. Let us call this Operational
Node 1, (with identification number O1). This will
comprise our OV-2 diagram containing only one
operational node executing all the eleven activities
[31]. Again, a simple example has been considered
to demonstrate the construction of the new OV
document, namely OV-8 and OV-9.
 Table 5 assigns identification numbers to various
activities.
 Based on the IDEF3 diagram (graphical information
for OV-6) in Figure 11, and our constructed OV-2
in previous paragraph, we can construct our OV-8

document that lists activities and their logical interface
information. We need such port information to be able
to create components. Such logical port construction
has been attempted in [41] where the focus was to
create an SV executable model. Developing and
specifying activity port interfaces at this level is a
logical step toward SV interface design as tractability is
ensured. The OV-8 document below does not address
the performance issue at the OV level, and its refined
structure is presented in [44]. Table 6 shows a sample
OV-8 document.
 Based on the information provide in Figure 11, we
have constructed and identified the interfaces that
are being used by different activities to communicate.
However, we have not considered the information
contained in Figure 10 that describes how Activity 6
communicates with the other ten activities. We did not
explore the connectivity between other destination
activities just to keep the example in the needed
perspective. However, the procedure is essentially
the same with more rows being added to Table 6. To
give a glimpse of how these interconnected activities

Table 5. Activity-ID mapping for OV-8 and OV-9

S. No. Activity Sub-activity Internal Activity ID

1 Activity 6 Dynamic target assessment A6

2 Monitor target/
target status

A6.1

3 Monitor for movement A6.2
4 Project target movement A6.3
5 Analyze threat from target A6.4

6 Analyze dynamic target execution/direction
and guidance

A6.5

7 Determine target window of vulnerability (urgency) A6.6
8 Determine target significance (value/effect) A6.7
9 Nominate as dynamic target (NCT) A6.8

10 Pass target to ATO parameters A6.9
11 Pass target to ATO planners A6.10

12 Significant movement
Yes/No

A6.11

13 Target monitoring A6.12
14 Target significance analysis A6.13
15 Synthesize results A6.14

16 TCT determination
Yes/No

A6.15

17 Initial attack
Yes/No

A6.16

18 Review established target
lists

A6.17

19 Attack decision A6.18

Volume 3, Number 2 JDMS 115

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

Table 6. Sample OV-8 document

S. No. Activity ID
Component

Connection
ID

Source
Activity

Input Interface
Name

(Logical Port)

Message
Description/OIEs

Container
Operational

Node

Source
Document/

Diagram
1 A6 O1
2 A6.1 CA6.1 A6.11 inSigMovY AMT/GMTI O1 Figure 12/OV-6b,c

3 A6.2 CA6.2 A6.11 inSigMovN StaticTarget O1 Figure 12/OV-6b,c
4 A6.3 CA6.3 A6.1 inTrkData TrackData O1 Figure 12/OV-6b,c
5 A6.4 CA6.4 A6.13 inCurrInte Current

intelligence
O1 Figure 12/OV-6b,c

6 A6.5 CA6.5 A6.13 inDirGuid Direction and
guidance

O1 Figure 12/OV-6b,c

7 A6.6 CA6.6 A6.13 inTarAnaly Target analysis O1 Figure 12/OV-6b,c
8 A6.7 CA6.7 A6.13 inTarAnaly Target analysis O1 Figure 12/OV-6b,c
9 A6.8 CA6.8 A6.14 inTctYes TCT Yes O1 Figure 12/OV-6b,c

10 A6.9 CA6.9 A6.14 inTctNo TCT No O1 Figure 12/OV-6b,c
11 A6.10 CA6.10 A6.9 inToiInfo TOI Info O1 Figure 12/OV-6b,c
12 A6.11 CA6.11 inIsSigMov Significant

movement
O1 Figure 12/OV-6b,c

13 A6.12 CA6.121 A6.2, inTargCoord Target coordinates O1 Figure 12/OV-6b,c
CA6.122 A6.3 inTargVec Target vector O1 Figure 12/OV-6b,c

14 A6.13 CA6.13 A6.12 inTarUpdate Target update O1 Figure 12/OV-6b,c
15 A6.14 CA6.141 A6.4 inTarThreat Target threat O1 Figure 12/OV-6b,c

CA6.142 A6.5 inDGCompl Direction
guidance
compliance

O1 Figure 12/OV-6b,c

CA6.143 A6.6 inTarUrg Target urgency O1 Figure 12/OV-6b,c
CA6.144 A6.7 inTarSig Target

significance
O1 Figure 12/OV-6b,c

16 A6.15 CA6.15 A6.14 inSigUrgRes Significance/
urgency results

O1 Figure 12/OV-6b,c

17 A6.16 CA6.16 A6.8 inTctNom TCT nomination O1 Figure 12/OV-6b,c
18 A6.17 CA6.17 A6.16 inFirstStr First strike O1 Figure 12/OV-6b,c
19 A6.18 CA6.18 A6.16 inReAtkRec Reattack

recommendation
O1 Figure 12/OV-6b,c

Figure 13. DEVS interrelationships of Activity 6 with other activities

Volume 3, Number 2116 JDMS

Mittal

(as components) will perform in tandem, notice the
inports and outports of Activity 6 in Figure 13. The
other activities shown in this figure do not have any
resemblance to the actual example in [31]. They are
just meant for understanding. To understand how
Activity 6 works internally based on the different
activities in Table 6, please see Figure 14.
 The coupling relations shown in Figure 14 are
generated in an automated manner from the data
presented in Table 6. Columns 2, 3, 4, and 5 provide
sufficient information to generate the following
lines of code with simple string manipulations.
Consequently, an automated generation of DEVS
model is realizable. Hence the OV-8 document
provides sufficient information to develop a skeleton
DEVS model that can make its entry into the model
repository. Let us name the model for Acitivity 6
MA6. The inner models are identified in the same
predictable manner as MA6.1, MA6.2,…MA6.18.

ViewableAtomic a61 = new ViewableAtomic(“A6.1”);
add(a61);
ViewableAtomic a62 = new ViewableAtomic(“A6.2”);
add(a62);
...
ViewableAtomic a611 = new ViewableAtomic(“A6.11”);
add(a611);
...
a611.addOutport(“outSigMovY”);
a61.addInport(“inSigMovY”);
addCoupling(a611,”outSigMovY”,a61,”inSigMovY”);

a611.addOutport(“outSigMovN”);
a62.addInport(“inSigMovN”);
addCoupling(a611,”outSigMovN”,a62, “inSigMovN”);
...

 The next task in line is the inclusion of pseudo-
code that contains the doctrines and rules form OV-6a,
described in Figure 12. Consider these four initial lines
from Figure 12.

IF Significant Movement of target
THEN Monitor Target/Target Status
 Project Target Movement
 Target Vector = ?
ELSE Monitor for Movement

This particular doctrine is to be implemented at A6.11;
refer to Table 6. This has far-reaching advantages.
By assigning doctrines and rules to specific activity
components, we are ensuring that each rule is formally
implemented and is synchronized with other rules
that are “in operation” at that instant of time. In a
sense, which rules are compatible and which can cause
“deadlocks” can be determined by execution of the
above Activity 6 DEVS model. The sample lines above
are implemented in the deltext() function of component
A6.11. The deltint() function defines the natural course
of the activity.

Figure 14. DEVS description of Activity 6 in relation to Table 6 activity components

Volume 3, Number 2 JDMS 117

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

public void deltext(double e, messagex){
...
 for(int i=0; i<x.length; i++){
 if(messageOnPort(“inIsSigMov”){
 MessageTypeA msg
 = (MessageTypeA)x.getValOnPort
 (i, “inIsSigMov”);
 If(msg.equals(“yes”))
 holdIn(0, “yesSigMov”);
 else
 if(msg.equals(“no”))
 holdIn(0, “noSigMov”));
 }
...
}
public message out(){
...
 if(phaseIs(“yesSigMov”)){
 m.add(makeContent(“outSigMovY”,
 new entity(“start”)));
 if(phaseIs(“noSigMov”))
 m.add(makeContent(“outSigMovN”,
 new entity(“start”)));
...
}

Similarly, all other activities will receive inputs from
other source activities in their deltext() functions that
will contain the logic for implementation of doctrines.
For convenience purposes, the execution time of
these doctrines is considered zero. Notice the holdIn()
function in the code above. This is an important place
where we can tune and implement the realistic time
in issuing commands by human commanders; for
example, in a situation where the system is “waiting”
for a command from an authority figure and decision
has to arrive until a “timeout” occurs. In addition,
consider that the activity component is executing
certain process with respect to its deltint() function
and is in a certain “phase” waiting for any external
input from other activities. In the situation of not
receiving this input within allowable time window,

timeouts can very effectively guide the simulation
to its completion and prevent the wait-to-infinity
problem.
 The OR split problem pointed out by Zinn
[31] in IDEF3 methodology has no effect in DEVS
methodology. This problem is resolved by making
the &, X, and O constructs in IDEF3 methodology
“internal activity” components; see Table 6. Once they
are componentized, timeouts can be implemented
very easily that will completely eradicate this problem.
These components are very well documented in DEVS
SimpArc package version 3.0. This solution also puts
the focus back on the system-logic implementation
and test if the communication delays are significant
enough that timeouts are occurring frequently.
 Finally, the last task is the description of the OV-9
document. This document contains information about
the activities happening inside an operational node
and the way in which the sub-activities are mapped
onto the components inside the operational node. For
simplicity, we are working on the assumption that
there is only one operational node, O1, in the example.
As there is no information present on what its inner
components are in [31], we will assume that there
are, say, seven inner components that make up this
node. Four of these seven components are associated
with Activity 6 and the other three components are
associated with some other activities, not considered
for illustration purposes.
 The defined components are essentially COTS
components with defined behavior. They can
even come from system view document SV-4.
Consequently, each of them has its “models” for
simulation purposes specified in DEVS formalism.
These models are essentially open-source models
available to the public through a common repository
and are “standardized.” Table 8 depicts the

Table 7. Inner components within operational nodes and their mapping with “standardized” DEVS models

S. No. Operational
Node

Inner
Component

Entities

Component
Name

Associated
Models Added
to Repository

Hierarchical
Parent/Container

DEVS Model
Type

1 O1 OCE1 TCT ME1 - Digraph
2 OCE1.1 Radar tracking

system
ME1.1 ME1 Atomic

3 OCE1.2 Significance
analyzer

ME1.2 ME1 Atomic

4 OCE1.3 Urgency analyzer ME1.3 ME1 Atomic
5 OCE1.4 Vigilance controller ME1.4 ME1 Atomic
6 OCE1.5 Attack evaluator ME1.5 ME1 Digraph
7 OCE1.6 Attack initiator ME1.6 ME1.5 Atomic
8 OCE1.7 Attack terminator ME1.6 ME1.5 Atomic

Volume 3, Number 2118 JDMS

Mittal

information assumed for construction of OV-9. The
inner components depicted in this table are only for
illustration purposes.
 Having Table 7 as available resources for OV-9, we
have enough information to construct the activity-
entity mapping. We identify and define port interfaces
that need to be added to the entity component
models so that they can be coupled to the activity
components. Once the OV-9 document is in place,
the added interface information is used to update
the models defined during the construction of these
two documents. We saw in construction of the OV-8
document that the resulting model is a stand-alone

model that is capable of executing the simulation
in “capability” mode, testing the OV-5 and OV-6
description of the system. A sample OV-9 document
is shown in Table 8
 The OV-9 document aids in bringing the systems
perspective to the design and how the system’s
components initiate the designated activities.
Assignment of an activity to appropriate component
entity is a job of an experienced “designer,” as per
the definition of designer in the DoDAF document.
This document ensures accountability: there is at
least one component entity that is responsible for the
execution of that particular activity. Notice that all

Table 8. OV-9 description document mapping the entity component inside operational node O1 with the activity components
defined in OV-8 with port interfaces

S. No. Operational
Node

Inner
Component

Entities

Component
Name

Activity
Component

Activity
Component

Name

Interface
Description

1 O1 OCE1 TCT

OCE1.1 Radar tracking
system

A6.1 Monitor target/target status monTarE
A6.2 Monitor for movement monTarMovE
A6.3 Project target movement proTarMovE
A6.11 Significant movement

Yes/No
sigMovYesNoE

A6.12 Target monitoring tarMonE
A6.10 Monitor target of interest for

status change
monTarInterE

OCE1.2 Significance
analyzer

A6.13 Target significance analysis tarSigAnalyE
A6.4 Analyze threat from target analyThrTarE
A6.5 Analyze dynamic target

execution direction and
guidance

analyEDGE

A6.7 Determine target
significance

detTarSigE

A6.14 Synthesize results syncE
OCE1.3 Urgency

analyzer
A6.6 Determine target window

of vulnerability
detWinVulE

OCE1.4 Vigilance
controller

A6.15 TCT determination
Yes/No

tctDetYesNoE

A6.8 Nominate as dynamic
target

nomDynTarE

A6.9 Pass target to ATO
planners

passTarAtoE

A6.16 Initial attack Yes/No initAtckYesNoE
A6.18 Attack decision atckDecE
A6.17 Review established target

lists
revEstTarListsE

OCE1.5 Attack evaluator A6.16 Initial attack Yes/No initAtckYesNoE
OCE1.6 Attack initiator
OCE1.7 Attack terminator

Volume 3, Number 2 JDMS 119

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

the activity components addressed in the example
have been assigned at least one operational node
inner component entity. After the creation of the OV-
9 document, the interface information, in the last
column, is used to update the corresponding activity
and the entity models in the model repository that were
created during the construction of OV-8. This is again
an automated task with simple string manipulation
as described earlier, during the construction of OV-8
models.
 Hence, during the creation of OV-8 and OV-9 we
have populated the model repository with activity
models (MA6.1–MA6.18) and operational nodes’ inner
component models (ME1, ME1.1–ME1.6), and have
created an interface between these two aspects of
DoDAF design.

10.3 Synopsis

Looking at Figure 6 in an activity component
perspective, we have our defined inputs and outputs,
and eventually the logical activity ports. In the example
above, we have defined the interfaces of an activity that
could be subjected to component coupling and testing.
The coupling information can be integrated using the
OV-3 document, as described in Table 3 and in more
detail in Table 6. The timing information is added
using the OV-6b and OV-6c diagrams as we have
defined “components,” the effects of which have been
highlighted earlier in Sections 7 and 8. This information,
along with the pseudo-code provided by Zinn, is
integrated to develop the DEVS model of the activity
in question. The pseudo-code is very well directed to
the activity that is best responsible to execute those
“rules.” At this point the whole purpose of creating
OV-8, the rule-activity mapping, is realized.
 The OV-9 document deals with the mapping of
the activity components with the entity components.
Since Zinn [31] did not define internal components
for any operational node, we assumed certain inner
components and mapped the activities to these
components. Having ensured accountability for each
of the activities, another area that OV-9 contributes
to is system design, reuse, and composability. We
have available to us a document that contains
information of the functionalities any particular
component can perform or participate in collective
functionality. Consider the situation when two or
more inner components from systems perspective are
thrown together to observe if the system is capable of
performing “something.” This allows us to experiment
with different systems that claim to exhibit certain
functionality. It allows us to test interoperability.
 Hence, the resulting integrated information from
OV-3, OV-2, and OV-6 is converted to the information

in documents OV-8 and OV-9, with the addition of
logical ports, dedicated to the M&S area that are focused
toward operational views. Referring to Figure 4
again, the complete DEVS process life cycle, the area
in the grey box is initiated at this stage, wherein we
have XML (OV-8, OV-9) or any form of pseudo-code
to define the operational view descriptions. Manual/
automated design of DEVS models, based on Table 3
interpretation, and semiautomated model–test suite
development based on Zeigler et al. [9] and Mak et al.
[40] stems from the DEVS activity model description
documents, viz., OV-8 and OV-9.

11. Future Work

The present work has made two contributions:
It provides a methodology to incorporate
automated testing during the early stages of
DoDAF design process.
Operational view activities can be considered as
activity components with defined interfaces and
port definitions.

The work related to the first contribution is already
proved in projects that are being done currently
at JITC [9, 40]. How it relates to the DoDAF design
process is left for future considerations. The second
contribution presents us with a perspective of
considering functionality as “components” and the
way in which different functionalities are dependent
upon each other in order to implement any capability.
This perspective enables us to think of an abstract
component that is capable of information exchange
and can provide services to other functional
components. The abstract functional component
can very well be a part of a service-oriented
architecture.
 Consider the situation when there is a capability
(composed of various functionalities) that is a part
of a certain DoDAF architecture and a model needs
to be simulated in order to analyze the compatibility
between these functionalities (through OV-6a). Also
consider that the number of functionalities is quite
large, and that these are complex enough to be at one
simulation station. Further, there has already been a
subset of functionalities (within this capability) that
has been simulated by some other organization. The
cost effective solution is to utilize the work already
done by this organization and build the remaining
functional components (through OV-8 and OV-9).
The means by which an online simulation model can
be realized is through a web services architecture
implemented over the Internet. The common mode of
exchange is through XML. Now, if these components
are described in XML, and there is a definite interface

1)

2)

Volume 3, Number 2120 JDMS

Mittal

port for a particular service, creating a model for the
capability can be effectively realized. This work is
currently in progress at the ACIMS lab and will be
reported in future publications.
 The abstract component that is capable of being
a part of DEVS modeling framework is shown
in Figure 15. Its XML representation is shown in
Figure 16. The point worth stressing here is that
the XML code is generated automatically with the
information coming from DEVS DTD and OV-8.
What is required here is the addition of code for a
“services” tag. Once implemented on SOA, the code
with respect to the “services” tag can be exchanged
through a SOAP message, and a DEVS model is made
ready for simulation. In ongoing research [45], web
services–based DEVS model interoperability has been
achieved using XML as the communication medium
with SOAP middleware. This technology is made
possible by DEVS Modeling Language (DEVSML),
which allows distribution of DEVS models in the form
of XML documents to remote nodes where they can
be coupled with local service components to compose
a federation. The layered middleware architecture
capability is shown in Figure 17.
 At the top is the application layer that contains a
model in DEVS JAVA or DEVSML. The second layer
is the DEVSML layer itself, which provides seamless
integration, composition, and dynamic scenario
construction resulting in portable models in DEVSML

Figure 15. An SOA object capable of DEVS modeling

Figure 16. Automated XML snippet for an activity
component created with OV-8 (port definitions); logic is
added later or exchanged through SOA implementation

<?xml version=”1.0” encoding=”UTF-8”?>
<xml-body>
<model>
 <atomic>
 <name>Hello</name>
 <params> </params>

 <construct>
 <args> </args>
 <ports>
 <inports>
 <inport>in</inport>
 </inports>
 <outports>
 <outport>out</outport>
 </outports>
 </ports>
 </construct>

 <initialize>
 </initialize>
 . .

 <services>

 <function>
 <access> public </access>
 <return> int </return>
 <inport> in </inport>
 <outport> out </outport>
 <fname> decrement() </fname>
 <logic> </logic>
 </function>

 </services>
 </atomic>
</model>
</xml-body>

Figure 17. DEVSML layered architecture providing
simulator transparency

Volume 3, Number 2 JDMS 121

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

that are complete in every respect. These DEVSML
models can be ported to any remote location using
the net-centric infrastructure and can be executed at
any remote location.
 The simulation engine is totally transparent to
model execution over the net-centric infrastructure.
The DEVSML model description files in XML contain
metadata information about its compliance with
various simulation “builds” or versions to provide true
interoperability between various simulator engine
implementations. Such run-time interoperability
provides a great advantage when models from
different repositories are used to compose models
using DEVSML seamless integration capabilities.
Making DoDAF a DEVS-compliant architecture will
enable cross-platform integration and simulation
opportunities.

12. Conclusions

Although the current DoDAF specification provides
an extensive methodology for system architectural
development, it is deficient in several related
dimensions: its absence of integrated modeling and
simulation support, especially for model continuity
throughout the development process, and its lack
of associated testing support. To overcome these
deficiencies, we described an approach to support
specification of DoDAF architectures within a
development environment based on DEVS-based
modeling and simulation. The result is an enhanced
system life cycle development process that includes
model continuity–based development and testing in
an integral manner.
 We have also introduced two new operational
views, OV-8 and OV-9, to address the additional
information that is needed to make the DoDAF M&S
compatible. We have also demonstrated the process
to create OV-8 and OV-9 from the existing operational
views. OV-8 contains the information about the
activity component structure and how different
activities interface with each other using the specified
logical interfaces. OV-9 contains information about
the constituent components inside an operational
node and its corresponding DEVS model structure
along with their mapping to the activity components
in OV-8. Together OV-8 and OV-9 provide a means
to correlate activity components with accountable
entities in an operational node using logical interfaces.
It is after the transformation of OV-8 and OV-9 into
DEVS models that rules assigned to specific activity
or entity components make OV-8 and OV-9 serve
their complete purpose. Automation using XML
and simulation tuning are important concepts that
can be well executed and performed under current

DEVS technology. Composing simulations that are
hierarchically stable and realizable is a step forward in
evaluation of multi-resolutional architectures. Issues
such as personnel management and task assignment
at proper resolution of architectural execution are
worth exploring further in future work. Capability to
objectify parameters and visualize them with respect
to the end goal in mind is critical for success. Current
DEVS technology is well equipped to accomplish
such a capability.

13. References

[1] DoDAF Working Group. DoD Architecture Framework Version
1.0 Vol. III: Deskbook, DoD, Aug 2003.

[2] DoD Instruction 5000.2. Operation of the Defense Acquisition
System; 2003 May 12.

[3] Chairman, JCS Instruction 3170.01D. Joint Capabilities
Integration and Development System; 2004 Mar 12.

[4] Chairman, JCS Instruction 6212.01D. Interoperability and
Supportability of Information Technology and National
Security Systems; 2006 Mar 8.

[5] Atkinson K. Modeling and Simulation Foundation for
Capabilities Based Planning. Simulation Interoperability
Workshop; Spring 2004.

[6] DoD Metadata Registry and Clearinghouse. [cited 2005 Jan 9].
Available from: http://diides.ncr.disa.mil/mdregHomePage/
mdregHome.portal

[7] Dandashi F, Ang H, Bashioum C. Tailoring DoDAF to Support
a Service Oriented Architecture. White paper; Mitre Corp.;
Dec 2004.

[8] Zeigler BP, Mittal S. Enhancing DoDAF with DEVS-Based
System Life-Cycle Process. IEEE International Conference on
Systems, Man and Cybernetics; Oct 2005; Hawaii; 2005.

[9] Zeigler BP, Fulton D, Hammonds P, Nutaro J. Framework for
M&S-Based System Development and Testing in Net-centric
Environment. ITEA Journal; Nov 2005.

[10] Zeigler BP, Praehofer H, Kim TG. Theory of Modeling and
Simulation. Academic Press; 2000.

[11] Hu X, Zeigler BP. Model Continuity in the Design of
Dynamic Distributed Real-Time Systems. Accepted by IEEE
Transactions On Systems, Man And Cybernetics— Part A:
Systems And Humans; 2006.

[12] Lee J, Choi M, Jang J, Park Y, Jang J, Ko B. The Integrated
Executable Architecture Model Development by Congruent
Process, Methods and Tools. The Future of C2, 10th
International Command and Control Research and
Technology Sysmposium.

[13] Rosen JD, Parenti JL, Hamilton J. Cutting the Guardian Knot.
In: The Domain of Interoperability in the US Department
of Defense. Joint Command and Control Interoperability.
Available from: http://www.eng.auburn.edu/users/hamilton/
security/spawar

[14] DoD Architecture Framework Working Group 2004. DoD
Architecture Framework Version 1.0, Volume 1. Definitions
and Guidelines; 2004 Feb 9; Washington, D.C.

[15] Wagenhals LW, Haider S, Levis AH. Synthesizing Executable
Models of Object Oriented Architectures. Workshop on
Formal Methods Applied to Defense Systems; Jun 2002;
Adelaide, Australia.

[16] Sarjoughian HS, Cellier FE, editors. Discrete Event Modeling
and Simulation Technologies: A Tapestry of Systems and
AI-Based Theories and Methodologies. New York: Spring-
Verlag; 2001.

Volume 3, Number 2122 JDMS

Mittal

[17] Zeigler BP. DEVS Today: Recent Advances in Discrete Event-
Based Information Technology. MASCOTS Conference 2003.

[18] ACIMS Software Development website. [cited Jan 2005].
Available from: http://www.acims.arizona.edu/SOFWARE/
software.shtml

[19] Sarjoughian H, Zeigler B, Hall S. A Layered Modeling
and Simulation Architecture for Agent-Based System
Development. In: Proceedings of the IEEE. 2001; 89(2):
201–213.

[20] Cho Y, Zeigler BP, Sarjoughian HS. Design and
Implementation of Distributed Real-Time DEVS/CORBA.
IEEE Sys. Man. Cyber. Conference; Oct 2001; Tucson, AZ.

[21] Kim KH, Kang WS. A Web Services–based Distributed
Simulation Architecture for Hierarchical DEVS Models. AIS
Conference; Oct 2004; Jeju, Korea.

[22] Kim K, Seong Y, Kim T, Park K. Distributed Simulation of
Hierarchical DEVS Models: Hierarchical Scheduling Locally
and Time Warp Globally. Transactions of the Society for
Computer Simulation International. 1996; 13(3): 135–154.

[23] Kim K, Kang W. CORBA-based, Multi-threaded Distributed
Simulation of Hierarchical DEVS Models: Transforming
Model Structure into a Non-Hierarchical One. LNCS. 2004;
3046: 167–176.

[24] Davis KP, Anderson AR. Improving the Composability of
Department of Defense Models and Simulations; RAND
Technical Report (Appendix D); 2003.

[25] Shelton GS, Case R, DiPalma LP, Nash D. Advanced Software
Technologies for Protecting America. CrossTalk: Journal of
Defense Software Engineering; May 2004. Available from:
http://www.stsc.hill.af.mil/crosstalk/2004/05/0405shelton.
html

[26] Mittal S, Gupta A, Mitra A, Zeigler B. Strengtheing OV-6a
Semantics with Rule-Based Meta-models in DEVS/DoDAF-
based Life-Cycle Architectures Development. IEEE-
Information Reuse and Integration, Special Section on
DoDAF; Sep 2006; Hawaii; 2006.

[27] Levis A, Wagenhals L. C4ISR Architectures I. Developing
a Process for C4ISR Architecture Design. System
Architectures Lab, C3I Center, MSN 4D2; Geroge Mason
University; Jul 2000.

[28] Tolk A, Muguira JA. M&S with the Model Driven
Architecture. I/ITSEC: Interservice/Industry Training,
Simulation, and Education Conference; 2004.

[29] Tolk A, Solick S. Using the C4ISR Architecture Framework as
a Tool to Facilitate V&V for Simulation Systems Within the
Military Application Domain. Simulation Interoperability
Workshop; Spring 2003.

[30] Adshead S, Kreitmair T, Tolk A. Definition of ALTBMD
Architectures by Applying the C4ISR Architecture
Framework. Fall Simulation Interoperability Workshop;
Orlando, FL; 2001.

[31] Zinn AW. The Use of Integrated Architectures to Support
Agent Based Simulation: An Initial Investigation.MS Thesis;
AFIT/GSE/ENY/04-M01; Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH; Dec 2004

[32] Gonzales D, Moore L, Pernin C, Matonick D, Dreyer P.
Assessing the Value of Information Superiority for Ground
Forces – Proof of concept. RAND; 2001.

[33] Wagenhals L, Shin I, Kim D, Levis A. C4ISR Architectures: II.
A Structured Analysis Approach for Architecture Design.
Journal of Systems Engineering. 2000; 3(4).

[34] https://cao.hanscom.af.mil/af-cio.htm
[35] Mittal S, Zeigler BP, Hammonds P, Veena M. Network

Simulation Environment for Evaluating and Benchmarking
HLA/RTI Experiments. JITC Report; Fort Huachuca; Dec
2004.

[36] Mittal S, Zeigler BP. Dynamic Simulation Control with Queue
Visualization. SCSC’05: Summer Computer Simulation
Conference; Jul 2005; Philadelphia, PA.

[37] Hu X, Zeigler BP, Mittal S. Dynamic Configuration in DEVS
Component-Based Modeling and Simulation. SIMULATION:
Transactions of the Society of Modeling and Simulation
International. Nov 2003.

[38] Mittal S, Zeigler BP. Modeling/Simulation Architectures for
Autonomous Computing. Autonomic Computing Workshop:
The Next Era of Computing; Jan 2003.

[39] Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N,
Weerawarana S. Unraveling the Web services web: an
introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing. 2002; 6(2 Mar-Apr): 86–93.

[40] Mak E. Automating Testing Using XML and DEVS.
University of Arizona; Spring 2006. Available from: http://
www.acims.arizona.edu/PUBLICATIONS/publications.
shtml#MSPHDReports

[41] Kobryn C, Sibbald C. Modeling DoDAF Compliant
Architectures: The Telelogic Approach for complying with
DoD Architectural Framework. Telelogic White Paper; Oct
2004.

[42] Dickerson C, Soules S. Using Architecture Analysis for
Mission Capability Acquisition. 2002. Available from: http://
www.dodccrp.org/events/2002/CCRTS_Monterey/Tracks/
pdf/123.pdf#search=%22Dickerson%20Soules%20Mission%
22

[43] Integration Definition Methods. IDEF3 Process Description
Capture Method. Available from: http://www.idef.com/
IDEF3.html

[44] Mittal S, Mak E, Nutaro J. DEVS-Based Dynamic Simulation
Control and Reconfiguration in Enhanced DoDAF Design
Process. JDMS To be published 2006; 3(4).

[45] Mittal S, Martin JLR. DEVS Modeling Language (DEVSML).
Available from: http://devsml.sourceforge.net

Appendix

System Entity Structure (SES)

The SES formalism is a structural knowledge
representation scheme that systematically organizes a
family of possible structures of a system. Such a family
characterizes decomposition, coupling, and taxonomic
relationships among entities. An entity represents a real-
world object. The decomposition of any entity concerns
how an entity may be broken down into subentities.
Coupling specifications tell us how different subentities
can be coupled together to reconstitute an entity. The
taxonomic relationship concerns admissible variants
of an entity. It also provides a formal framework for
representing the family of possible structures. From a
design point of view, SES represents the design space
with various possible design configurations. Thus,
the process of design/analysis is to prune SES—in
other words, to search the best design configuration.
For complex systems, the number of the combination
of different configurations is very large. Thus, it is
desirable to be able to emulate SES and automatically
search the best design configuration. For a detailed
description on SES see [10].

Volume 3, Number 2 JDMS 123

Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation

Acknowledgments

I would like to thank Prof. Bernard P. Zeigler for his
expert guidance, resources, and concept validation. I
would also like to thank Jerry M. Couretas of Lockheed
Martin Corp. for invaluable discussions and reference
material to continue research. Further, I would like
to thank the JDMS reviewers who provided valuable
suggestions to enhance the content of the paper.

Author Biography

Saurabh Mittal is a research engineer at Arizona Center
of Modeling & Simulation (ACIMS) at University of
Arizona. He is also a Ph.D. candidate in Electrical &
Computer Engineering (ECE) at the University of Arizona.
He is a recipient of JITC’s highest civilian contractor
award ‘Golden Eagle.’ He holds an M.S in ECE from the
University of Arizona. His research interests include DEVS
based integrated design methodologies, DoDAF, modeling
languages, automated testing and design of software
systems.

Table 9. DoDAF-DEVS extended translation table focusing on SV, TV

DoDAF Elements UML
Elements

DEVS Elements
(Generated Using XML)

Name Description
Systems

View SV-4
System functional
description

• Use-case description
• Activity sequencing

diagrams

• Hierarchical functional
components organization

DEVS
model

repository

SV-5
System functional
traceability matrix
(based on OV-5)

• Coupling info refinement

SV-10
System state description
and event trace
(based on OV-6)

• Sequence diagrams
• State charts

• DEVS atomic model
transition functions
refinement

SV-6 System data exchange
matrix

• Input-output pair
refinement

SV-1
System interface description
(based on OV-2)

• Composite structure
diagram

• Port assignment
refinement

• Entity refinement

SV-2
System communication
description

• Deployment diagrams • Coupling info
refinement (hierarchical
management)

SV-7
System performance
parameters matrix

• Experimental frame DEVS
system

test suite

SV-3
System-systems matrix • Hierarchical model

organization
• Entity refinement

DEVS
model

repository

SV-11 Physical schema • Class diagrams • Hierarchical model
organization

Technical
View TV-1 Current standards • Timing response • Basic DEVS model for

COTS component

TV-2 Future standards • Improved DEVS model
for desired functionality

