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A recent DoD mandate requires that the DoD Architecture Framework (DoDAF) be adopted to express high-level system 
and operational requirements and architectures. DoDAF is the basis for integrated architectures and provides broad levels 
of specification related to operational, system, and technical views. The combination of DoDAF operational views, which 
capture the requirements of the architecture, and systems views, which provide its technical attributes, forms the basis 
for semi-automated construction of the needed simulation models. Unfortunately, DoDAF doesn’t mandate any simulation 
methodology to analyze the system or perform any pre-design feasibility studies. In this paper, we describe an approach 
to support specification of DoDAF architectures within a development environment based on DEVS (Discrete Event 
System Specification). The result is an enhanced system life cycle development process that includes both development 
and testing in an integral manner. We introduce two new operational views (OVs) in the current DoDAF making way for 
modeling and simulation as a part of the design process. We illustrate the process to build these new OVs from the existing 
OVs and their impact on the overall DoDAF system development process. We discuss automated model generation using 
XML through the introduced OVs, which paves the way for OVs to become service-providing components in the web 
services architecture.

Keywords: DoDAF, simulation-based design, DEVS, bifurcated development process, operational view, model continuity, 
SOA

1. Introduction

A recent DoD mandate requires that the DoD 
Architecture Framework (DoDAF) be adopted to 
express high-level system and operational requirements 
and architectures [1]. DoDAF is the basis for the 
integrated architectures mandated in DoD Instruction 
5000.2 [2] and provides broad levels of specification 
related to operational, system, and technical views. 
Integrated architectures are the foundation for 
interoperability in the Joint Capabilities Integration 
and Development System (JCIDS) prescribed in CJCSI 
3170.01D and further described in CJCSI 6212.01D [3, 
4]. DoDAF and other DoD mandates pose significant 
challenges to the DoD system and operational 
architecture development and testing communities 
since DoDAF specifications must be evaluated to 
see if they meet requirements and objectives, yet 

they are not expressed in a form that is amenable to 
such evaluation. However, DoDAF-compliant system 
and operational architectures do have the necessary 
information to construct high-fidelity simulations. 
Such simulations become, in effect, the executable 
architectures referred to in the DoDAF document. 
DoDAF is mandated for large procurement projects 
in the Command and Control domain but its use in 
relation to modeling and Simulation (M&S) is not 
explicitly mentioned in the documentation [5, 8]. Thus 
an opportunity has emerged to support the translation 
of DoDAF-compliant architectures into models that 
are of sufficient fidelity to support architectural 
evaluation in capable simulation environments. 
Operational views capture the requirements of the 
architecture being evaluated and system views 
provide its technical attributes. Together these views 
form the basis for semi-automated construction of the 
needed simulation models.  
 DoDAF is a framework prescribing high-level design 
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artifacts, but leaves open the form in which the views 
are expressed. A large number of representational 
languages are candidates for such expression. For 
example, the Unified Modeling Language (UML) 
and colored Petri nets (CPN) are widely employed in 
software development and in systems engineering. 
Each popular representation has strengths that 
support specific kinds of objectives and cater to its 
user community needs. By going to a higher level of 
abstraction, DoDAF seeks to overcome the plethora 
of “stove-piped” design models that have emerged. 
Integration of such legacy models is necessary for 
two reasons. Firstly, as systems, families of systems, 
and systems-of-systems become more broad and 
heterogeneous in their capabilities, the problems of 
integrating design models developed in languages 
with different syntax and semantics has become a 
serious bottleneck to progress. Secondly, another 
recent DoD mandate also intended to break down 
this “stove-piped” culture requires the adoption of 
the Service Oriented Architecture (SOA) paradigm 
as supported in the development of Network Centric 
Enterprise Services (NCES) [6]. However, anecdotal 
evidence suggests that a major revision of the DoDAF 
to support net-centricity is widely considered to 
be needed. Indeed, under DoD direction, several 
contractors have begun to design and implement 
the NCES to support this strategy on the Global 
Information Grid (GIG). The result is that system 
development and testing must align with this mandate 
(requiring that all systems interoperate in a net-centric 
environment), a goal that can best be done by having 
the design languages be subsumed within a more 
abstract framework that can offer common concepts 
to relate to. However, as stated before, DoDAF does 
not provide a formal algorithmically-enabled process 
to support such integration at higher resolutions. 
Lacking such processes, DoDAF is inapplicable to 
the SOA domain, and GIG in particular. There have 
been efforts, such as those by Dandashi et al. [7], that 
have tried to map DoDAF products to SOA, but as it 
stands there is no clear-cut methodology to develop an 
SOA directly from DoDAF, let alone their testing and 
evaluation.
 Our earlier work [8] and that of Zeigler et al. [9] 
described the bifurcated model continuity–based 
system lifecycle process. In this paper we will explore 
it in more detail with respect to technologies like XML 
and UML with their application to DoDAF. Our earlier 
work [8] also explored the possibility of application of 
DEVS to the DoDAF design process and developed 
a mapping between various UML elements and the 
DEVS formalism. It considered all three elements of 
the DoDAF, viz., operational view (OV), system view 
(SV), and technical view (TV), and their mapping with 

DEVS components. In this paper we will establish 
that enhancing DoDAF would require extending 
the DoDAF with more information. We will focus 
on the proposed extension of DoDAF and examine 
the information needed to execute the development 
process. We will demonstrate the procedure and the 
way in which M&S can be applied with the help of an 
example. We will also discuss the application of the 
proposed views. This discussion will show how the 
enhanced DoDAF can effectively support development 
of services in SOA environments.
 Sections 2 and 3 provide some background on 
DoDAF views and DEVS specifications, respectively. 
Section 3 also discusses the key component technologies 
inherent in DEVS and principles of model continuity. 
Section 4 describes the idea behind mapping DoDAF 
into DEVS framework. Section 5 throws light on the 
prior efforts to employ M&S as an integrated solution 
to evaluate architectures, and highlights some problem 
areas encountered. It also discusses the current M&S 
situation and how DEVS provide solutions to these 
problems. Section 6 describes the bifurcated model 
continuity process, the basis for our approach. Section 
7 discusses some gaps in DoDAF and proposes 
solutions on how to fill them. Sections 8 and 9 present 
the detailed methodology on how to transition from 
UML description to DEVS specifications. Section 9 
also provides the justification of this mapping process. 
Section 10 provides a full example on how the proposed 
views are constructed and their significance to M&S 
areas. Section 11 leads the present discussion toward 
the benefits of this work in immediate future, followed 
by conclusions in section 12.

2. DoDAF Specifications

The Department of Defense (DoD) Architectural 
Framework (DoDAF), Version 1.0 (2003), defines a 
common approach for DoD architecture description 
development, presentation, and integration. The 
framework enables architecture descriptions to 
be compared and related across organizational 
boundaries, including joint and multinational 
boundaries. 
 DoDAF is an architecture description, and it 
does not define a process to obtain or build the 
description. The Deskbook [1] provides one method 
for development of IT architectures that meet DoDAF 
requirements, focusing on gathering information 
and building models required to conduct design and 
evaluation of an architecture. The DoDAF defines 
three elements for any architecture description:

Operational View (OV) - The OV is a description 
of the tasks and activities, operational 
elements, and information exchanges required 

1)
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to accomplish DoD missions. DoD missions 
include both war-fighting missions and business 
processes. The OV contains graphical and 
textual products that comprise an identification 
of the operational nodes1 and elements, 
assigned tasks and activities, and information 
flows required between nodes. It defines the 
types of information exchanged, the frequency 
of exchange, which tasks and activities are 
supported by the information exchanges, and 
the nature of information exchanges.
System View (SV) - The SV is a set of graphical 
and textual products that describes systems and 
interconnections providing for, or supporting, 
DoD functions. DoD functions include both 
war-fighting and business functions. The SV 
associates systems resources to the OV. These 
systems resources support the operational 
activities and facilitate the exchange of 
information among operational nodes. Within 
this view, how the functionalities specified in OV 
will be met is elaborated.  
Technical View (TV) - The TV is the minimal set 
of rules governing the arrangement, interaction, 
and interdependence of system parts or elements, 
whose purpose is to ensure that a conformant 
system satisfies a specified set of requirements. 
Within this view, the delivery of systems and 
functionalities is ensured along with their 
migration strategies toward future standards.

 These views provide three different perspectives for 
looking at an architecture. The emphasis of DoDAF 
1. Operational node: A node specified in OV that performs one 

or more operations; a functional entity that communicates with 
other functional entities to implement a collective functionality or 
a capability.

2)

3)

lies in establishing the relationship between these three 
elements ensuring entity relationships and supporting 
analysis; see Figure 1. The DoDAF approach is 
essentially data-centric rather than product-centric. 
The OV, SV, and TV are further broken down into 
specialized views whose brief description can be seen 
in column 3 in Table 3 ahead, as well as in the appendix. 
A complete description can be see in [1, 14].

3. DEVS System Specifications

In this section, we review some of the background 
required for discussion DEVS support of DoDAF.

3.1 Hierarchy of System Specifications

Systems theory deals with a hierarchy of system 
specifications, which define levels at which a system 
may be known or specified. Table 1 shows this 
hierarchy of system specifications (in simplified form, 
see [10]).

At level 0 we deal with the input and output 
interface of a system. 
At level 1 we deal with purely observational 
recordings of the behavior of a system. This is an 
I/O relation that consists of a set of pairs of input 
behaviors and associated output behaviors. 
At level 2 we have knowledge of the initial state 
when the input is applied. This allows partitioning 
the I/O pairs of level 1 into non-overlapping 
subsets, each subset associated with a different 
starting state.
At level 3 the system is described by state space 
and state transition functions. The transition 

•

•

•

•

Figure 1. Linkages among views
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function describes the state-to-state transitions 
caused by the inputs and the outputs generated 
thereupon. 
At level 4 a system is specified by a set of 
components and a coupling structure. The 
components are systems on their own with their 
own state set and state transition functions. A 
coupling structure defines how those interact. 
A property of a coupled system, which is called 
“closure under coupling,” guarantees that a 
coupled system at level 3 itself specifies a system. 
This property allows hierarchical construction 
of systems, i.e., that coupled systems can be 
used as components in larger coupled systems. 

Table 1. Hierarchy of system specifications

Level Name What we specify at this level

4 Coupled 
Systems

System built up by several 
component systems that are 
coupled together

3 I/O System
System with state and state 
transitions to generate the 
behavior

2 I/O 
Function

Collection of I/O pairs constituting 
the allowed behavior partitioned 
according to the initial state the 
system is in when the input is 
applied

1 I/O 
Behavior

Collection of I/O pairs constituting 
the allowed behavior of the system 
from an external black-box view

0 I/O Frame Input and output variables and 
ports together with allowed values

As we shall see in a moment, the system specification 
hierarchy provides a mathematical underpinning to 
define a framework for modeling and simulation. Each 
of the entities (e.g., real world, model, simulation, and 
experimental frame) will be described as a system 
known or specified at some level of specification. The 
essence of modeling and simulation lies in establishing 
relations between pairs of system descriptions. These 
relations pertain to the validity of a system description 
at one level of specification relative to another system 
description at a different (higher, lower, or equal) 
level of specification. 
 Based on the arrangement of system levels as 
shown in Table 1, we distinguish between vertical and 
horizontal relations. A vertical relation is called an 
association mapping and takes a system at one level of 
specification and generates its counterpart at another 
level of specification. The downward motion in the 
structure-to-behavior direction formally represents 

•

the process by which the behavior of a model is 
generated. This is relevant in simulation and testing 
when the model generates the behavior which then 
can be compared with the desired behavior.  
 The opposite upward mapping relates a system 
description at a lower level with one at a higher level 
of specification. While the downward association 
of specifications is straightforward, the upward 
association is much less so. This is because in the 
upward direction information is introduced while 
in the downward direction information is reduced. 
Many structures exhibit the same behavior, and 
recovering a unique structure from a given behavior 
is not possible. The upward direction, however, is 
fundamental in the design process where a structure 
(system at level 3) has to be found that is capable of 
generating the desired behavior (system at level 1).

3.2 Framework for Modeling & Simulation

The framework for M&S as described by Zeigler et al. 
[10] establishes entities and their relationships that are 
central to the M&S enterprise; see Figure 2. The entities 
of the framework are source system, experimental frame, 
model, and simulator; they are linked by the modeling 
and the simulation relationships. Each entity is formally 
characterized as a system at an appropriate level of 
specification within a generic dynamic system. See 
[10] for detailed discussion.

3.3 Model Continuity

Model continuity refers to the ability to transition as 
much as possible of a model specification through 
the stages of a development process. This is the 
opposite of the discontinuity problem where artifacts 
of different design stages are disjointed and thus 
cannot be effectively consumed by each other. This 
discontinuity between the artifacts of different design 
stages is a common deficiency of most design methods 
and results in inherent inconsistency among analysis, 
design, test, and implementation artifacts [11]. Model 

Figure 2. Framework entities and relationships
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continuity allows component models of a distributed 
real-time system to be tested incrementally, and then 
deployed to a distributed environment for execution. 
It supports a design and test process having four steps; 
see [11]:

Conventional simulation to analyze the system 
under test within a model of the environment 
linked by abstract sensor/actuator interfaces; 
Real-time simulation, in which simulators are 
replaced by a real-time execution engines while 
leaving the models unchanged; 
Hardware-in-the-loop (HIL) simulation, in which 
the environment model is simulated by a DEVS 
real-time simulator on one computer while the 
model under test is executed by a DEVS real-time 
execution engine on the real hardware; and 
Real execution, in which DEVS models interact 
with the real environment through the earlier 
established sensor/actuator interfaces that have 
been appropriately instantiated under DEVS 
real-time execution.

 Model continuity reduces the occurrence of design 
discrepancies along the development process, thus 
increasing the confidence that the final system will 
realize the specification as desired. Furthermore, 
it makes the design process easier to manage since 
continuity between models of different design stages 
is retained.

4. Motivation for DoDAF-to-DEVS Mapping

The DoDAF suffers from following shortcomings:
Although there is mention of “executable 
architectures” in DoDAF, there is no methodology 
recommended by DoDAF that would facilitate 
the development of executable DoDAF models. 
It has completely overlooked the model-driven 
development approach. Consequently, there is 
no formal M&S theory that DoDAF mandates.
DoDAF fails to address performance issues at the 
OV level.
DoDAF fails to include measures of effectiveness 
(MoEs) that can be evaluated at the OV stage. If 
any performance measures are considered at all, 
they are at the SV level. System parameters and 
performance is at a totally different resolution 
than MoEs. 
There is no mechanism to perform verification 
and validation (V&V) at the OV stage.
It fails to address M&S as a potent evaluation and 
acquisition tool.

 We propose a mapping of DoDAF architectures 

1)

2)

3)

4)

1)

2)

3)

4)

5)

6)

into a computational environment that incorporates 
dynamical systems theory and an M&S framework. 
The methodology will support complex information 
systems specification and evaluation using advanced 
simulation capabilities. Specifically, the Discrete Event 
System Specification (DEVS) formalism will provide 
the basis for the computational environment with 
the systems theory and M&S attributes necessary for 
design modeling and evaluation. We will see in the 
forthcoming sections that the proposed mapping will 
require augmentation of current DoDAF with more 
information set that is far from any duplication of the 
available DoDAF products. 
 We will demonstrate how this information is 
added and harnessed from the available DoDAF 
products toward development of an extended DoDAF 
integrated architecture that is “executable.” This kind 
augmentation has been attempted earlier by Lee et al. 
[12] using CORE of the Vitech Corporation as a tool to 
develop the executable architecture. They developed 
“architectural templates” that elicit information for 
both the operational and system views that contained 
additional information than the usual DoDAF 
products. In another effort, Rosen et al. [13] proposed 
a new model called the Rosen-Parenti model that adds 
another layer of abstraction to the existing DoDAF, 
augmenting the model with various user-oriented 
perspectives. Going further, they developed the 
executable architecture with their proposed model 
and showed how V&V is applicable in their domain. 
Their model unearthed a shortcoming of DoDAF: 
it fails to address the performance issue at the OV 
level, which the Rosen-Parenti model addressed in 
one of their perspectives. In our attempt to augment 
the current DoDAF, our focus shall remain on adding 
minimal information that would enable DoDAF to 
become an executable architecture. There are potential 
advantages to making DoDAF a DEVS-compliant 
system.
 An executable architecture is defined as the use of 
dynamical simulation software to evaluate architecture 
models [14]. Such executable architectures provide 
many benefits [12]:

The architecture model itself can be verified for 
internal self-consistency.
Operational concepts can be simulated, observed 
dynamically, verified, and refined.
Operational plans can be examined, assessed 
with their feasibility reports.
Trade-offs between systems can be assessed.
Architecture measures can be evaluated (if the 
metrics have been defined), which can support 
cost-benefit analysis and quantitative acquisition 
decisions.

1)

2)

3)

4)
5)
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 The focus of this effort is to make a DoDAF 
architecture executable and provide V&V at the 
operational level, i.e., OV level, as also indicated in 
[15]. We chose to consider the development of an OV 
executable model primarily for the reason that the 
design is abstract at the OV level. There are many 
tools that can put different system models together 
and can conduct a simulation exercise. There is not 
much breadth to explore at the SV level as things are 
brought down to the implementation level with clearly 
defined interfaces. We aim to provide the benefits of 
being an executable architecture at the operational 
level. DEVS, with its mathematical systems theoretical 
foundation, serves as the ideal candidate to develop 
an operational executable model, as the same model 
can be extended to the systems level using model 
composition and hierarchical construction leading to 
multi-resolutional models, as discussed in Table 1.
 We seek to employ DoDAF-to-DEVS mapping to 
unify multiple model representations by expressing 
their high-level features within DoDAF and their 
detailed features as subclasses of DEVS specifications. 
DEVS has been shown to be a universal embedding 
formalism, in the sense of being able to express any 
subclass of discrete event systems, such as Petri nets, 
cellular automata, and generalized Markov chains 
[10]. DEVS has also been employed to express a 
wide variety of more restricted formalisms, such as 
state machines, workflow systems, fuzzy logics, and 
others [16]. Moreover, DEVS environments have 
a long history of development and are now seeing 
ever increasing use in the simulation-based design 
of commercial and military systems [17]. Providing 
a DoDAF “front end” to a “back-end” DEVS 
environment will appeal to military information 
system designers facing the DoDAF and NCES 
mandates. Such designers will be able to retain their 
skills with representations familiar to them, while 
complying with DoDAF abstractions. At the same 
time, they can see the results of their specifications 
evaluated via a simulation-based execution of the 
model architecture. Moreover, since all mappings are 
into subclasses of DEVS, the resulting models can be 
coupled together and, therefore, can interoperate at 
the systems dynamics level. Thus this approach to 
the synthesis of system design formalisms leverages 
design and execution methodologies that are already 
used, or mandated for use, in commercial and military 
applications.
 DEVS environments, such as DEVS JAVA, DEVS-
C++, and others [18], are embedded in object-
oriented implementations, thus supporting the 
goal of representing executable model architectures 
in an object-oriented representational language. 
As a mathematical formalism, DEVS is platform 

independent, and its implementations adhere to the 
DEVS protocol so that DEVS models easily translate 
from one form (e.g., C++) to another (e.g., Java) [19]. 
Moreover, DEVS environments, such as DEVS JAVA, 
execute on commercial off-the-shelf desktops or 
workstations and employ state-of-the-art libraries to 
produce graphical output that complies with industry 
and international standards. DEVS environments are 
typically open architectures that have been extended 
to execute on various middleware such as DoD’s 
HLA standard, CORBA, SOAP, and others [20–23]. 
Therefore, the proposed design architecture supports 
interfaces to other engineering and simulation and 
modeling tools—an example of such networking 
is provided by Lockheed’s satellite cluster mission 
effectiveness simulator [24]. Furthermore, DEVS 
operation over a web middleware (SOAP) enables 
it to fully participate in the net-centric environment 
of the NCES. As a result of recent advances, DEVS 
can support model continuity through a simulation-
based development and testing life cycle [11]. This 
means that the mapping of high-level DoDAF 
specifications into lower-level DEVS formalizations 
would enable such specifications to be thoroughly 
tested in virtual simulation environments before 
being easily and consistently transitioned to operate 
in a real environment for further testing and fielding.  

5. Earlier Work and Recommendations for 
M&S Support in DoDAF 

Reference architecture bridges the gap between 
processes addressing the development of contingency 
operations for future systems and the implementation 
of domain-specific architectures that build on legacy 
systems while incorporating new technologies and 
capabilities. Modeling and Simulation is a key tool to 
support evaluation of the effectiveness of the reference 
architectures and the resulting domain-specific 
architectures [25].

 The DoDAF is a mission-system reference 
architecture where the goal is to provide an 
architecture that can accomplish mission capabilities. 
It is a domain-specific architecture that is actually 
an instance of the parent reference architecture with 
specified applicable domain rules [25]. In one of our 
earlier works [26], we proposed a rule-based meta-
model structure that is applicable to such a reference 
architecture with M&S as a part of the design cycle. 
Even if the DoDAF architecture is the same for two 
missions, it is the domain-specific rules that will 
eventually decide if the developed architecture is 
feasible and there are no rule incompatibilities. 
 Dr. Alexander Levis acknowledges that M&S can 
provide an integrated solution in evaluation of the 
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designed architectures [27], but there is no explicit 
guidance on how to achieve this. Unfortunately, recent 
attempts to relate M&S to architecture frameworks 
such as C4ISR (a precursor to DoDAF) and model-
driven architecture [5, 28, 29] have established the 
need for including M&S in it but have not provided 
a rigorous methodology for doing so. However, there 
have been efforts, such as NATO Active Layered 
Theatre Ballistic Missile Defense (ALTBMD) studies, 
that resulted in alignment of experimentation phases 
[30]. Despite all the information specified in the 
constructed OV, SV, and TV, this effort required the 
generation of a new view, coping with which systems 
and connections were simulated in which systems, 
and based on which constraints, etc. The ALTBMD 
study supports the view that DoDAF in its current 
state requires the addition of some added/pruned 
information set that is applicable to the M&S area. 
 In an attempt to evaluate the completeness of 
DoDAF document products in providing a sufficient 
information set for an executable architecture, Zinn 
[31] integrated the information contained in OV-5 and 
OV-6a to come up with an intermediate document 
that fed an agent-based simulation software called 
SEAS. Agent technology used by Zinn mitigates the 
solution as the independent agents (i.e., a plane, 
tank, etc.) can now behave independently and can 
modify behavior based on their decision rules. This 
essentially leads to an executable state machine of a 
component whose behavior is adaptive to the changing 
environment. However, the problem arises in the 
absence of interface specifications to port data from 
these agent architectures into simulation software. In 
his thesis [31], Zinn concludes that DoDAF contains 
enough information to build an executable set but it 
needs synthesis of intermediate documents. He also 
acknowledges that the development of an executable 
architecture must address the following: 

The third order analysis, as mentioned in DoDAF, 
is a critical step in acquisition strategy, but there 
is no methodology to perform this analysis. 
Legacy models are too monolithic to be 
disassembled and recomposed to model 
individual C4ISR effects [32].
Colored Petri nets (CPNs) [33] provide a means 
to model and simulate the above-mentioned 
activity. However, they fall short in modeling an 
adaptive environment (both in the structure and 
behavior), where the rules of engagement (ROE) 
are constantly changing as the model learns and 
evolves. Another area where the CPNs are lacking 
as a technology itself is the inability to specify 
timing between states. Consequently, temporal 
effects cannot be considered in any executable 

1)

2)

3)

architecture that bases its performance evaluation 
on CPNs.

 In the sequel to our paper, we discuss an approach 
to enhancing DoDAF with additional views that 
enable the DEVS formalism and technology to provide 
a fully capable simulation-based executable model for 
DoDAF specifications.

5.1 Overview of the Role for DEVS-Based 
Technology

The Air Force Chief Architect’s office (AFCAO) 
website [34] lists three key impact areas where use of 
architectures can provide real benefit:
  1) Operations enhancement
 1.1) Requirement coherence and prioritization
 1.2) Better utilization of fewer personnel
 1.3) Deliberate exploitation of innovation
  2) Programming and planning
 2.1) IT investment decisions (support for 
   POM inputs)
 2.2) MIL-worth analysis (M&S 
   executable architectures)
 2.3) AOA evaluation (trade study)
  3) Acquisition support
 3.1) Enhanced war-fighter/user capabilities ID
 3.2) Execution roadmaps
 3.3) Source selection
 3.4) Technology application/transition
 3.5) Test support (MOE/MOP)
 3.6) Interoperability and integration assurance
 Even though it has been realized that M&S is 
necessary in performing evaluation and developing 
acquisition strategy, there is more opportunity for 
current simulation technology to help. Table 2, taken 
from our earlier work [8], summarizes limitations of 
current M&S methodologies to support DoDAF and 
shows where DEVS-based technology can contribute.2

6. DoDAF-to-DEVS and Bifurcated 
Model Continuity–Based System 
Life Cycle Development Process

As suggested in Table 2, key to our proposal for 
extending DoDAF to integrate DEVS-based modeling 
and simulation into a process model that supports 
both development and testing of military and other 
software-intensive systems, the bifurcated model 
continuity–based life cycle process combines the systems 
theory, M&S framework, and model continuity 

2.  Although not all of the areas taken from the list above are 
considered in Table 2, the ones omitted are at a higher level of 
abstraction and will benefit indirectly from the application of 
M&S in general.
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Table 2. Comparison of current technologies in development with DEVS on addressing M&S issues in AFCAO

AFACO
Reference

Desired M&S
Capability

Current Working Tools
(Agent-Based or CPNs)

Solutions Provided by
DEVS Technology

1.1 Requirement coherence 
and prioritization

No formal methodology exists in 
defining architectures wherein the 
data model can be put directly to use 
for simulation modeling.

The present work aims to accomplish this 
by injecting requirements quite early in 
the design stage of DoDAF architectures, 
specifically in the OV phase.

2.2 MIL-worth analysis (M&S 
executable architectures)

Work is ongoing in this area. Due to 
the limitations of the technologies 
being used, the desired “execution” is 
not possible.

DEVS provides the capability to:
1) Reconfigure simulations on-the-fly 

[35];
2) Control simulations on-the-fly [36];
3) Provide dynamic variable-structure 

component modeling [35, 37];
4) Separate the model from the act 

of simulation itself, which can be 
executed on single or multiple 
platforms using DEVS/HLA [10]; and

5) Layer the simulation architecture to 
accomplish the technology migration 
or run different technological 
scenarios [19, 38].

6) With its bifurcated process, 
automated test generation is integral 
to this methodology [9].

3.1 Enhanced war-fighter/
user capabilities

1)   Deterministic CPNs
2) Stochastic SEAS, but too rigid to 

reconfigure on the fly
3) Agent-based methodology again 

falls short in variable structure 
simulation model

3.2 Execution roadmaps There are no capabilities to control the 
ongoing simulation to steer it in the 
“right” direction.

3.3 Source selection

3.4 Technology application/
transition

No dynamic reconfiguration of 
model and simulation reported. The 
simulation architecture itself has to 
be layered enough to accomplish 
technology transition.

3.5 Test support Agent-based technology—Zinn’s work 
is essentially in this direction;
CPNs are not capable of automated 
test generation

3.6 Interoperability and 
integration assurance

The methodology itself has limitations; 
no mechanisms reported so far.

Figure 3. The bifurcated model continuity–based life cycle process
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concepts reviewed earlier. As illustrated in Figure 
3, the process bifurcates into two streams—system 
development and test suite development—that 
converge in the system testing phase. The process has 
the following characteristics:

DoDAF specifications: As described in greater 
detail below, DoDAF descriptions in the 
operational, system, and technical views are created 
by designers. Although initially ill-formulated, 
as the process proceeds, iterative development 
allows refinement of the requirements and 
increasingly rigorous formulation resulting from 
the formalization and subsequent phases.
Formalization by mapping into DEVS:  Concurrent 
with the formulation or capture of DoDAF 
specifications, they are formalized as DEVS model 
components that are coupled together to form an 
overall reference master model.
Reference master model: The master DEVS model 
serves as a reference model for any implementation 
of the behavior requirements. This model can be 
analyzed and simulated with the DEVS simulation 
protocol  to study logical and performance 
attributes. Using model continuity, it can be 
executed with the DEVS real-time execution 
protocol and provides a proof-of-concept 
prototype for an operational system. 
Semi-automated test suite design: Branching in the 
lower path from the formalized specification, we 
can develop a test suite consisting of experimental 
frames called test models that can interact with a 
system under test (SUT) to test its behavior relative 
to the specified requirements.
Simulation-based testing: The test suite 
is implemented in a net-centric simulation 
infrastructure and executed against the SUT. The 
test suite provides explicit pass/fail/unresolved 
results with leads as to components that might be 
sources of failure. 
Optimization and fielded execution: The 
reference model provides a basis for correct 
implementation of the requirements in a wide 
variety of technologies. The test suite provides a 
basis for testing such implementations in a suitable 
test infrastructure. Test tools should carry into 
the fielding and operational tests of the system, 
and provide operationally realistic test cases and 
scenarios.
Iterative nature of development: The process 
is iterative allowing return to modify the 
master DEVS-model and its DoDAF precursor 
requirements specification. Model continuity 
minimizes the artifacts that have to be modified 

as the process proceeds. The design methodology 
provides a process (see Figure 4) to transform 
the DoDAF description of an architecture to a 
DEVS representation supporting evaluation and 
recommendations for a feasible design. Briefly 
described, the steps are as follows:

The architecture specifications are presented 
in DoDAF description format as OVs, SVs, and 
TVs.
The system specifications are then mapped to 
DEVS specifications, according to the translation 
described in Table 3 (in section 9), which map 
the DoDAF views to corresponding DEVS 
elements. The mapping is illustrated with UML 
elements and is expressed in XML [39]. Table 3 is 
the updated and extended version of our earlier 
work [8], focused specifically to OV. The SV is 
presented in the appendix. 
Test suites for implementations of the design are 
developed in the test develop stream.
Simulation results and their analyses provide 
the recommendations for a feasible design.
Components are developed from the models 
using model continuity principles, and the 
design is verified by the TV specifications 
developed earlier as a part of the DoDAF 
process.

 Creation of the DEVS model repository and DEVS 
test suite occur in a concurrent manner. The DEVS 
repository serves as a collection of models that are 
used to develop scenarios and experimental frames, 
and to conduct other simulation-oriented analysis. 
The DEVS test suite is designed to ensure that the 
required behavior as expressed in input-output 
pairs is correctly implemented when integrated 
in the  system with timing constraints. One such 
semiautomated test suite called Automated Test-
Case Generator (ATC-Gen) has been developed at 
JITC by Zeigler [9], and has been applied for Link-
16 testing [40]. Analysis of the experimental frame 
simulations and the system test results are compared 
and evaluated to determine departure from required 
behavior. This error margin is called the conformance 
measure. Ideally, the designed model has a 100% 
conformance with the test suite. If the departure 
exceeds a given tolerance, the model is revised to 
increase the model-test conformance. All this assumes 
that the initial DoDAF specifications have been cast 
in stone. Typically, however, the iterative process will 
also suggest new or modified specifications at the 
DoDAF level. The iterative loops can be seen in Figure 
4. Finally, when the models conform to the system 
test specifications, the test suite presents the design 

1)

2)

3)

4)

5)
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and performance recommendations as the outcome of 
this data-centric process. The model repository serves 
as the basis of design of components based on model 
continuity principles, and the test suite serves as the 
benchmark for performance evaluation and matching 
the technical specifications as developed in the TV 
DoDAF descriptions.
 In Section 8, we shall demonstrate how the 
bifurcated model continuity–based life cycle process 
can provide a framework in which to develop DEVS 
technology support for DoDAF, leading to model 
repositories and test suites. However, several gaps 
in the DoDAF specification have to be bridged to 
enable the infusion of DEVS to take place. We turn 
toward these shortfalls and our proposals to address 
them.

7. Filling Gaps in DoDAF

We address three gaps in the DoDAF as currently 
formulated relating to a) message flow among 
activities, b) transition from OV-5 to OV-6, c) temporal 
specifications, and d) accountability for failure of 
activity execution.

7.1 Message Flow Among Activities

AV-1 deals with the overall functionality of the system. 
AV-2 deals with the data dictionary and terms used 
in the DoDAF specification of the system. This leads 
to the first “functional” document, OV-1, which 
gives way to OV-5, which describes the intended 
functionalities in fair amount of detail. It lays out the 
functionalities in terms of capabilities and activities in 
hierarchical as well as sequential manner. A capability 
is defined as a functionality comprising of many 
activities. These activities are linked by “messages” 

Figure 4. Bifurcated DEVS-to-DoDAF system life cycle development process
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that are apparently flowing between the defined 
activities. What flows between these activities is not 
exactly defined in DoDAF. The abstraction level of 
“information” flow is not discussed in DoDAF. They 
can be top-level operational information exchanges 
(OIEs) or specific data messages. The first gap occurs 
at this point. DoDAF does not define the interactions 
between the activities. This is all the more ambiguous 
since activities are not “entities” that can be physically 
realized. However, these activities do exchange 
messages. There is no entity structure developed 
by this stage of functional development. An entity is 
defined as a component that can be physically realized. 
There is no mention of any entity taking responsibility 
for any activity. Were an “activity” to be mapped to 
the corresponding UML notation, it would map to use-
case diagrams. However, unlike the use-case diagram, 
the OV-5 does not take into account the entities (actors 
in UML) that take responsibility for this activity. Since 
there is no apparent entity structure, the interfaces are 
essentially absent. 
 Structure in DoDAF does not appear until OV-2 
and OV-7. The activities in OV-5 seem to exchange 
messages or events for that matter but there is no 
mechanism specified to send or receive events. In other 
words, there is no specification of activity interface. If 
activities are considered as potential components of the 
operational views, there is ample reason to consider 
them as “components” of a particular capability and 
provide interfaces to enable and define the message 
communication between activities. 
 The advantages of considering an activity as a 
component entity are manifold:

An activity is grounded in the design at the 
DoDAF specification level.
It can be back-referenced to any particular 
capability or it may serve to more than one 
capability.
Activities with defined interfaces provide a 
way to develop a test suite to test the capability 
definition of the system.
An activity can be allotted to the defined entities 
such that a real-world entity or a group of entities 
can be held responsible for its execution.
It brings specificity to the component design 
by ensuring the interfaces defined in activities 
be mapped on a one-to-one basis in the target 
component entity held responsible for this 
activity.
It provides structure to the functional aspect of 
DoDAF that can feed the entity structure of the 
system, which then can be aggregated toward 
the system views.

1)

2)

3)

4)

5)

6)

It paves the way for DoDAF-DEVS mapping 
and how testing can be applied to the design 
process (as described in the previous section) at 
an operational stage.
It allows the designer and planner to define 
the needed entities in the OV phase of DoDAF 
specification of the system.
It provides the framework to incorporate M&S 
at two different levels of resolution to conduct 
feasibility studies: 

a) At the capability level - At this level the system 
can be modeled based on the “functionality” 
of the system. Rules and doctrines can be 
accounted for at this level of the model. This 
provides a means to test the compatibility 
of existing rules and doctrines when testing 
the feasibility of any activity. There are no 
means to test and validate the compatibility 
and inter-operability of various rules and 
doctrines that constrain any particular 
capability in DoDAF. The need for such 
consideration has been recognized by 
Dickerson and Soules [42] in the proposed 
CV-6 document (capability evolution 
document). 

b) At the entity level - At this level the 
system can be modeled based on the entity 
structure as developed from the capability 
model. New supporting entities can be 
introduced at this level that can support the 
existing capabilities or that are needed by 
specific capabilities such as fault-tolerance, 
scalability, etc. 

 Coming back to the discussion of current OV-5 
in DoDAF, the activity diagrams are then detailed 
further in OV-6. The OV-6 consists of three parts. Our 
prime interest is in OV-6b (state chart diagrams) and 
OV-6c (timing sequencing and event trace diagrams), 
as OV-6a deals with the rules and doctrines, basically 
a document to describe the constraints on different 
activities mentioned in OV-5. OV-6b can be mapped 
to the UML state chart diagrams and OV-6c can be 
mapped to the UML timing sequence diagrams.  

7.2 Transition from OV-5 to OV-6

The second gap comes during the transition from OV-5 
to OV-6, specifically OV-6c, event trace diagrams. The 
OV process adds further details to activity diagrams 
in describing the sub-activities for OV-5 activities. 
It associates the current activities with the known 
operational nodes (which can be seen in OV-1). 
However, the nodes in consideration here may be as 
big as an organization itself, and abstraction level is 

7)

8)

9)
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fairly high. Even if the node is the lowest level entity 
(an unlikely case), the complete behavioral life cycle 
of this entity is overlooked, and only the activities 
in consideration are assigned to the operational node 
with a presumption that the node will execute this 
activity. The life cycle with respect to the attended 
activities is expressed in OV-6b; however, there 
is no hierarchy of these nodes present that could 
account for the hierarchical activities under question. 
Consider a typical activity diagram in OV-5 and 
imagine that in order to execute this activity, four 
different nodes are performing in tandem through a 
sequence of sub-activities and passing events to one 
another. The current setup is depicted in the OV-6c 
timing sequence diagram describing the execution 
of an OV-5 activity. Similarly, the OV-6b diagram 
depicts the sequencing of these sub-activities. The 
problem of developing the life cycle of an operational 
node is easier if all the sub-activities are happening 
at one node, but that is usually not the case since 
multiple nodes are performing and synchronizing to 
execute the parent activity. The fragmented nature 
of activities to compose and define a parent  activity 
or a capability makes the construction of an OV-6b 
diagram for an operational node more difficult. 
The other drawback of this methodology is the 
possible occurrence of inconsistency between OV-
6b and OV-6c, as the statechart in OV-6b is bounded 
by the activities called for in OV-5 and explored in 
fragmented manner in OV-6c in specific event trace 
diagrams. There is possible loss of information 
here, and DoDAF provide no means to ensure 
consistency. 
 Although the development of OV-5 and OV-6 is 
an iterative process, it does not ensure a foolproof 
life cycle of an operational node. This problem does 
not occur in the UML architecture as the approach 
there is to start with use-case diagrams, then move 
to the class diagrams, which leads on to the activity 
diagrams, timing sequencing diagrams, and state 
chart diagrams of individual classes, in this specific 
order. This ensures consistency, as there are defined 
classes before making the timing sequencing diagrams 
or state charts. DoDAF has a reverse approach to this 
design problem, where it groups and aggregates 
activities and defines classes (in OV-6), then leads 
on to the OV-2. OV-7 and the data exchanges are 
simultaneously defined in OV-3. Developing state 
chart diagrams without developing the class entity 
structure is error prone. The solution to this problem 
is to treat an activity as a component and develop 
the activity-entity structure before OV-6b and after 
OV-5.
 (It can be argued that the operational views are 
concerned with the functional description of the 
system that does not require any component structure 

definition. Furthermore, it is in the system views 
that the structure is made available and interfaces 
are defined. The counterargument to this approach 
is that there is no mechanism provided in DoDAF 
to test the operational views’ development and to 
conduct early feasibility studies3).
 In order to fill the second gap and maintain the 
order of OV-5 and OV-6 iterative development 
process, we suggest the following:

Consider the activities as components and place 
them in a structure so that they are better 
defined and managed.
Employ a methodology to transition from OV-6b 
and OV-6c to the DEVS behavioral model for 
operational nodes composition and incorporate 
the activity components as constituent parts 
with defined interfaces.
Incorporate the doctrines and rules of 
engagement specified in OV-6a to be 
implemented into the DEVS behavioral model 
of an activity component; see the example in 
section 10.

 The next section describes a methodology 
to develop the DEVS state systems from OV-6c 
descriptions, which are essentially time sequencing 
diagrams. This, incorporated with the OV-6b 
statechart, will provide much needed consistency 
between the two documents. Ultimately, it will result 
in a DEVS model repository of operational nodes for 
modeling and simulation, testing, and control. The 
integrated solution to the above two gaps result in the 
introduction of two new OV documents:

OV-8, activity components document - This 
document list the activities as components 
with defined port interfaces that are essentially 
logical in structure.
OV-9, activity interface specifications  - 
This document describes the interface 
specifications between activities and entities. 
It holds information about the mapping of a 
subcomponent inside an operational node that 
is responsible to execute any particular activity. 
Again, this mapping requires augmentation 
with logical port definitions.

 Details of the development of these two documents 
can be seen in the next section. Figure 5 presents the 
operational view setup in DoDAF and its extended 
version.
3.  When the system views are defined there can be many ways 

to develop test models since every boundary and interface is 
almost defined (though not designed in operational views since there 
is no document that contains interface specifications except OV-3, 
which is essentially data-exchange document). One can build a 
simulation model easily as systems are already in place in the 
system view.

1)

2)

3)

1)

2)
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7.3 Temporal Information

One crucial piece missing in this existing toolset is 
the timing information that is absent in OV-5. Our 
proposal attempts to bridge this gap by giving 
adequate consideration to interface structure and 
involving other views, namely OV-6b and OV-6c in 
conjunction with OV-5 and OV-6a. The communication 
information is not available until SV-2 and SV-6 are 
constructed, which is derived from OV-3, which is 
constructed late in the OV phase itself. Introducing 
timing well before in the design of operational views 
equips the acquisition strategy with information 
about those current systems that could meet these 
“operational” delay requirements.
 A similar architecture called Air Operations Center 
(AOC) Weapon System Block 10.1 Architecture, being 
developed by MITRE for the Air Force, is under 
development along the lines of DoDAF specifications. 
It is considered an “integrated” architecture based on 
the DoDAF standards. It contains the seven essential 
products required, and data elements are consistent 
across the views. Zinn developed a procedure wherein 
information from different AOC DoDAF views were 
handled manually and brought to a level where the 
doctrines can be utilized to impact the simulation 
model in question. This information is presented in if-
else constructs in the form of pseudo-code that can be 
fed into any XML parser for further processing. More 
details about the procedure can be seen in his thesis 
[31].
 Our proposal can be seen as extending Zinn’s 
procedures by giving more structure to the compiled 
information, which includes temporal information 
in activities as an important part of the information 
exchange. Zinn used the IDEF process methodology 
to depict various OVs and noted the inherent 

inadequacy of the IDEF3 process [43] when being fed 
to an agent-based simulation software, e.g., SEAS, 
which has no rules defined in case of OR split that 
dictate which path to take to resume the activity. We 
believe that the problem stems from the fact that the 
underlying architecture does not consider timing an 
important concept. This problem would not have 
arisen in the first place, and the situation would have 
resulted in “timeout” (as can be easily expressed in 
DEVS) in case of OR split. This is but one example 
of the limitations of the modeling methodology that 
does not lead to simulatable models.  

7.4 Accountability for Failure of Activity Execution

The third and final gap that we found was the lack of 
any accountability for failure of activity execution by 
operational nodes over time. There is an absence of 
accountability because there are no means provided 
in DoDAF to test the design principles in operational 
views. Since M&S is not systematically considered in 
the current DoDAF specification, there is no means to 
test the feasibility of the system. Furthermore, there 
is no support for modeling technologies like model-
driven architectures (MDA) and model continuity 
principles. 
 Our effort is toward providing accountability to 
the design process by introducing M&S at the correct 
development stage, where it is possible to experiment 
and modify the operational architecture in question. 
This is very much needed, as it is not reaffirming 
to presume the capabilities of operational nodes 
(through COTS specifications) and then move on to 
the system views without ensuring the functionality 
of the system in operational views. The reason for 
choosing the DEVS formalism as a means to M&S is 
its expressive power and modularity support. The 
concept of “elapsed time” is one of the key aspects of 
DEVS formalism, and it provides a means to evaluate 
the component behavior in a finite time frame. It 
enables the component to attend, and respond, to 
any external events in time intervals prescribed in 
its DEVS specifications. Incorporation of DEVS in 
DoDAF will make the design process more tractable 
and controllable. 

8. From OV-6 UML Diagrams to DEVS 
Component Behavior Specifications

Figure 6 describes the development of a DEVS 
description model from a simple time sequencing 
thread in a time sequencing diagram.
 A simple time sequencing diagram is considered to 
illustrate the DEVS activity component development 
process and how it fits into the DEVS description of an 

Figure 5. State of operational view documents in DoDAF
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operational node. Consider that a hierarchical activity 
is being addressed by three operational nodes, and 
they are exchanging events between sub-activities in 
order to perform this activity. In the first diagram in 
Figure 6 (leftmost), we can see them interacting with 
each other. The center part of the figure consists of the 
thread for one operational node and is enlarged for 
better analysis. The sequencing diagram is represented 
in UML notation, and this node has a lifeline during 
the course of which it receives events and sends 
output messages or events to other nodes. In mapping 
to a DEVS formalism we need to have information 
about the internal transitions (when no events are 
received) from one activity to another activity and 
the external transitions (when an event is received at 
this node sent by another node). The timeline of the 
node consists of a sequence of activities that the node 
will undergo in the event of external transition or 
internal transition. The complete timeline is available 
in OV-6b, so there is all the more reason to maintain 
consistency and similar input and output trajectories 
of sequential activities. Different markings on the 
thread are self-explanatory. Striped boxes indicate the 
port interfaces where an external event can be received 
and dotted boxes indicate the port from which output 
events can be sent to other nodes. Activity 1 receives 
an external event and undergoes activity 2 after 
generating an output message. Activity 2 undergoes 

internal transition toward activity 3 in absence of any 
external event. This particular thread displays only 
a subset of activities performed by this node. Since 
DEVS employs a port-based component structure 
system we identify the input and output ports and 
assign them to specific activity components at this 
particular developmental stage. This results in the 
introduction of a new OV document, OV-8, which 
contains the mapping definitions of logical ports and 
activity components. Finally, these activities, if not 
present in OV-6b, are then introduced in OV-6b for 
a comprehensive set of activities performed by this 
operational node. 
 Another byproduct of this stage is the mapping 
of activity components with entity components that 
constitute an operational node. This is specified in a new 
OV document called OV-9. This contains information 
about the activity ports, activity components, entity 
components, and logical entity ports that are mapped 
to logical activity ports in OV-8. Introduction of these 
new OV documents modifies the overall DoDAF OV 
specification structure illustrated in Figure 6. 

9. DoDAF-to-DEVS Elements

Table 3 provides the mapping of various DoDAF OV 
products into DEVS modeling constructs. UML is chosen 
as the preferred method of DoDAF representation. 

Figure 6. Development of DEVS description model from UML time sequencing thread
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First the UML element is mapped with the DoDAF 
product document, and then the same UML element 
is mapped to the DEVS element(s). Representation of 
DoDAF into corresponding UML has been presented 
earlier by Telelogic [41]. 
 Their representation included SV products as 
well.4 In Table 3 we have also incorporated the two 
new OV products, OV-8 and OV-9. Since UML is 
essentially an object-oriented methodology, work 
has been attempted in the area of transforming UML 
models to CPN executable architectures [15]. Our 
work is similar in nature, where UML elements are 
transformed to DEVS elements. The last column links 
the DEVS elements to Figures 3 and 4 by categorizing 

4.  For SV mapping refer to the appendix. 

them into model repository and semi-automated test 
suite elements. 

9.1 Justification for the DoDAF-DEVS Mapping 
Process

This section discusses the effect of introducing two 
new operational views in the current DoDAF and 
their impact on the overall DoDAF design process. 
Information technology–based systems of the future 
will be increasingly complex with participants 
across the globe communicating through disparate 
channels. Interoperability is very much in question. 
Scalability and fault-tolerance issues have to be 
addressed. Capabilities have to be satisfied and 

Table 3. DoDAF-DEVS extended translation table

DoDAF Elements
UML Elements DEVS Elements

(Generated Using XML)Name Description
Operational 

View
OV-1 Top-level 

operational view
• Use-case diagrams • Activity component identification

• Top-level entity structure

DEVS
model

repository

OV-5 Operational 
activity model

• Use-case
• Activity sequencing 

diagrams
• Data flow diagrams

• Activity component updating
• Hierarchical organization of 

activities
• Input-output pairs 
• Port identification

OV-6 Operational timing 
and sequencing 
diagrams

• Time sequencing 
diagrams

• State machine diagrams

• DEVS atomic model creation 
(initialize function, internal and 
external, transition functions, 
time advance, and output 
functions) for activity components

• Entity identification
• Activity-entity component 

mapping
OV-2 Operational node 

connectivity
• Composite structure 

diagrams
• Coupling information
• Hierarchical component 

organization
OV-8 Activity component 

description
• Composite structure 

diagrams
• State charts

• Activity component update
• Activity port identification and 

refinement
OV-3 Operational 

information matrix
• Input-output transaction pairs
• Message formats
• Activity interface and coupling 

information
DEVS

system
test suite

OV-9 Activity interface 
specifications

• State charts
• Composite structure 

diagrams

• Acitvity-entity interface
• Entity structure refinement
• Activity-entity port mapping and 

refinement
OV-7 Logical data 

model
• Packages (only for 

xUML)
• Class diagrams

• Entity identification
• Hierarchical structure

OV-4 Organizational 
relationship chart

• Class diagrams • Entity identification
• Hierarchical entity structure

DEVS
model

repository
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reliability has to be ensured. Any large system that 
DoDAF specification documents intend to build 
has to realize these important facets of architecture 
design. Modeling and simulation with its model 
continuity principles is fast becoming an accepted 
method of evaluating design principles ensuring 
accountability to various components within the 
system. DoDAF has completely overlooked M&S as a 
possible means to evaluate design, capabilities, and 
planned expansion of current architectures. There 
is no provision for  testing the constructed system, 
either in OV or in SV. Ability to configure a system for 
optimum performance is not allowed in the current 

DoDAF specification document.
 We have introduced two new operational views, OV-
8 and OV-9, that add on features to enable M&S of the 
system under design. We have also demonstrated how 
these new documents will be created from the existing 
operational views. A detailed example is presented in 
the next section. We aim to provide structure to the OV 
process by shifting the perspective from describing 
functionality as an activity to an activity component with 
definite interfaces to other activity components as well 
as identified entities within an operational node. To 
what extent an operational node is decomposable is a 
subject requiring further research. We have developed 

Table 4. Summarizing the contribution of OV-8 and OV-9 to DEVS M&S

Artifact SES Elements Current DoDAF Enhanced DoDAF Can DEVS Model
Be Created?

Tree 1
(Component
perspective)
 
 

Entities OV-2 (operational 
nodes)
SV-4 (systems 
identification)

 Too early!

Hierarchical entity 
construction

OV-2, OV-7 OV-9 
(no mechanism to provide 
information of hierarchical 
formation in current OVs)

YES
(only the skeleton with well-
formed coupled models)

Specified entity-
based constraints

SV-7 OV-9
(hierarchical node 
descriptions help localize 
contraints at OV design 
phase)

NO
(information missing to 
develop behavior models)

Tree 2
(Capability 
perspective)
 
 
 
 

Capabilities OV1,5, 6b, SV-4  NO 
(no activity components 
defined)

Hierarchical 
activities

OV-6, 6b, 6c, SV-5  NO 
(no activity components 
defined)

Activity-based 
parameters

ABSENT OV-8
(activity as activity 
components definitions 
based on OV-5,6b)
(documenting procedure has 
placeholders for parameters 
and constraints identification) 
See [44]

YES
(DEVS capability skeleton can 
be created with hierarchical 
activity composition with 
defined interfaces)

Activity-based IE OV-5, 6b OV-8 
(may be redundant here)

YES

Activity-based ROE OV-6a OV-8 YES
Tree 3
(Rule 
perspective)
 

Rule hierarchy OV-6a  YES 
(ATC-Gen project [9, 40])

Rule-activity 
mapping

ABSENT OV-8 
(the whole purpose of OV-8 
is realized here)

YES 
(with full behavior for 
capability testing)

Rule-entity mapping ABSENT (partially 
in OV-6a)

OV-9
(the whole purpose of OV-9 
is realized here)

YES 
(with full behavior for system 
testing)
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a testing process for defined capabilities (that were 
defined during the conceptual design process in OV-5) 
and the way in which various rules and doctrines 
(in OV-6a) can be evaluated for interoperability with 
different capabilities. By purview of the information 
contained in OV-9 we have introduced the model 
repository as an important aspect of DoDAF system 
specification that enhances the DoDAF by making way 
for the M&S area.
 DEVS modeled systems are inherently object 
oriented, and DoDAF at the OV stage does not have 
full expressiveness to be transformed to an executable 
model. In one of our other systems engineering 
approaches using System Entity Structure (SES) 

(see the appendix), we developed a hierarchical 
perspective representation that would enable DEVS 
to step in at various levels of resolutions. The 
three main perspectives are 1) component based, 
2) Capability based, and 3) rule based. The DEVS 
bifurcated model continuity–based system requires 
all three perspectives to be available in order for the 
system model be deployable. As you can see in Table 
4, the current DoDAF, if enhanced with the new OV 
documents, does make the DoDAF a DEVS-compliant 
system.
 In the next section we shall demonstrate how one 

can construct a DEVS executable OV model from the 
enhanced DoDAF. We will also show the sample OV-8 
and OV-9 documents and their construction process. 

10. Example: Implementation of an Activity 
Component

Consider an activity as mentioned in Zinn [31, p. 65] 
described in IDEF0 format; see Figure 7. This activity 
is governed by the doctrines specified in OV-6a, 
IDEF3 format, which are described in [43]. Figure 7 
is a sample OV-5 diagram for “select contractor,” and 
Figure 8 is the OV-6a description in IDEF3 format 
where X represents an XOR split and O represents an 
OR split. These are the critical decision-making points 
that impact the outcome of the activity based on the 
previous step. It is at this point that timing needs to be 
specified so that “timeouts” can occur without leading 
to any ambiguity. Zinn acknowledged this problem in 
the process.
 The information from these two figures is compiled 
manually to generate the pseudo-code in the following 
format. This manual process amounts to the integration 
of OV-5 and OV-6a into a single document. The pseudo-
code is provided in Figure 9.
 The graphical representation in Figure 7 is 
represented textually through the Popkin System 
Architect as shown in Figure 10. Consequently, 
Figure 9 and Figure 10 gives us the comprehensive 
information about the activity, its purpose, its input-
output information through ICOM5 lines, and pseudo-
code for operational rules (as defined in OV-6a). 
Figures 7, 8, and 9 describe a general step approach 
to arrive at this pseudo-code, which is then utilized 
by an agent-based modeling software (e.g., SEAS) via 
Tactical Programming Language (TPL). Once pseudo-
5.  In IDEF0 diagrams, inputs, controls, outputs, and mechanisms 

are collectively referred to as ICOM arrows.

Figure 7. OV-5 diagram for “select contractor” in IDEF0 
notation (from [31])

Figure 8. OV-6a diagram for “select contractor” in IDEF3 notation, (from [31])
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code has been made available, any software developer 
who is versed with TPL or any other language can 
interpret it. This process is then followed for the 
case study (for all the eleven activities) considered 
in Zinn [31]. Zinn brought forward the information 
expressed in graphical format in OV-5 diagrams and 
OV-6a doctrines in the form of psedo-codes that are 
realizable into software code. We utilize his efforts and 
demonstrate how this information can be used to feed 
the integrated DEVS methodology and development 
of OV-8 and OV-9. 

10.1 Activity Taken from Zinn [24] as an Example

Let us consider the same example that is described 
in Zinn[31]. Let the activity that is being modeled 
be defined as Activity 6: TCT - Determine target 
significance/urgency. There are about eleven activities 
that are being evaluated and pseudo-code provided in 
[31]. Figure 10 provides the activity model report as 
generated by Popkin System Architect. 
 This activity report is nothing but the interface 
descriptions for an activity in OV-5 diagram. It tells 
us from which activities Activity 6 receives input and 
to which activities it sends output. It also provides 
us with the information about the “control” interfaces 
that are needed to execute the doctrines and rules. 
Figure 11 depicts the IDEF3 model that implements 
the OV-6a doctrines and rules for Activity 6.
 The pseudo-code for Activity 6 is provided in Figure 
12, which is compiled manually from the information 

Figure 9. Pseudo-code as per Zinn’s interpretation and 
integration procedure [31]

Activity 1: Select Contractor
 Description: The process used by the company to select the 

contractor for a new project 
 Inputs:  
   Proposal: contains the cost, schedule, and technical 
   information as proposed by the contractor
 Outputs:
   Contract: the awarded contract
 Controls:
   Policy: Company contracting policy
   Law: Federal, State and Local regulations

Pseudo-code for Activity 1
Evaluate Proposal
 IF (cost > budget) THEN
   Reject Proposal
 ELSE
   (Accept Proposal for Core Contract) OR 
   (Accept Proposal for Options) OR
   ((Accept Proposal for Core Contract) AND (Accept  
     Proposal for Options))

Operational Activity 6: 
TCT - Determine target significance/
urgency (track)  
[within OV-5 diagram “TCT - Level 1”]    
Glossary Text: Utilizing track data and other target information, 
C2 Warriors determine if the target/target set is threatening and/
or fleeting, and  estimate target availability, i.e., how long the 
target will remain susceptible to attack.

From 2005 C2 Constellation 3.2.5.2 and CAOC-4.5.2.7    
ICOM line: Air Track (J3.2)  

Output: going to TCT-Validate target/target set (Target) 
as input  
Glossary Text:   

ICOM line: Current Intelligence - Dynamic Assessment/
Target Status  

Input: coming from <offpage>  
Glossary Text:   

ICOM line: Current Intelligence - Target Classification  
Input: coming from TCT-Define target/target set (Fix) 
as output  
Glossary Text:   

ICOM line: Current Intelligence - Target Identification  
Input: coming from <offpage>  
Glossary Text:   

ICOM line: line: Doctrine, Policy, LOAC, SROE, ROE  
Control: coming from <offpage>  
Glossary Text:   

ICOM line: line: Dynamic Target Nomination  
Output: going to <offpage>  
Glossary Text:

ICOM line: line: Dynamic Targeting Execution Direction 
and Guidance  

Control: coming from <offpage>  
Glossary Text:   

ICOM line: JMSNSTAT  
Input: coming from <offpage>  
Glossary Text:   

ICOM line: Land (Ground) Point/Track (J3.5)  
Output: going to TCT-Validate target/target set (Target) 
as input  
Glossary Text:   

ICOM line: Reattack Recommendation  
Output: going to TCT-Nominate engagement option (Target)
as input  
Glossary Text:   

ICOM line: TRKREP  
Output: going to TCT-Validate target/target set (Target)
as input  

Figure 10. Activity report model for Activity 6 generated 
through Popkin System Architect
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contained in OV-6a. For a complete description of 
Activity 6, refer to [31]. Briefly, the context of Activity 
6 in TCT architecture is immediately after a target 
(or target set) is found and fixed. The upper half of 
Figure 11 shows an XOR junction that indicates only 
one path is taken. The resulting “target update” 
is then put through four simultaneous analyses 
indicated by the AND junction. This results (after 
integrated processing) in “Is the target time critical?” 
If it passes this TCT test it is again presented with 
a decision point: “Is the initial attack on the target?” 
The answer to this question results in two different 
modes of action, indicated by the XOR junction. 
Zinn acknowledges the fact that even though there is 
certain sequencing present, precise information about 
the rules defined are left to the imagination [31]. 
 The next section demonstrates how the information 
in Figure 10 and Figure 12 is transformed into DEVS 
component modeling framework. It also shows how 
OV-8 and OV-9 gets populated. However, it must be 

Figure 11. IDEF3 representation of Activity 6 (“conduct dynamic assessment of target” TCT 2005 Architecture, 2003: OV-6a) [31]

Figure 12. Pseudo-code for Activity 6 – based on IDEF3 
diagram in Figure 11, taken from [31]

IF Significant Movement of target  
THEN Monitor Target/Target Status    

Project Target Movement    
Target Vector = . . . .. ?  

ELSE Monitor for Movement    

Analyze Threat from Target (Is the target closing on Friendlies or 
Fleeing?)  
Analyze Dynamic Targeting Ex Direction and Guidance (Does this 
agree with the commander’s requirements?)    
Determine target window of vulnerability (urgency)  
Determine target significance – partly based on above findings    

IF it is determined to be a TCT based on the above info  
THEN IF this is the first strike attempt on this target    

THEN Goto Activity 7 (Validate Target/Target set)    
ELSE Goto Activity 8 (Nominate engagement option)  

ELSE Pass target to ATO Planners     
Monitor Target of Interest for Status Change
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realized that an “operational node” hasn’t been defined 
with respect to the current example. Consequently, we 
will assume an entity structure that will illustrate the 
concept.

10.2 DEVS Interpretation of Activity 6

Based on the available information let us assume that 
dynamic target assessment happens at a particular 
node. Assume that Activity 6 and its sub-activities 
are all happening at TCT. Let us call this Operational 
Node 1, (with identification number O1). This will 
comprise our OV-2 diagram containing only one 
operational node executing all the eleven activities 
[31]. Again, a simple example has been considered 
to demonstrate the construction of the new OV 
document, namely OV-8 and OV-9.
 Table 5 assigns identification numbers to various 
activities.
 Based on the IDEF3 diagram (graphical information 
for OV-6) in Figure 11, and our constructed OV-2 
in previous paragraph, we can construct our OV-8 

document that lists activities and their logical interface 
information. We need such port information to be able 
to create components. Such logical port construction 
has been attempted in [41] where the focus was to 
create an SV executable model. Developing and 
specifying activity port interfaces at this level is a 
logical step toward SV interface design as tractability is 
ensured. The OV-8 document below does not address 
the performance issue at the OV level, and its refined 
structure is presented in [44]. Table 6 shows a sample 
OV-8 document.
 Based on the information provide in Figure 11, we 
have constructed and identified the interfaces that 
are being used by different activities to communicate. 
However, we have not considered the information 
contained in Figure 10 that describes how Activity 6 
communicates with the other ten activities. We did not 
explore the connectivity between other destination 
activities just to keep the example in the needed 
perspective. However, the procedure is essentially 
the same with more rows being added to Table 6. To 
give a glimpse of how these interconnected activities 

Table 5. Activity-ID mapping for OV-8 and OV-9

S. No. Activity Sub-activity Internal Activity ID

1 Activity 6 Dynamic target assessment A6

2 Monitor target/
target status

A6.1

3 Monitor for movement A6.2
4 Project target movement A6.3
5 Analyze threat from target A6.4

6 Analyze dynamic target execution/direction 
and guidance 

A6.5

7 Determine target window of vulnerability (urgency) A6.6
8 Determine target significance (value/effect) A6.7
9 Nominate as dynamic target (NCT) A6.8

10 Pass target to ATO parameters A6.9
11 Pass target to ATO planners A6.10

12 Significant movement
Yes/No

A6.11

13 Target monitoring A6.12
14 Target significance analysis A6.13
15 Synthesize results A6.14

16 TCT determination 
Yes/No

A6.15

17 Initial attack 
Yes/No

A6.16

18 Review established target 
lists

A6.17

19 Attack decision A6.18
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Table 6. Sample OV-8 document

S. No. Activity ID 
Component

Connection 
ID

Source 
Activity

Input Interface
Name

(Logical Port)

Message
Description/OIEs

Container 
Operational 

Node

Source 
Document/

Diagram
1 A6 O1
2 A6.1 CA6.1 A6.11 inSigMovY AMT/GMTI O1 Figure 12/OV-6b,c

3 A6.2 CA6.2 A6.11 inSigMovN StaticTarget O1 Figure 12/OV-6b,c
4 A6.3 CA6.3 A6.1 inTrkData TrackData O1 Figure 12/OV-6b,c
5 A6.4 CA6.4 A6.13 inCurrInte Current 

intelligence
O1 Figure 12/OV-6b,c

6 A6.5 CA6.5 A6.13 inDirGuid Direction and 
guidance

O1 Figure 12/OV-6b,c

7 A6.6 CA6.6 A6.13 inTarAnaly Target analysis O1 Figure 12/OV-6b,c
8 A6.7 CA6.7 A6.13 inTarAnaly Target analysis O1 Figure 12/OV-6b,c
9 A6.8 CA6.8 A6.14 inTctYes TCT Yes O1 Figure 12/OV-6b,c

10 A6.9 CA6.9 A6.14 inTctNo TCT No O1 Figure 12/OV-6b,c
11 A6.10 CA6.10 A6.9 inToiInfo TOI Info O1 Figure 12/OV-6b,c
12 A6.11 CA6.11 inIsSigMov Significant 

movement
O1 Figure 12/OV-6b,c

13 A6.12 CA6.121 A6.2, inTargCoord Target coordinates O1 Figure 12/OV-6b,c
CA6.122 A6.3 inTargVec Target vector O1 Figure 12/OV-6b,c

14 A6.13 CA6.13 A6.12 inTarUpdate Target update O1 Figure 12/OV-6b,c
15 A6.14 CA6.141 A6.4 inTarThreat Target threat O1 Figure 12/OV-6b,c

CA6.142 A6.5 inDGCompl Direction 
guidance 
compliance

O1 Figure 12/OV-6b,c

CA6.143 A6.6 inTarUrg Target urgency O1 Figure 12/OV-6b,c
CA6.144 A6.7 inTarSig Target 

significance
O1 Figure 12/OV-6b,c

16 A6.15 CA6.15 A6.14 inSigUrgRes Significance/
urgency results

O1 Figure 12/OV-6b,c

17 A6.16 CA6.16 A6.8 inTctNom TCT nomination O1 Figure 12/OV-6b,c
18 A6.17 CA6.17 A6.16 inFirstStr First strike O1 Figure 12/OV-6b,c
19 A6.18 CA6.18 A6.16 inReAtkRec Reattack 

recommendation
O1 Figure 12/OV-6b,c

Figure 13. DEVS interrelationships of Activity 6 with other activities
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(as components) will perform in tandem, notice the 
inports and outports of Activity 6 in Figure 13. The 
other activities shown in this figure do not have any 
resemblance to the actual example in [31]. They are 
just meant for understanding. To understand how 
Activity 6 works internally based on the different 
activities in Table 6, please see Figure 14.
 The coupling relations shown in Figure 14 are 
generated in an automated manner from the data 
presented in Table 6. Columns 2, 3, 4, and 5 provide 
sufficient information to generate the following 
lines of code with simple string manipulations. 
Consequently, an automated generation of DEVS 
model is realizable. Hence the OV-8 document 
provides sufficient information to develop a skeleton 
DEVS model that can make its entry into the model 
repository. Let us name the model for Acitivity 6  
MA6. The inner models are identified in the same 
predictable manner as MA6.1, MA6.2,…MA6.18.

ViewableAtomic a61  =  new ViewableAtomic(“A6.1”);
add(a61);        
ViewableAtomic a62  =  new ViewableAtomic(“A6.2”);
add(a62);
...
ViewableAtomic a611  =  new ViewableAtomic(“A6.11”);
add(a611);
...
a611.addOutport(“outSigMovY”);
a61.addInport(“inSigMovY”);
addCoupling(a611,”outSigMovY”,a61,”inSigMovY”);

a611.addOutport(“outSigMovN”);
a62.addInport(“inSigMovN”);      
addCoupling(a611,”outSigMovN”,a62, “inSigMovN”);
...

 The next task in line is the inclusion of pseudo-
code that contains the doctrines and rules form OV-6a, 
described in Figure 12. Consider these four initial lines 
from Figure 12.

IF Significant Movement of target  
THEN Monitor Target/Target Status    
 Project Target Movement    
 Target Vector = . . . .. ?  
ELSE Monitor for Movement

This particular doctrine is to be implemented at A6.11; 
refer to Table 6. This has far-reaching advantages. 
By assigning doctrines and rules to specific activity 
components, we are ensuring that each rule is formally 
implemented and is synchronized with other rules 
that are “in operation” at that instant of time. In a 
sense, which rules are compatible and which can cause 
“deadlocks” can be determined by execution of the 
above Activity 6 DEVS model. The sample lines above 
are implemented in the deltext( ) function of component 
A6.11. The deltint( ) function defines the natural course 
of the activity.

Figure 14. DEVS description of Activity 6 in relation to Table 6 activity components
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public void deltext(double e, messagex){
...
 for(int i=0; i<x.length; i++){
  if(messageOnPort(“inIsSigMov”){
   MessageTypeA msg 
    = (MessageTypeA)x.getValOnPort
    (i, “inIsSigMov”);
   If(msg.equals(“yes”))
    holdIn(0, “yesSigMov”);
   else
   if(msg.equals(“no”))
    holdIn(0, “noSigMov”));
 }
...
}
public message out(){
...
 if(phaseIs(“yesSigMov”)){
  m.add(makeContent(“outSigMovY”, 
   new entity(“start”)));
 if(phaseIs(“noSigMov”))
  m.add(makeContent(“outSigMovN”, 
   new entity(“start”)));
...
}

Similarly, all other activities will receive inputs from 
other source activities in their deltext( ) functions that 
will contain the logic for implementation of doctrines. 
For convenience purposes, the execution time of 
these doctrines is considered zero. Notice the holdIn( ) 
function in the code above. This is an important place 
where we can tune and implement the realistic time 
in issuing commands by human commanders; for 
example, in a situation where the system is “waiting” 
for a command from an authority figure and decision 
has to arrive until a “timeout” occurs. In addition, 
consider that the activity component is executing 
certain process with respect to its deltint( ) function 
and is in a certain “phase” waiting for any external 
input from other activities. In the situation of not 
receiving this input within allowable time window, 

timeouts can very effectively guide the simulation 
to its completion and prevent the wait-to-infinity 
problem. 
 The OR split problem pointed out by Zinn 
[31] in IDEF3 methodology has no effect in DEVS 
methodology. This problem is resolved by making 
the &, X, and O constructs in IDEF3 methodology 
“internal activity” components; see Table 6. Once they 
are componentized, timeouts can be implemented 
very easily that will completely eradicate this problem. 
These components are very well documented in DEVS 
SimpArc package version 3.0. This solution also puts 
the focus back on the system-logic implementation 
and test if the communication delays are significant 
enough that timeouts are occurring frequently.
 Finally, the last task is the description of the OV-9 
document. This document contains information about 
the activities happening inside an operational node 
and the way in which the sub-activities are mapped 
onto the components inside the operational node. For 
simplicity, we are working on the assumption that 
there is only one operational node, O1, in the example. 
As there is no information present on what its inner 
components are in [31], we will assume that there 
are, say, seven inner components that make up this 
node. Four of these seven components are associated 
with Activity 6 and the other three components are 
associated with some other activities, not considered 
for illustration purposes. 
 The defined components are essentially COTS 
components with defined behavior. They can 
even come from system view document SV-4. 
Consequently, each of them has its “models” for 
simulation purposes specified in DEVS formalism. 
These models are essentially open-source models 
available to the public through a common repository 
and are “standardized.” Table 8 depicts the 

Table 7. Inner components within operational nodes and their mapping with “standardized” DEVS models

S. No. Operational
Node

Inner 
Component 

Entities

Component
Name

Associated 
Models Added 
to Repository

Hierarchical 
Parent/Container

DEVS Model 
Type

1 O1 OCE1 TCT ME1 - Digraph
2 OCE1.1 Radar tracking 

system
ME1.1 ME1 Atomic

3 OCE1.2 Significance 
analyzer

ME1.2 ME1 Atomic

4 OCE1.3 Urgency analyzer ME1.3 ME1 Atomic
5 OCE1.4 Vigilance controller ME1.4 ME1 Atomic
6 OCE1.5 Attack evaluator ME1.5 ME1 Digraph
7 OCE1.6 Attack initiator ME1.6 ME1.5 Atomic
8 OCE1.7 Attack terminator ME1.6 ME1.5 Atomic
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information assumed for construction of OV-9. The 
inner components depicted in this table are only for 
illustration purposes.
 Having Table 7 as available resources for OV-9, we 
have enough information to construct the activity-
entity mapping. We identify and define port interfaces 
that need to be added to the entity component 
models so that they can be coupled to the activity 
components. Once the OV-9 document is in place, 
the added interface information is used to update 
the models defined during the construction of these 
two documents. We saw in construction of the OV-8 
document that the resulting model is a stand-alone 

model that is capable of executing the simulation 
in “capability” mode, testing the OV-5 and OV-6 
description of the system. A sample OV-9 document 
is shown in Table 8
 The OV-9 document aids in bringing the systems 
perspective to the design and how the system’s 
components initiate the designated activities. 
Assignment of an activity to appropriate component 
entity is a job of an experienced “designer,” as per 
the definition of designer in the DoDAF document. 
This document ensures accountability: there is at 
least one component entity that is responsible for the 
execution of that particular activity. Notice that all 

Table 8. OV-9 description document mapping the entity component inside operational node O1 with the activity components 
defined in OV-8 with port interfaces

S. No. Operational
Node

Inner 
Component 

Entities

Component 
Name

Activity 
Component

Activity
Component

Name

Interface 
Description

1 O1 OCE1 TCT

OCE1.1 Radar tracking 
system

A6.1 Monitor target/target status monTarE
A6.2 Monitor for movement monTarMovE
A6.3 Project target movement proTarMovE
A6.11 Significant movement

Yes/No
sigMovYesNoE

A6.12 Target monitoring tarMonE
A6.10 Monitor target of interest for 

status change
monTarInterE

OCE1.2 Significance 
analyzer

A6.13 Target significance analysis tarSigAnalyE
A6.4 Analyze threat from target analyThrTarE
A6.5 Analyze dynamic target 

execution direction and 
guidance

analyEDGE

A6.7 Determine target 
significance

detTarSigE

A6.14 Synthesize results syncE
OCE1.3 Urgency 

analyzer
A6.6 Determine target window 

of vulnerability
detWinVulE

OCE1.4 Vigilance 
controller

A6.15 TCT determination 
Yes/No

tctDetYesNoE

A6.8 Nominate as dynamic 
target

nomDynTarE

A6.9 Pass target to ATO 
planners

passTarAtoE

A6.16 Initial attack  Yes/No initAtckYesNoE
A6.18 Attack decision atckDecE
A6.17 Review established target 

lists
revEstTarListsE

OCE1.5 Attack evaluator A6.16 Initial attack  Yes/No initAtckYesNoE
OCE1.6 Attack initiator
OCE1.7 Attack terminator
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the activity components addressed in the example 
have been assigned at least one operational node 
inner component entity. After the creation of the OV-
9 document, the interface information, in the last 
column, is used to update the corresponding activity 
and the entity models in the model repository that were 
created during the construction of OV-8. This is again 
an automated task with simple string manipulation 
as described earlier, during the construction of OV-8 
models.
 Hence, during the creation of OV-8 and OV-9 we 
have populated the model repository with activity 
models (MA6.1–MA6.18) and operational nodes’ inner 
component models (ME1, ME1.1–ME1.6), and have 
created an interface between these two aspects of 
DoDAF design. 

10.3 Synopsis

Looking at Figure 6 in an activity component 
perspective, we have our defined inputs and outputs, 
and eventually the logical activity ports. In the example 
above, we have defined the interfaces of an activity that 
could be subjected to component coupling and testing. 
The coupling information can be integrated using the 
OV-3 document, as described in Table 3 and in more 
detail in Table 6. The timing information is added 
using the OV-6b and OV-6c diagrams as we have 
defined “components,” the effects of which have been 
highlighted earlier in Sections 7 and 8. This information, 
along with the pseudo-code provided by Zinn, is 
integrated to develop the DEVS model of the activity 
in question. The pseudo-code is very well directed to 
the activity that is best responsible to execute those 
“rules.” At this point the whole purpose of creating 
OV-8, the rule-activity mapping, is realized.
 The OV-9 document deals with the mapping of 
the activity components with the entity components. 
Since Zinn [31] did not define internal components 
for any operational node, we assumed certain inner 
components and mapped the activities to these 
components. Having ensured accountability for each 
of the activities, another area that OV-9 contributes 
to is system design, reuse, and composability. We 
have available to us a document that contains 
information of the functionalities any particular 
component can perform or participate in collective 
functionality. Consider the situation when two or 
more inner components from systems perspective are 
thrown together to observe if the system is capable of 
performing “something.” This allows us to experiment 
with different systems that claim to exhibit certain 
functionality. It allows us to test interoperability.
 Hence, the resulting integrated information from 
OV-3, OV-2, and OV-6 is converted to the information 

in documents OV-8 and OV-9, with the addition of 
logical ports, dedicated to the M&S area that are focused 
toward operational views. Referring to Figure 4 
again, the complete DEVS process life cycle, the area 
in the grey box is initiated at this stage, wherein we 
have XML (OV-8, OV-9) or any form of pseudo-code 
to define the operational view descriptions. Manual/
automated design of DEVS models, based on Table 3 
interpretation, and semiautomated model–test suite 
development based on Zeigler et al. [9] and Mak et al. 
[40] stems from the DEVS activity model description 
documents, viz., OV-8 and OV-9.

11. Future Work

The present work has made two contributions:
It provides a methodology to incorporate 
automated testing during the early stages of 
DoDAF design process.
Operational view activities can be considered as 
activity components with defined interfaces and 
port definitions.

The work related to the first contribution is already 
proved in projects that are being done currently 
at JITC [9, 40]. How it relates to the DoDAF design 
process is left for future considerations. The second 
contribution presents us with a perspective of 
considering functionality as “components” and the 
way in which different functionalities are dependent 
upon each other in order to implement any capability. 
This perspective enables us to think of an abstract 
component that is capable of information exchange 
and can provide services to other functional 
components. The abstract functional component 
can very well be a part of a service-oriented 
architecture. 
 Consider the situation when there is a capability 
(composed of various functionalities) that is a part 
of a certain DoDAF architecture and a model needs 
to be simulated in order to analyze the compatibility 
between these functionalities (through OV-6a). Also 
consider that the number of functionalities is quite 
large, and that these are complex enough to be at one 
simulation station. Further, there has already been a 
subset of functionalities (within this capability) that 
has been simulated by some other organization. The 
cost effective solution is to utilize the work already 
done by this organization and build the remaining 
functional components (through OV-8 and OV-9). 
The means by which an online simulation model can 
be realized is through a web services architecture 
implemented over the Internet. The common mode of 
exchange is through XML. Now, if these components 
are described in XML, and there is a definite interface 

1)

2)
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port for a particular service, creating a model for the 
capability can be effectively realized. This work is 
currently in progress at the ACIMS lab and will be 
reported in future publications.
 The abstract component that is capable of being 
a part of DEVS modeling framework is shown 
in Figure 15. Its XML representation is shown in 
Figure 16. The point worth stressing here is that 
the XML code is generated automatically with the 
information coming from DEVS DTD and OV-8. 
What is required here is the addition of code for a 
“services” tag. Once implemented on SOA, the code 
with respect to the “services” tag can be exchanged 
through a SOAP message, and a DEVS model is made 
ready for simulation. In ongoing research [45], web 
services–based DEVS model interoperability has been 
achieved using XML as the communication medium 
with SOAP middleware. This technology is made 
possible by DEVS Modeling Language (DEVSML), 
which allows distribution of DEVS models in the form 
of XML documents to remote nodes where they can 
be coupled with local service components to compose 
a federation. The layered middleware architecture 
capability is shown in Figure 17. 
 At the top is the application layer that contains a 
model in DEVS JAVA or DEVSML. The second layer 
is the DEVSML layer itself, which provides seamless 
integration, composition, and dynamic scenario 
construction resulting in portable models in DEVSML 

Figure 15. An SOA object capable of DEVS modeling

Figure 16. Automated XML snippet for an activity 
component created with OV-8 (port definitions); logic is 
added later or exchanged through SOA implementation

<?xml version=”1.0” encoding=”UTF-8”?>
<xml-body>
<model>
 <atomic>
  <name>Hello</name>
  <params>  </params>
  
  <construct>
   <args> </args>
   <ports>
    <inports>
     <inport>in</inport>
    </inports>
    <outports>
     <outport>out</outport>
    </outports>
   </ports> 
  </construct>
  
  <initialize>
  </initialize>
      . . 

  <services>
   
   <function>
    <access> public </access>
    <return> int </return>
      <inport> in </inport>
      <outport> out </outport>
    <fname> decrement() </fname>
    <logic>    </logic>
   </function>

  </services>  
 </atomic>
</model>
</xml-body>

Figure 17. DEVSML layered architecture providing 
simulator transparency
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that are complete in every respect. These DEVSML 
models can be ported to any remote location using 
the net-centric infrastructure and can be executed at 
any remote location.
 The simulation engine is totally transparent to 
model execution over the net-centric infrastructure. 
The DEVSML model description files in XML contain 
metadata information about its compliance with 
various simulation “builds” or versions to provide true 
interoperability between various simulator engine 
implementations. Such run-time interoperability 
provides a great advantage when models from 
different repositories are used to compose models 
using DEVSML seamless integration capabilities. 
Making DoDAF a DEVS-compliant architecture will 
enable cross-platform integration and simulation 
opportunities.

12. Conclusions

Although the current DoDAF specification provides 
an extensive methodology for system architectural 
development, it is deficient in several related 
dimensions: its absence of integrated modeling and 
simulation support, especially for model continuity 
throughout the development process, and its lack 
of associated testing support. To overcome these 
deficiencies, we described an approach to support 
specification of DoDAF architectures within a 
development environment based on DEVS-based 
modeling and simulation. The result is an enhanced 
system life cycle development process that includes 
model continuity–based development and testing in 
an integral manner.
 We have also introduced two new operational 
views, OV-8 and OV-9, to address the additional 
information that is needed to make the DoDAF M&S 
compatible. We have also demonstrated the process 
to create OV-8 and OV-9 from the existing operational 
views. OV-8 contains the information about the 
activity component structure and how different 
activities interface with each other using the specified 
logical interfaces. OV-9 contains information about 
the constituent components inside an operational 
node and its corresponding DEVS model structure 
along with their mapping to the activity components 
in OV-8. Together OV-8 and OV-9 provide a means 
to correlate activity components with accountable 
entities in an operational node using logical interfaces. 
It is after the transformation of OV-8 and OV-9 into 
DEVS models that rules assigned to specific activity 
or entity components make OV-8 and OV-9 serve 
their complete purpose. Automation using XML 
and simulation tuning are important concepts that 
can be well executed and performed under current 

DEVS technology. Composing simulations that are 
hierarchically stable and realizable is a step forward in 
evaluation of multi-resolutional architectures. Issues 
such as personnel management and task assignment 
at proper resolution of architectural execution are 
worth exploring further in future work. Capability to 
objectify parameters and visualize them with respect 
to the end goal in mind is critical for success. Current 
DEVS technology is well equipped to accomplish 
such a capability.
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Appendix

System Entity Structure (SES)

The SES formalism is a structural knowledge 
representation scheme that systematically organizes a 
family of possible structures of a system. Such a family 
characterizes decomposition, coupling, and taxonomic 
relationships among entities. An entity represents a real-
world object. The decomposition of any entity concerns 
how an entity may be broken down into subentities. 
Coupling specifications tell us how different subentities 
can be coupled together to reconstitute an entity. The 
taxonomic relationship concerns admissible variants 
of an entity. It also provides a formal framework for 
representing the family of possible structures. From a 
design point of view, SES represents the design space 
with various possible design configurations. Thus, 
the process of design/analysis is to prune SES—in 
other words, to search the best design configuration. 
For complex systems, the number of the combination 
of different configurations is very large. Thus, it is 
desirable to be able to emulate SES and automatically 
search the best design configuration. For a detailed 
description on SES see [10].
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Table 9. DoDAF-DEVS extended translation table focusing on SV, TV

DoDAF Elements UML
Elements

DEVS Elements
(Generated Using XML)

Name Description
Systems 

View  SV-4
System functional 
description

• Use-case description
• Activity sequencing 

diagrams

• Hierarchical functional 
components organization

DEVS
model

repository

SV-5
System functional 
traceability matrix 
(based on OV-5)

• Coupling info refinement

SV-10
System state description 
and event trace 
(based on OV-6)

• Sequence diagrams
• State charts

• DEVS atomic model 
transition functions 
refinement

SV-6 System data exchange 
matrix

• Input-output pair 
refinement

SV-1
System interface description 
(based on OV-2)

• Composite structure 
diagram

• Port assignment 
refinement

• Entity refinement

SV-2
System communication 
description

• Deployment diagrams • Coupling info 
refinement (hierarchical 
management)

SV-7
System performance 
parameters matrix

• Experimental frame DEVS
system

test suite

SV-3
System-systems matrix • Hierarchical model 

organization
• Entity refinement

DEVS
model

repository

SV-11 Physical schema • Class diagrams • Hierarchical model 
organization

Technical 
View TV-1 Current standards • Timing response • Basic DEVS model for 

COTS component

TV-2 Future standards • Improved DEVS model 
for desired functionality


