
DEVS Unified Process

Book now out : Netcentric System of Systems Engineering with DEVS
Unified Process, Francis & Taylor Group, CRC Press

Comprehensive book review in SCS Newsletter , by Dr. Bernard P. Zeigler

The DEVS Unified Process is based on an Open Systems concept. An open system is a
dynamical system that can exchange energy, material and information with the outside world
through its reconfigurable interfaces. An open system also possesses the capability to form
complex hierarchical structures enabling them to compete and cooperate at the same time. In
fact, the mechanism to reorganize in a hierarchical structure is one of the basic requirements to
manage complexity. The open systems are also characterized by emerging behavior and
evolving structure. These two facets are function of an open system’s permeability to outside
influence, inherited guidelines, ability to self-govern, and the degrees of synergistic efforts as it
interacts with other systems and with its environment. In order to have an executable System of
System, the framework must provide capabilities to model an open system. In addition, a
process also needs to be defined that allows the development of an executable Open system.
Much of an Open system development hinges on the variable structure capability within a
component based system. The ability to add or remove hierarchical components, change
connections between components and lastly, modify the behavior of a component as it evolves
per its surroundings, is the desired characteristics of an open systems modeling framework.
While the first two capabilities are structural in nature and have been documented in DEVS
literature, the third one is behavioral modification at runtime. This capability is the most difficult
to achieve. Using the latest advances in finite deterministic DEVS described as DEVS Domain
specific Language in DEVSML 2.0 stack , runtime behavior modification in DEVS could be
achieved. The DEVS open systems approach underlying the DEVS Unified Process gives it
strong formal foundation to develop M&S complex systems software capable of designing
emergent behaviors.

Service Oriented Architectures (SOA) present challenges to current model-based software
engineering methodologies such as Rational Unified Process (RUP). In this effort, originally
developed by Dr. Mittal in his doctoral research, a process called DEVS Unified Process
(DUNIP) has been proposed. It uses the Discrete Event Systems Specification (DEVS)
formalism as a basis for automated generation of models from various requirement
specifications and their eventual realization as SOA collaborative services.

 1 / 2

http://www.amazon.com/Netcentric-Systems-Engineering-Unified-Process/dp/1439827060/ref=sr_1_1?ie=UTF8&qid=1362022534&sr=8-1&keywords=saurabh+mittal
http://www.crcpress.com/product/isbn/9781439827062
http://www.scs.org/newsletters/2013-07/newsletter.pdf
component/content/article/23-devsml-20.html

DEVS Unified Process

 Figure 1:DEVS Elements DEVS formalism has been in existence for over 30 years now. It has been applied to multipledomains and many of the formalisms can be reduced to DEVS formalism. DEVS is based onstrong system theory with its hierarchy of system specifications and closure under couplingproperties. The DEVS Unified Process a.k.a DUNIP is the consummation of how DEVS can beapplied to System of Systems design and analysis in full systems engineering life cycle setup.DUNIP is not a single concept but an integration of various concepts that have been developedover the years in DEVS research. These concepts have now evolved into an integrated processthat facilitates systems modeling and simulation. Combining the systems theory, M&Sframework and model-continuity principles lead naturally to a Life-cycle development process,originally referred as Bifurcated Model-Continuity Based Life Cycle Methodology (Figure 2)which is a precursor to the DEVS Unified Process. The process can be applied to developmentof systems using model-based design from scratch or as a process of reverse engineering inwhich the requirements have already been developed in an informal manner.

 Figure 2:Bifurcated Model Continuity-based Life Cycle Process The above conceptual process does not take into account the system development life cycle,the prime objective of which is continuous satisfaction of the requirements across a system’slifecycle. The Bifurcated Model-continuity process is extended to include: 1. the requirement specifications from disparate systems, 2. the development of required domain specific languages along with DEVSMLtransformations, and 3. their execution over a transparent simulation net-centric infrastructure to define the DEVS Unified Process. DUNIP is a universal process and is applicable in multipledomains. However, the understated objective of DUNIP is to incorporate discrete eventformalism as the binding factor at all phases of this development process. Figure 2 illustratesthe DEVS Unified Process. DUNIP integrates various model-based engineering concepts into its precursor DEVS-basedBifurcated Model-Continuity life-cycle development methodology as in Figure 2 above. Thelife-cycle begins by specifying the system requirements in a number of different formats such asstate-based, BPMN/BPEL-based, message-based requirement specifications. DUNIP thenautomates the generation of DEVS models capable for distributed collaboration. Thecollaboration uses an XML-based DEVS Modeling Language (DEVSML) framework thatprovides the capability to integrate models that may be expressed in different DEVSimplementation languages. The models are also made available for remote and distributedreal-time execution over the SOA middleware in a manner transparent to the user (Figure 3). Aprototype simulation framework known as DEVS/SOA was implemented. The importantconcepts and the process within DUNIP are listed below: 1. Requirements specification using Domain Specific Languages (DSLs): Variousdomain specific languages are used to specify system requirements and definitions, for ex.Unified Modeling Language, Department of Defense Architecture Framework (DoDAF), BNFgrammars and other DSL generation languages like Groovy, Scala etc. can be used to definerequirements. 2. Platform Independent modeling at lower levels of systems specification usingDEVS DS L: a DEVS domain specific language that is based on Finite DeterministicDEVS is described here. It is presented in the context of DEVS Modeling Language (DEVSML 2.0) stack. 3. Model Structures at higher level of System resolution using System EntityStructures (SES) : The role of System Entity Structures at higher levels of systemsspecification and a model-based repository framework in which components stored in arepository can be used for systems development. 4. Platform Specific Modeling i.e. DEVS implementations on different platforms:Platform independent DEVS models can be implemented in a platform specific language suchas JAVA, C# or C++. 5. Automated Test Model generation using DEVS PIMs: Automated generation of DEVSobservers and test agents from DEVS platform independent models. DEVS DSL plays a criticalrole in achieving this capability. 6. Net-centric execution in a distributed setup: The net-centric framework for DEVSexecution. It provides details on the DEVS simulation architecture, message serialization andcross-platform execution of DEVS PIMs. It will describe a DEVS virtual machine that the usercan either run locally or in a cluster to achieve parallel execution. 7. Interfacing of models with real-time systems: The heart of model-continuity principle.DEVS can act as a production system and can interface with live web services. It also describesa Test Instrumentation System (TIS) deployed on a Service Oriented Architecture (SOA) 8. Verification and Validation: Emphasis on the Experimental Frame design and howDSLs can help define the DEVS experimental frames. It describes how V&V is done in anautomated manner using DEVS PIMs.

 Figure 3:DEVS Unified Process Agile software methodologies have taken quite a notice these recent years primarily due to thefactors such as volatile ever-changing requirements, dynamic technological landscape, highemployee turnover, and most importantly, satisfying the business needs. It is summarized as astrategic capability that can respond to change, is adaptive, balances flexibility and structure,draws about the creativity and innovation of the development team and ultimately leads theorganization through turbulence and uncertainty. There is a fundamental shift in the approach of delivering the product by hard-line requirementsspecifications supported by methodologies like waterfall model, Capability Maturity Model(CMM) and CMM Integration (CMMI) and the Agile practices. While the former delineatesdefined repeatable processes so that the performance can be measured within very closetolerances, the Agile methodologies are more geared towards employing the latestadvancement in technologies, to explore, and to deliver the product as soon as possible. Thekey point of agile practices is the inclusion of software engineering life cycle in each iteration sothat the features delivered are production ready at the end of each iteration. While the visions ofmost projects are clear, what remain fuzzy are the exact requirement specifications that thedevelopers are faced with. With agile practices, a constant dialogue with the customer or thesubject matter experts (SMEs), repeatable testing procedures, incremental development andusing the latest technology, the requested feature can be delivered in the next iteration withoutchanging the entire project vision. The DEVS Unified Process, similarly is based on agilemethodology. Table below lists the similarities with each phase of agile developmentmethodology.

 The roots of DEVS Unified Process are in Dr. Mittal's dissertation. In the dissertation, the entireprocess is illustrated with an application to a system of collaborating military systemsimplemented and tested using Bifurcated Model-Continuity methodology. The research alsoillustrates how the Department of Defense Architecture Framework (DoDAF) can be enhancedto incorporate simulation based executable models using the DUNIP process. The latest versionof DEVS Unified Process is available in the book " Netcentric System of Systems Engineeringwith DEVS Unified Process ". Dissertation

 - Overview
 - DEVS Unified Process for Integrated Development and Testing of Service Oriented
Architectures
 - Table of Contents
 - Prototype Demonstration movie (.avi 200MB)

 2 / 2

research/23-devsml-20.html
component/content/article/23-devsml-20.html
component/content/article/11-book/22-book-in-the-works.html
component/content/article/11-book/22-book-in-the-works.html
images/dunip/docs/Mittal_DUNIP_Disseration.ppt
images/dunip/docs/Thesis_Mittal.pdf
images/dunip/docs/Thesis_Mittal.pdf
images/dunip/docs/TOC_dunip.pdf
../training/demos/dunip.avi

